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Abstract
To remove the difficulty caused by different costs of the frontiers for calculating the changes
of cost efficiency and its components, Tohidi, et al [G. Tohidi, S. Razavyan, S. Tohidnia,
A global cost Malmquist productivity index using data envelopment analysis, Journal of
the Operational Research Society, 63 (2012) 72-78] proposed a global cost Malmquist pro-
ductivity index. This index is applicable when input costs are known and producers are
going to minimize the cost of decision making units (DMUs). In this paper the above
proposed index is generalized to compare the productivity of two different units at two
different points of time under the constant returns to scale (CRS) and variable returns to
scale (VRS). The global cost Malmquist productivity index developed here is unique and
is computed using nonparametric linear programming models, known as data envelopment
analysis (DEA). To illustrate the generalized index and its components, a numerical ex-
ample at three successive periods of time is given.
Keywords : Circularity; Malmquist index; Data envelopment analysis (DEA); Cost efficiency; Re-

turns to scale.

——————————————————————————————————

1 Introduction

The Malmquist index has seen many applications and extensions [3, 7, 2, 5]. But it
does not capture allocative efficiency, which reflects the distance between the actual and
minimum cost at which a production unit may secure its outputs once any technical
inefficiency of the unit has been eliminated [4]. Maniadakis and Thanassoulis [6] proposed
an approach to decompose the productivity change so that the contribution of allocative
efficiency change is identified. In particular, a cost Malmquist index, which is defined
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in terms of cost rather than input distance functions, is developed and computed using
non-parametric linear programming models. The index is applicable when producers can
be assumed to be cost minimizers and input-output quantity and input price data are
available. But this index is not circular, LP infeasibility can occur, and its adjacent
period components can provide different measures of productivity change.
Tohidi, et al [9] proposed a Malmquist productivity index and showed that it is possible
to specify a base cost boundary in a way that solves all three problems, without hav-
ing to impose restrictive conditions on either the technologies or the data. That is, the
proposed index is circular, LP infeasibility cannot occur, and its adjacent period compo-
nents provide a single measure of productivity change. They called this index the global
cost Malmquist index. This paper generalizes the proposed cost Malmquist productivity
index by Tohidi, et al [9] to compare the productivity of two different units at two dif-
ferent points in time under constant returns to scale (CRS) and variable return to scale
(VRS) technologies. Several decompositions of generalized index are presented under CRS
and VRS technologies. The global cost Malmquist productivity index developed here is
unique and is computed using nonparametric linear programming models [1], known as
data envelopment analysis (DEA).

The rest of the paper is organized as follows. Section 2 expresses technical background
and presents a generalized index and its components to compare two units at two different
points in time under CRS technology. Section 3 presents the generalized index and its
components to compare two units at two different points in time under VRS technology.
To illustrate the generalized index and its components, a numerical example at three
successive periods of time is given in section 4. and finally the conclusion is drawn in
section 5.

2 Comparing two units at two different points in time

Assume that in time period t, (t = 1, . . . , T ) we have J DMUs that input prices are
available and we are going to compare DMUj , (j = 1, . . . , J) , with itself at different time
points. In fact, we want to measure the productivity changes of a DMU between two
periods of time (productivity change over time). In this case, we can use the global cost
Malmquist productivity index, CMG, defined in [9], which is,

CMG =

wGxt+1

CG(yt+1, wG)
wGxt

CG(yt, wG)

(2.1)

where wG ∈ Rn
+ is defined as wG =

∑T
t=1 λtw

t,
∑T

t=1 λt = 1 and λt ≥ 0, (t = 1, . . . , T ).
wt, (t = 1, . . . , T ) is the input prices vector of time period t and CG(yt, wG) = min{wGx :
(x, yt) ∈ TG

c }. TG
c is the global production technology defined in Pastor and Lovell [7].

In this index there is only one global cost boundary as a benchmark for all time periods
t, (t = 1, . . . , T ) that is defined as follows [9]:

IsoC
G
(y, wG) = {(x, y) : wGx = CG(y, wG)}. (2.2)

Now we assume the input prices are not available, in this case Portela and Thanassoulis
[8] used the meta-frontier as an instrument to compare productivities of different units
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over time, and they defined a boundary namely unit-specific boundary to envelope all the
instances of a production unit within the meta-frontier. By using this new boundary and
the meta-frontier they computed two efficiency scores for unit j as observed in period t.

