Available online at http://ijim.srbiau.ac.ir

Int. J. Industrial Mathematics Vol. 3, No. 2 (2011) 91-110

Science and Research Branch (IAU)

A New Approach to the Numerical Solution of
System of Dual Fuzzy Polynomial Equations
M. Otadi *, M. Mosleh

Department of Mathematics, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran.
Received J September 2010; revised 16 April 2011; accepted 22 April 2011.

Abstract

In this paper, we present some efficient numerical algorithms for solving system of dual
fuzzy polynomial equations based on Newton’s method. The modified Adomian decom-
position method is applied to construct the numerical algorithms. Some numerical illus-
trations are given to show the efficiency of algorithms.
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1 Introduction

Since the beginning of the 1980’s. The Adomian decomposition method has been applied
to a wide class of functional equations [10, 11]. Adomian gives the solution as of finite
series usually converging to an accurate solution. Abbaoui and Cherruault [2] applied
the standard Adomian decomposition on simple iteration method to solve the equation
f(z) = 0, where f(z) is a nonlinear function, and proved the convergence of the series
solution.

Abbasbandy [3] improved Newton-Raphson method to solve the nonlinear equation
f(z) = 0 based on modified Adomian’s method, and in [4] he extended Newton’s method
for a system of nonlinear equation by modified Adomian decomposition method.

The concept of fuzzy numbers and arithmetic operation with these numbers was first
introduced and investigated by [14, 16, 22]. One of the major applications of fuzzy number
arithmetic is in nonlinear systems whose parameters are all or partially represented by
fuzzy numbers [15, 18, 20].

Abbasbandy and Asady [5], applied the Newton’s method for solving fuzzy nonlinear
equations, f(z) = ¢ and the numerical solution of a fuzzy nonlinear equation and system of
fuzzy nonlinear equations was considered in [7, 23, 6]. Allahviranloo et al [13, 12] applied
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the iterative methods for solving fuzzy nonlinear equations. Tavassoli et al [25], applied
the Newton’s method for solving dual fuzzy nonlinear equations, f(z) = g(z) + ¢. The
topic of numerical solution of fuzzy polynomials by fuzzy neural network was investigated
by Abbasbandy et al. [8], this method is for finding solution to polynomials of the form
a1r +asx® + ...+ apz" = ag for x € R (if exists) and ag, a1, .. .,a, are fuzzy numbers and
system of s fuzzy polynomial equations such as [9]:

fi(z1,22,...,70) = aro,
fl($17$27 s 7$n) = ayo,
fs(x11x27 s axn) = Qas0,
where 1, 23, ..., 2, € R and all coefficients are fuzzy numbers. Otadi and Mosleh [24, 21]

applied the Adomian decomposition method and fuzzy neural network approach respec-
tively for solving fuzzy polynomial equation of the form a1z +asz?+. ..+ a,z™ = ay where
z,ag and all coefficients are fuzzy numbers. It is the purpose of this paper to introduce an
efficient extension of Newton’s method by modified Adomian decomposition method for
solving (if it exists) system of fuzzy polynomials.
The structure of this paper is organized as follows:

In Section 2, we recall some fundamental results on fuzzy numbers. The proposed al-
gorithms for finding a fuzzy root (if it exists) of a system of dual fuzzy polynomials are
discussed in Section 3. This leads us to conclude by giving a comparison with other
methods in Section 4. Numerical examples are given in Section 5.

2 Preliminaries

Definition 2.1. [17, 26, 27], A fuzzy number is a fuzzy set like u : R — I = [0,1] which
satisfies

1. u is upper semicontinuous,
2. u(z) = 0 outside some interval [c,d],
3. There are real numbers a,b such that c < a < b<d and

3.1. u(z) is monotonic increasing on [c, al,
3.2. u(z) is monotonic decreasing on [b,d],
3.3. u(z) =1,a <z <h.

The set of all these fuzzy numbers is denoted by E. An equivalent parametric is also
given in [19] as follows:

Definition 2.2. A fuzzy number u is a pair (u,w) of functions u(r),u(r);0 < r < 1 which
satisfies the following requirements:

i. u(r) is a bounded monotonic increasing left continuous function on (0,1] and right
continuous at 0.
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it. w(r) is a bounded monotonic decreasing left continuous function on (0,1] and right
continuous at 0.

it u(r) <u(r),0 <r <1.

A popular fuzzy number is the trapezoidal fuzzy number u = (xq, yo, o, 3) with interval
defuzzifier [z, yo] and left fuzziness o and right fuzziness $ where the membership function

1S
( T—Toto

o ) $0_0§$§$07

]-7 T e [$07y0]7
u(z) = < _——
B Yo <z< Yo + /67
L 0, otherwise.

Its parametric form is
u(r) =xy —o +or, u(r) =yo+ B — Pr. (2.1)

Let v = (z0,y0,0,08), be a trapezoidal fuzzy number and xg = yo, then u is called a
triangular fuzzy number and is denoted by u = (z9, d, 8).

The addition and scaler multiplication of fuzzy numbers are defined by the extension
principle and can be equivalently represented as follows.
For arbitrary u = (u,w),v = (v,7) and k > 0 we define addition (u + v), multiplication
(u.v) and multiplication by scalar k as

w.v)(r) = min{u(r).v(r),u(r).v(r), w(r).o(r),a(r).o(r)}, (2.2)

(ku)(r) = ku(r), (ku)(r) = ka(r).

Definition 2.3. [19], Let u and v be fuzzy numbers with r-level set [u]" = [u1(r), ua(r)]
and [v]" = [v1(r),v2(r)]. We metricize the set of fuzzy numbers by the Hausdorff distance

D(u,v) = suppeo,iymaz{] ui(r) = vi(r) |, [ ug(r) — vz(r) [} (2.3)

i.e. D(u,v) is the mazimal distance between r level sets of u and v.

3 The Adomian decomposition method

Usually, there is no inverse element for an arbitrary fuzzy number u € FE, i.e., there
exists no element v € E such that

u+v=0.
Actually, for all non-crisp fuzzy number v € E' we have

u+ (—u) # 0.
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Therefore, the system of fuzzy polynomial equations

fl(xlaxZa"' ,[L'n) = gl($1,$2,... axn) +ci1,
fl($17$27"' 7$n) = gl($17$27"' 7=,I’.TL) +Cl7

fs(z1,m0, ... 1) = gs(T1, T2y .o, Tp) + Csy
with
filzr, oo, mn) =300 anm + 300 DT anTit;
D001 D=t D ok= WGk TITiTh
gi(z1,22,...,2n) =D bizi+ > Z?Zl bl Tit

+ Z?:l 22'121 ZZ:I blijkaciacjxk + ..., 1< l <s

(3.4)

where =1, 9, ..., z, and all coefficients are fuzzy numbers, cannot be equivalently replaced
by the system of fuzzy polynomial equations

fi(z1, o, ..oy zn) — g1(z1, T2, . . .y Ty) = €1,
filzy, o, ... xy) — gi(z1, 22, ..., ) = ¢,
fs(x1, 2o, x0) — gs(x1, 22, ..., Ty) = s,

which have been investigated. In the sequel, we will call the system of fuzzy polynomial
equations

fl(xlax%"'vxn) :gl($1,$2,...,$n)+01,
filzr,z2,...,20) = qi(z1, 22, ..., 2p) + ¢, (3.5)
fs(x1,mo, ... x0) = gs(x1,29,. .., Tpn) + Cs,

system of dual fuzzy polynomial equations.
This full form of mathematical description can be represented by a system of partial
quadratic fuzzy polynomials consisting of only two variables in the form of