One efficiency is θmjt that is relative to the meta-frontier and another efficiency, θ
Uj

jt , is

relative to the unit-specific boundary. We have θmjt = θ
Uj

jt × UGjt where UGjt measures
the distance between the unit-specific frontier and the meta-frontier at the input-output
mix of unit j in time period t (Unit-Frontier Gap for unit j). Portela and Thanassoulis

[8] obtained θ
Uj

joτ
in relation to unit j ∈ {1, . . . , J} observed in period τ ∈ {1, . . . , T} by

solving the following model:

θ
Uj

joτ
= min kjo

s.t.
T∑
t=1

λjotx
t
ijo ≤ kjox

τ
ijo , i = 1, . . . , n,

T∑
t=1

λjoty
t
rjo ≥ yτrjo , r = 1, . . . ,m,

λjot ≥ 0, j = 1, . . . , J, kjo free.

(2.3)

For comparing the productivities of two units j and k, at two different points in times s
and t, s ̸= t, t > s, Portela and Thanassoulis [8] applied the ratio of their meta-efficiencies
θmjs
θmkt

labeled MItskj and then decomposed MItskj into two components as follows:

MItskj =
θmjs
θmkt

=
θmjs
θmjt

×
θmjt
θmkt

. (2.4)

On the other hand θmjt = θtjt × TGjt, where θtjt is within-period t efficiency of unit j
and TGjt is technological gap between period t boundary and the meta-frontier. Thus,
each of the components in the right hand side of (2.4) can be decomposed into two ratios
and finally we have,

MItskj =
θsjs
θtjt

× TGjs

TGjt
×

θ
Uj

jt

θUk
kt

× UGjt

UGkt
. (2.5)

In the above decomposition,
θsjs
θtjt

is efficiency change for unit j between two time periods

s and t,
TGjs

TGjt
is the frontier shift between periods s and t at the input-output mix of unit

j,
θ
Uj
jt

θ
Uk
kt

is within-unit-efficiency difference between units j and k at time period t that

compares the distance of unit j in period t from its unit-specific boundary (Uj) to the
corresponding distance of unit k in period t from its own unit-specific boundary (Uk).
UGjt

UGkt
is unit-frontier shift between units j and k at the input-output mix in period t that

compares the distance of the unit-specific boundary of unit j from the meta-frontier at
the input-output mix of unit j at time t to the corresponding distance of the unit-specific
boundary of unit k at input-output mix of this unit in period t.

Now by using the CMG index defined in (2.1) and the decomposition presented in
(2.5) we compare the productivities of two units j and k at two time periods s and t when
input prices are known and producers are going to minimize the cost of units.
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First, we define CUo(yot, wUo) = min{wUoxot| t = 1, . . . , T}, where wUo = wG for
o = j, k.

Now we can draw the unit-specific cost boundary of unit o, (o = j, k) as follows:

C
Uo
(y, wUo) = {(x, y)|wUox = CUo(yot, wUo)}. (2.6)

We compute CUo(yot, wUo) in relation to unit jo ∈ {1, . . . , J} observed in period τ ∈
{1, . . . , T} by solving the following model:

CUo(yoτ , wUo) = min

T∑
n=1

wUo
onxn

s.t.

T∑
t=1

λotx
t
on ≤ xn, n = 1, . . . , N,

T∑
t=1

λoty
t
or ≤ yτor, r = 1, . . . ,M,

λot ≥ 0, t = 1, . . . , T,
xn ≥ 0, n = 1, . . . , N.

(2.7)

In order to compare the productivities of units j and k at two periods of time s and t,
we define CM ts

kj as follows:

CM ts
kj =

wGxjs/CG(yjs, wG)

wGxkt/CG(ykt, wG)
. (2.8)

CM ts
kj can be decomposed as,

CM ts
kj =

wGxjs/CG(yjs, wG)

wGxjt/CG(yjt, wG)
× wGxjt/CG(yjt, wG)

wGxkt/CG(ykt, wG)
. (2.9)

The first ratio in the above decomposition is the productivity change of unit j between
two times s and t (productivity change over time) and the second ratio is the productivity
difference between units j and k at time t (productivity difference between contempora-
neous units).