{ Pl(xvy) :P2($,y)+01,

(3.6)
Ql(xay) = QQ(Z',y) + 2,

where

Pi(z,y) = a1 + asy + azzy + asx® + asy®, Po(z,y) = a\x + aby + aszy + a)z® + aky?

and

Q1(z,y) = biz + bay + byzy + baz? + bsy?, Qa(w,y) = bz + by + by + byz? + bly?
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Let

v € [y(r), 5], a; € [a;(r), @ (r)],i = 1,...,5},
Po(z, Ty, Tir) = min{Pa(u,v) | u € [x(r), ()],
v € [y(r),5(r)], af € [a}(r), @(r)],i = 1,...,5},
Py(z,7,y,77) = maz{Pa(u,v) | u € [z(r), 7 (r)],
v € [y(r),5(r)], af € [a}(r), @(r)],i = 1,...,5},
Q,(z.7,y,75r) =min{Qi(u,v) | u € [z(r),7(r)],
€ [y(r), 7(r),bi € [b;(r), bi(r)],i = 1,...,5},
Qi Ty 7ir) = mas{Qi(u,v) | u € [z(r), 7(r)],
€ [y(r), 5(r),b; € [b;(r),bi(r)),i = 1,...,5}
Q, (2,75, 757) = min{Qa(u,v) | u € [z(r), F(r)],
€ [y(r), 7(r),b; € [Bi(r), Bi(r)],i = 1,...,5},
Q2. Ty Tir) = man{Qa(u,v) | u € [z(r), T(r)],
\ € [y(r), 7(r),b; € [Bi(r), Bi(r)],i = 1,...,5}.
1

The parametric form for any r € [0 ], is as follows:

( Bl(&axagay’ ) :BZ(gaxagayar)—i_gl(T)a
Pl(xaiagayalr) :?2($7I7gayar)+61(r)v
X o o (3.7)
Ql(laxagayaT) :QQ(L%%?J,T)"‘Q(T),
\ Ql (&afa Y, Y; 'r) = @2(§afvgv Y; ’)") + EQ(T)a
where ¢; = (¢(r),¢1(r)) and ca = (cy(r),C2(r)). The problem (3.7) can be reformulated
in an equivalent form as
( F(z,7,y,7;r) =0,
F(z,%,y,7;7) =0,
< (3.8)
G(z,7,y,5;7) =0,
| G(z,7,y,537) =0,
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E(ga Ea ga yv ’l") = Bl (&v Ea ga yv ’l") - BQ (&? Ea ga y’ ’)") —C (Ir)a
F(ga T, Y, Y; T) = ﬁl (la T, Y, Y; T) - ?2 (ga T, Y, Y; ’I“) —C1 (T)a
S
Q(la z, gaya ’I“) = Ql (E, T, Y, Y; T) - QZ(ga z, Y, Y; T) — Gy (Ir)a
é(&a Ea Q,g, ’)") = @1 (&? Ea ga yv ’l") - @2(&? Ea ga yv ’l") —C (’l")
Suppose that («, 3,7, 0) is the solution of (3.8), i.e.,
( E(CM /67779;7“) =0,
F(a /8373 9;7') =0,
S
Q(CM /6777 H;T) =0,
| Cla.p7,057) =0

Now if we use the Taylor series of F, F, G, G about (z,7

E(l_ h’ai_ kag_ lay_d"r)

Flz—h,T—

Q(g_ haf_

G(z—h,T —

Y,7), then for each r € [0, 1],

hE,(z,T,y,7;7)

r) —UF, (2. 2y, ;) -

+O(h? + k2 + 12 + d* + hk + hl +

= E(la z, gay’ ’I“) -
_kEE( y dF (IE,E, ga y; ’l")

hd + Kkl + kd + 1d) = 0,

kyy—1Ly—dir) =F(z,T,y,5;r) — hFy(z,%,y,7;7)
—kFz(z,T,y,5;7) — [Fy(2,7,y,7;7) — dFy(z,T,y,3;7)
+O(h? + k> + 12 +d* + hk 4+ hl 4+ hd + kl + kd + 1d) = 0,
kyy—1Ly—dir) =G(z,7,y,75r) — hG,(2,7,y,7r)
—kGx(z,T,y,G;r) — Gy (2, T, y, G ) — dGy(z, T, y,G; )
+O(h* + k* + 1> + d* + hk + hl + hd + kl + kd + 1d) =0
kyy—1,57—d;r) :_(x,f,g,y,r)—h@m(g,f,g,y,r)

Ir) - lag(ga z, Y, Y; T) -

+O(h2+k2+l2+d2+hk+hl+hd+kl+kd+ld):0,

that F, means the derivative of F with respect to z and so on. We assume, of course,
that all needed partial derivatives exist and are bounded. Therefore for sufficiently small
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h(r),k(r),l(r) and d(r) for each r € [0, 1],

;

E(&a Ea ga yv ’l") _hﬂg(ga Ea ga y’ ’)") - kET(&? Ea ga y’ ’)")

\

and hence h(r), k(r),l(r) and d(r) are unknown quantities that can be obtained by solving
the following equations, for each r € [0, 1]

h(r) ] [ E(z7y,77) ]
k(r) F(z,T,y,7;r)
J(&a T,Y,Y; ’I") = B > (39)
N I(r) G(z,T,y,7;7)
| d(r) | | G(z,7,,y,75;7) |
where _ )
F, Fz F, Fy
J(z,Z,y,7;r) = (z,7,y,7;7)
| G» Gz G, Fy |
The Newton’s method is given by
[ Z,11(r) =z, (r) + hn(r),
Tny1(r) = Zn(r) + kn(r),
(3.10)

y, (1) =y, () + L),

|
<
3

\ yn+1('r) =Yn (’I“) +d, (’I“),

where n = 0,1,2,... and hy,(r), kn(r), 1 (r), dp(r) are given by (3.9). For initial guess, one
can use the trapezoidal fuzzy number

zo = (z(1),2(1), z(1) — z(0),z(0) — z(1)),
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and in parametric form

zo(r) = z(1) + (z(1) = z(0))(r = 1),
To(r) ==(1) + (@ (0) —=z(1))(1 —r),
Yo(r) = y(1) + (y(1) —y0)(r - 1),
Yo(r) =51+ @0) —g)(1 —r).

The iteration (3.10) will converge to (e, 3,7, 0) if the starting point (zo(r), Zo(r) , y,(r),Yo(r))
is close enough to (o, 3,7,0) for 0 < r <1, local convergence property, see [11] for more
details.

If we use Taylor’s expansion of F(z,T,y,y;r) and F(z,Z,y,7;r) to a higher order and
we are looking for h(r), k(r),l(r) and d(r) such as:

[P —hFy — kFy—1F, — dFy+ 3 (KF,  + W Fy 5+ PF,  + Fy

+2hkF, 5 +2ldF, ,+2hF, | +2hdF, ; + 2kIF; | + 2kdF; y)] (.7, y,T;7) ~ 0,

[F — WPy — kFy— Ty — dFy + 4 (;ﬁz o+ KT r 7 +1°F, , + d*Fy g

+2hkFy 7 + 2dFy 5+ 2hFy , + 2hdFy g + 2K Ty , + 2kdFy y)] (.7, y,T;7) ~ 0,

(G — G, — kGy —1G, — dGy+ 1 (WG, , + KGy - + °G, , + &Gy 5

+2hkG, 5 +21dG, ; + 2hG, , +2hdG, ; + 2KIG , + 2kdG y)] (7, y,7i7) ~ 0,

G — hGy — kGz — Gy — dGy + & ( WGy » + K?Gz z + PGy 4 + d*Gy 5
T Y yT 3 Tz vy vy

420Gy, 7+ 20dGy 5 + 2hGy  + 2hdGy 5 + 2KIGr  + 2kdCi y)] (&, 7,4, 7;7) ~ 0,
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given
h(r) = [E —kFy—IF, —dFy;+ 3 (h?E2 o T K2 Fg 5 +1°F,  + d°Fy 5+ 2hkF, &