In the next stage each of ratios in (2.9) can be decomposed into two components as
follows:

wGxjs/CG(yjs, wG)

wGxjt/CG(yjt, wG)
=

wsxjs/Cs(yjs, ws)

wtxjt/Ct(yjt, wt)
× [

wGxjs/CG(yjs, wG)

wsxjs/Cs(yjs, ws)

× wtxjt/Ct(yjt, wt)

wGxjt/CG(yjt, wG)
] =

wsxjs/Cs(yjs, ws)

wtxjt/Ct(yjt, wt)
× TGCjs

TGCjt

(2.10)

and

wGxjt/CG(yjt, wG)

wGxkt/CG(ykt, wG)
=

wUjxjt/CUj (yjt, wUj )

wUkxkt/CUk(ykt, wUk)
× [

wGxjt/CG(yjt, wG)

wUjxjt/CUj (yjt, wUj )

×wUkxkt/CUk(ykt, wUk)

wGxkt/CG(ykt, wG)
] =

wUjxjt/CUj (yjt, wUj )

wUkxkt/CUk(ykt, wUk)
× UGCjt

UGCkt
.

(2.11)
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The first ratio in the right hand side of (2.10) is the overall efficiency change of unit

j between time periods s and t and the ratio
TGCjs

TGCjt
is the cost boundary shift between

periods s and t at the input-output mix of unit j.

The component outside the brocket in (2.11) is the within-unit efficiency difference

between units j and k at time period t and the term
UGCjt

UGCkt
is the unit-cost frontier shift

between units j and k at input-output mix of these units in the period t that compares the
distance of the unit-specific cost boundary of unit j from the global cost boundary [9] along
the ray (xjt, yjt) to the corresponding distance of the unit-specific cost boundary of unit
k along the ray (xkt, ykt). In fact, in this approach we use the unit-specific cost boundary
and its position relative to the global cost boundary for comparing the productivities of
units j and k at two time periods s and t.

3 Comparing two units at two different points in time un-
der VRS

When the production technology is characterized by VRS we can apply another decom-
position of meta-efficiency of unit j as observed in time period t as,

θ
m(CRS)
jt = θ

T (V RS)
jt × θ

m(V RS)
jt

θ
T (V RS)
jt

× θ
m(CRS)
jt

θ
m(V RS)
jt

= θ
T (V RS)
jt × TGVjt ×MSEjt. (3.12)

In the above decomposition θ
T (V RS)
jt is the within-period-efficiency in relation to a VRS

frontier of period t. TV Gjt is the technological gap between the VRS meta-frontier and
the VRS frontier in t . MSEjt is the meta-scale efficiency and measures the distance
between the CRS and VRS meta-frontiers at the input-output mix of unit j in period t.

By using (3.12) the meta-Malmquist index, MI
j(CRS)
t,t+1 , is decomposed as follows:

MI
j(CRS)
t,t+1 =

θ
T+1(V RS)
jt+1

θ
T (V RS)
jt

× TGVjt+1

TGVjt
× MSEjt+1

MSEjt
, (3.13)

where,
θ
T+1(V RS)
jt+1

θ
T (V RS)
jt

is the pure technical efficiency change of unit j under VRS technology;

TGVjt+1

TGVjt
is the frontier shift between VRS frontiers of periods t and t+ 1, and

MSEjt+1

MSEjt
is

the meta-scale-efficiency change.

Now we present another decomposition of meta-efficiency that is relative to the unit-
specific boundary under VRS technology as shown in (3.14).

θ
m(CRS)
jt = θ

Uj(V RS)
jt ×

θ
m(V RS)
jt

θ
Uj(V RS)
jt

×
θ
m(CRS)
jt

θ
m(V RS)
jt

= θ
Uj(V RS)
jt × UGVjt ×MSEjt, (3.14)

where, θ
Uj(V RS)
jt is the efficiency score of unit j in relation to its VRS unit-specific frontier.

UGVjt measures the distance between VRS meta frontier and VRS unit-specific frontier
at the input-output mix of unit in time period (unit frontier gap under VRS technology)
and MSEjt is the meta-scale-efficiency.
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Notice that now we can decompose the index of comparative unit-productivity of unit
and as observed in time period as follows:

MI
t(CRS)
kj =

θ
m(CRS)
jt

θ
m(CRS)
kt

=
θ
Uj(V RS)
jt

θ
Uk(V RS)
jt

× UGVjt

UGVkt
× MSEjt

MSEkt
. (3.15)

In the decomposition in (3.15),
θ
Uj(V RS)

jt

θ
Uk(V RS)

jt

compares the distance of unit j in period t

from its VRS unit-specific boundary to the corresponding distance of unit k in period t
from its own VRS unit- specific boundary (within-unit-efficiency difference between units

j and k at time period t under VRS technology), the term
UGVjt

UGVkt
is unit-VRS frontier shift

between j and k at time period t and the term
MSEjt

MSEkt
compares the meta-scale efficiency

at the input-output mix of unit j at time t to the meta-scale efficiency at the input-output
mix of unit k at time period t.