F2AAE, 5+ 2ME, , + 2hdFy 5+ WIF |, + 2kdFs 3 ) /By (2,7,9,7:7),
k(r) = |F = hFy—1Fy— dFy+ 5 (hPFy o + K2 Fz 5+ PFy y + d*Fy g + 20Ty 5

+2dFy y + 2hIF, , + 2hdFy  + 2K Fy , + 2kdF y) /FT] (2,7, 4,7 7),
1) =[G = hG, — kGy — dGy + % (WG, + K Gy ¢+ PG, , + d*Gy 5+ 2hkG, 7

124G, 5+ WG, |, + +2hdGy 5+ WGy , + 2kdGy ) /G, | (2,7, 3,5 7).
dr) =[G —hGy —kGr —1Gy + } (WG o + K 5+ 15Gy  + &Gy 5+ 2WhGy 7

+21dGy  + 2MCy, y + +2hdCy 5 + 2KIGy , + +2kdCy y) /Eg} (.7, 9,7 7),

or
[ h,(’l“) 1 [ €1 1 I h(lr) 1 €1 1 Nl(hakalad) 1
k‘(’l") _ €2 LN k(lr) _ €2 NQ(ha ka lad) (3 11)
I(r) es I(r) es Ns(h, ko, l,d) | '
[ d(r) | Les] L d(r) | | es | | Nu(h,k,l,d) |
where
€1 = Eix(gaiagay’ ’I“),
€2 = %(gaiagaya ’I“),
es =5 (LTyTr),
eq Z%(Lf,g,yﬂ“)

are constants and N is a vector quadratic polynomial and for approximating h(r), k(r),[(r)
and d(r), we can apply the multivariable Adomian decomposition method [1].
The Adomian decomposition technique considers representing the solution of (3.11) as

a series
h=> hp, k=Y kn, 1= I, d=) d, (3.12)
n=0 n=0 n=0 n=0
and the nonlinear functions are decomposed as
Ni(h,k,1,d) =" Ain(hos .- hns Koy Eny oyl ydos oy dy), i=1,.,40 (3.13)
n=0
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where the A;,’s are Adomian’s polynomials given by [3],

1 d"

Ay = EW[M(Z Nhj, Y Nk > N T N )=
) j=0 j=0 j=0 j=0

fori=1,..,4,5 =0,1,....
Upon substituting (3.12), (3.13) in the (3.11) yields

forn =0,1,...

ho =e1, hpy1 = An, ko =e2, knp1 = Aoy,

lo=-e3, Ilpt1=A3,, dy=-es, dyy1 = Asp,

, multivariable polynomials A;, are generated by practical formulae pre-

sented in [1], for 1 = 1,2, 3,4, we have

AiU = Ni(h(),k'[],l(),d(]),
A =3 A A o A N A )
m ¢ p1! pn! 1! qn! " 51! sl ! tn!
oPr1t+v2+testey
" OhP10k?20d?3 094 Ni(hkaOdeaZO)a n # 0,

where ¢ stands for

(p142p2+...4npp)+(q1+2q2+. . . +nqp)+(s1+282+. . .+n8y )+ (61 +2t2+. . . +nty) = n,

and

$Y1 =p1+p2+...+pp,
P2 =q tqg2+ ...+ qn,
w3 =81+ 82+ ...+ sy,
s =1t +ta+ ...+ 1.

In practice, of course, the sum of the infinite series has to be truncated at some finite
order M. The quantities S by, M K, M 1, and S )y, can thus be reasonable
approximations of the exact solution of (3.8), provided M is sufficiently large. As M —
00, the series converge smoothly toward the exact solution for 0 < r <1 [2].