For comparing the productivities of two units j and k at two different points in times
s and t, s ̸= t and t > s under VRS technology we use the ratio of their meta-efficiencies
and then decompose it as follows:

MI
ts(CRS)
kj =

θ
m(CRS)
js

θ
m(CRS)
kt

=
θ
m(CRS)
js

θ
m(CRS)
jt

×
θ
m(CRS)
jt

θ
m(CRS)
kt

. (3.16)

Now by using (3.13) and (3.15) we can decompose each of ratios the right hand side
of (3.16) into three components and finally we have:

MI
ts(CRS)
kj = [

θ
s(V RS)
js

θ
t(V RS)
jt

× TGVjs

TGVjt
× MSEjs

MSEjt
]× [

θ
Uj(V RS)
jt

θ
Uk(V RS)
kt

× UGVjt

UGVkt
× MSEjt

MSEkt
]. (3.17)

When the input prices are known and the production technology is characterized by VRS
for comparing the productivities of units j and k at time periods s and t, we use

CM
ts(CRS)
kj =

wGxjs/CG(CRS)(yjs, wG)

wGxkt/CG(CRS)(ykt, wG)
,

and decompose it in a similar manner as the decomposition in (3.17) as follows:

CM
ts(CRS)
kj =

wGxjs/CG(CRS)(yjs, wG)

wGxjt/CG(CRS)(yjt, wG)
× wGxjt/CG(CRS)(yjt, wG)

wGxkt/CG(CRS)(ykt, wG)
. (3.18)

In the next stage we can decompose each of the ratios in (3.18) into three components
as follows:

wGxjs/CG(CRS)(yjs, wG)

wGxjt/CG(CRS)(yjt, wG)
=

wsxjs/Cs(V RS)(yjs, ws)

wtxjt/Ct(V RS)(yjt, wt)
×

wGxjs/CG(V RS)(yjs,wG)

wsxjs/Cs(V RS)(yjs,ws)

wGxjt/CG(V RS)(yjt,wG)

wtxjt/Ct(V RS)(yjt,wt)

×
wGxjs/CG(CRS)(yjs,wG)

wGxjs/CG(V RS)(yjs,wG)

wGxjt/CG(CRS)(yjt,wG)

wGxjt/CG(V RS)(yjt,wG)

=
wsxjs/Cs(V RS)(yjs, ws)

wtxjt/Ct(V RS)(yjt, wt)
× TGCVjs

TGCVjt
× MSEjs

MSEjt
.

(3.19)
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The first ratio in (3.19) is the overall efficiency change of unit j between periods s and t

when the form of the technology is VRS. The term
TGCVjs

TGCVjt
is the cost frontier shift between

two times s and t at the input-output mix of unit j with reference to the VRS technology.
The term

MSEjs

MSEjt
is the meta-scale efficiency change when the global cost boundary is used

as a benchmark. The second ratio in (3.18) is decomposed into two components as follows:

wGxjt/CG(CRS)(yjt, wG)

wGxkt/CG(CRS)(ykt, wG)
=

wUjxjt/CUj(V RS)(yjt, wUj )

wUkxkt/CUk(V RS)(ykt, wU
k )

×
wGxjt/CG(V RS)(yjt,wG)

wUjxjt/CUj(V RS)(yjt,wUj )

wGxkt/CG(V RS)(ykt,wG)

wUkxkt/CUk(V RS)(ykt,wUk )

×
wGxjt/CG(CRS)(yjt,wG)

wGxjt/CG(V RS)(yjt,wG)

wGxkt/CG(CRS)(ykt,wG)

wGxkt/CG(V RS)(ykt,wG)

=
wUjxjt/CUj(V RS)(yjt, wUj )

wUkxkt/CUk(V RS)(ykt, wUk)
× UGCVjt

UGCVkt
× MSEjt

MSEkt
.

(3.20)

The first term on the right hand side of (3.20) is within-unit-overall efficiency difference

between units j and k at time t. The term
UGCVjt

UGCVkt
is the unit-cost frontier shift between

units j and k at input-output mix of them in time period t and
MSEjt

MSEkt
is the meta-scale

efficiency difference at the input-output mix of two units j and k at time period t. In fact,

we decompose the index CM
ts(CRS)
kj into six components when the form of the production

technology is VRS. For computing the values of θ
Uj(V RS)
jt and CUo(V RS)(yot, wUo) we only

add the convexity constraint to models (2.3) and (2.7) imposing the sum of all lambdas
to be 1 respectively.

4 Example

This section illustrates the generalized index using a numerical example. Table 1 shows
units A-D with two inputs (I1 and I2), one output (O) and inputs cost (c1 and c2) for
3 successive periods of time. Let the decision maker preferences be λ1 = λ2 = λ3 = 1

3 .

Therefore, the common cost is obtained using decision-makers’ preferences as cG = 1
3

(
2
4

)
+ 1

3

(
3
5

)
+1

3

(
4.1
5.5

)
=

(
3.033
4.833

)
.

Table 2 shows indices for all DMUs (j, k = A,B,C,D) and time periods (s, t = 1, 2, 3)
using cG =

(
3.033
4.833

)
. Table 2 compares the various DMUs observed at different time periods.

Each cell in Table 2 compares the productivity of a DMU to that of the instance of the
DMU in the column heading.

Table 1. Inputs, output and inputs cost for 3 successive periods.
DMU t = 1 t = 2 t = 3

I1 c1 I2 c2 O I1 c1 I2 c2 O I1 c1 I2 c2 O
A 3 2 4 4 3 1.5 3 5 4 3 2 4.1 3 5.5 4
B 1 2 1.5 4 5 2 3 2 4 5 1.5 4.1 5 5.5 7
C 1 2 2 4 2 1.5 3 3 4 3 1.5 4.1 2 5.5 4
D 1.5 2 4 4 4 1.5 3 3 4 6 2 4.1 2 5.5 6

For example PM1,3
A,B = 0.2871 < 1, shows a progress for the relative productivity

of DMUA to DMUB from period 1 to period 3, while PM1,3
B,C = 2.3156 > 1 shows a
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regress for the relative productivity of DMUB to DMUC from period 1 to period 3. Same
interpretation can be made to the other numbers in Table 2.

The average values of PM s,t
k,j indices have been shown in the last column and they can

be used as a measure of productivity. For example DMUB in the first and second period
and DMUD in the third period have the largest average values of PM s,t

k,j indices. The

other components with cG =
(
3.033
4.833

)
can be calculated.

Table 2. PMs,t
k,j indices for all pairs of DMUs and all time periods with common costs.

t = 1 t = 2 t = 3
k, j A B C D A B C D A B C D Avg.
A - 0.217 0.67 1.26 1.01 0.33 0.67 0.33 0.92 0.28 0.50 0.27 0.62
B 4.60 − 3.08 5.80 4.65 1.53 3.08 1.54 4.26 1.32 2.31 1.27 2.87

s=1 C 1.49 0.32 − 1.88 1.50 0.49 1 0.5 1.38 0.42 0.75 0.41 0.93
D 0.79 0.17 0.53 − 0.80 0.26 0.53 0.26 0.73 0.22 0.39 0.21 0.49
A 0.99 0.21 0.66 1.24 − 0.32 0.66 0.33 0.91 0.28 0.49 0.27 0.61
B 3.01 0.65 2.01 3.79 3.04 − 2.01 1.00 2.78 0.86 1.51 0.83 1.87

s=2 C 1.49 0.32 1 1.88 1.50 0.49 − 0.5 1.38 0.42 0.75 0.41 0.93
D 2.98 0.64 2 3.76 3.014 0.99 2 − 2.76 0.85 1.5 0.82 1.86
A 1.08 0.23 0.72 1.36 1.09 0.35 0.72 0.36 − 0.31 0.54 0.29 0.67
B 3.48 0.75 2.33 4.38 3.51 1.15 2.33 1.16 3.22 − 1.75 0.96 2.17

s=3 C 1.99 0.43 1.33 2.50 2.00 0.66 1.33 0.66 1.84 0.57 − 0.55 1.24
D 3.61 0.78 2.42 4.55 3.65 1.2 2.42 1.21 3.34 1.03 1.81 − 2.25

Similarly, the PM s,t
k,j components for all pairs of DMUs in all periods of time with

common costs can be interpreted.

5 Conclusion

To obtain productivity changes and their components between two different periods of
time, under CRS and VRS assumptions, this paper generalized a method. This method
compared the productivity change of two different units in any two periods of time. The
generalized index was decomposed in two stages. A numerical example was presented
in three successive periods of time to illustrate the generalized index and its component
properties.
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