Let

Hy =ho+hi+...+hy=ho+ Ao+ A1 + ...+ Ajnr_1,
Ky =ko+ki+...4+ky=ko+ Ao+ Aoy + ... + Aons_1,
Lot =lo4+ i+t ln=1lo+ Ao+ Agy + ..+ Aspri, (314)
Dy =do+di+...4+dy =do+ Ago+ Agt + ... + Agns_1,

denote the (M + 1)-term approximations of h,k,l and d, respectively. Since the series
converge very rapidly, then (3.14) can serve as a practical solution in each iteration.

Later we will show that the number of terms required to obtain an accurate computable
solution is very small.
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Case 1: For M =0

F —_
hNHO—h():F:(g,fL',g,y,'r),
Lo

F, _
kNKO_kOZi(anagay’T)a
T
G, _ _
l:LO_lO_G:(gaxagayvr)a
=Y
G
d:DOZdOZ—_(gafagay’T)a
Gy
r,
a=z—hxg-Hy=z—=(2,7y7r)
Lo
_ _ _ F
,B:[E—k2$—K0:$—F—(§,$,g,y,7'),
x
G, _
’Y:g_l:g_LOZQ_G_(anagay’T)a
-9
_ _ _a,
9=y—dﬁy—D0:y—E—_(L:’Eag,yﬂ“)
Y
and »
( Lyl = Ly — Z(&nafnaynayn;r)a
T4l = Tp — %(&nafnaynayn;r)a
G _ _
gn+1 = gn - Q;g(gnaxnagnayn;lr)a
L yn—l—l :yn - %(gnafnagnayn;r)a
forn=0,1,....

Case 2: For M =1
hi = Ao

— Nl(h07 kOaloa dO)

h2 k2 12 d?
= [(BEe o+ B Fs o+ $E, , + BFy j + holoFy 5+ holoE,

hodoFy y + holoFoy , + koo Py 5+ lodoF, 3) [Fy) (2,7,5,5:7),

ki = Aap
— NZ(hoa kOaloa dO)

h2 2 — _ .
- [(TOFHJFT szt 9Fyy+ 3 F55+hokoFy 5+ holoFs y

+hodoF . 5 + koloFz y + kodoFz 5 + lodo Fy y) /FT] (z,%,y,7;7),
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i =A3p
= N3(ho, ko, lo, do)

[k

2 2 2

+hodoG,, 3 + koloGz , + kodoGy 5 + lodoG,, y) /Qg} (2,7, y,9;7),

Ty

di = Asp
= Ny(ho, ko, lo, do)

where
ho ZE%(LT,Q,@,T),
ko Z%(Lf@?,?‘),
lo Zg%(zﬁ,g,?,r),
do Z%(z,ﬁg,?ﬂ")
then

and hence, we have the following iterations:

Lp41 = Ly — Hl(&nafnagnayn;r)a
Tpt1l = Tp — Kl(gmfnagnayn; r),
gn+1 = Qn - Ll(gnainagnayn; T),

Ynt1 = Yn — Dl(&nafnagnayn;r)a

forn=0,1,....
We can also obtain similar relations for M = 2,3,....

The Adomian decomposition method is simply generalized to more variables and upper
degrees as well.
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4 Comparison with other methods

This study would not be completed without comparing it with other existing methods.
Some comparisons are as follows:

e In [5] and [6] researchers used the Newton’s method for solving fuzzy nonlinear equa-
tions and systems of fuzzy nonlinear equations and in [13] researchers used the Fixed
point method for solving fuzzy nonlinear equations. The Adomian decomposition
method for M = 0 is the Newton’s method. See examples 1,2 for more details.

e In [8, 9] a FNNjy equivalent to the fuzzy polynomial equation and system of fuzzy
polynomials F' of s fuzzy polynomial equations such as

fl(xlax% s axn) = A107

fl($17$27---7$n) :Al07 (415)

fs(@1,m2,...,20) = Aso,
were built where z1,z9,...,2, € R and all coefficients are fuzzy numbers. In this
paper, Adomian decomposition method for solving system of fuzzy polynomials was
proposed where x1,zs,...,x, and all coefficients are fuzzy numbers. See examples

1,2 for more details.

e In [24] researchers used the Adomian decomposition method for solving fuzzy poly-
nomial equations of the form > , a;z" = ¢ where z, ¢ and all coefficients are fuzzy
numbers. In this paper, Adomian decomposition method for solving system of fuzzy
polynomial equations was proposed.

5 Numerical examples

We consider some examples for the Adomian decomposition method.

In the computer simulation of this examples, we use the following specifications of the
Adomian decomposition method.

For each fuzzy numbers, we use r = 0,0.1,...,1, where we calculate the total error of each
iteration by

ei = max{D(zi,x;—1), D(yi,yi—1)}
Example 5.1. Consider the system of fuzzy polynomial equations

222 + 2y = 2% +y + (3,1,1.75),
3z + 2y? = 2z + y? + (5,1.4375,2.75).

Without any loss of generality, assume that x and y are positive, then the parametric form
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of this equation is as follows:

y(r) + 2 +r),

)+

r) +5(r) 4 (4.75 — 1.75r),
) 4+ y*(r) + (3.5625 + 1.4375r),
)+

72(r) + (7.75 — 2.757).

Initial guess is xo = (1.25,0.5,0.25) and yo = (1.75,0.25,0.5).

For M =0
F F
h'NHU:hU::(lafayayaT)a kNKU_kU:—_(laiayay’T)a
EQ - Fz -
G G
lNLU—ZU_Q:y(_aiagayaT)a d:DO_dU_E_y(lafagay’T)a
F,
azg—h:g—Hazg—:(g,x,y,yﬂ“),
F, =
_ _ _ F
f=F—k~T—Ky=7— =(2,7,y,7;7),
FT -
G, _ _
’Y:g_lzg_LU:g_G:(laxagayaT)a
=Y
_ _ _ G, _ _
sz_d:y_-DU:y_—_(gaxagaya'r)a
Gy
then

~

. z2+y —(2+4r)
Lnt1 = Ly, 2.

_ 7247, —(4.75—1.75r
Tp4l = Tp — 0 (an )a

o z,+y? —(3.5625+1.4375r)

=n

bl

— o ZTn+y2 —(7.75—2.75r)
L Yn+1 = Yn — = 2y, )

forn=0,1,...,6.
By Adomian decomposition method, we obtain the numerical results for M = 0,1. See

figures 1,2 and Table 1 for more details.
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Fig. 2. Approzimate and analytical solution of example (5.1) for y > 0.

Table 1

The error of Adomian decomposition method for x > 0 and y > 0 of example (5.1).

M| Iter 1 | Iter 2 | Iter 3 | Iter 4

Iter 5

Iter 6

0 | 0.2639
1 |0.1831

0.1336
0.0422

0.0395
0.0131

0.0357
0.0092

0.0103

2.6131 x 1073

0.0100
2.4532 x 104

Now suppose x and y are negative, we have

Initial guess is ©o = (—1,0.5,0.5) and yp

details.

(272(r) + 2y(r) = T%(r) +
) 22°(r) + 25(r) = 2*(r) +

3z(r) + 252 (r) = 2z(r) +
| 3Z(r) + 2y2(r) = 2z(r) +

y(r) + (4.75 — 1.75r),

72(r) + (3.5625 + 1.43757),

y*(r) + (7.75 — 2.75r).

= (—1,0.5,0.5). By Adomian decomposition
method, we obtain the numerical results for M = 0,1. See figures 3,4 and Table 2 for more
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Fig. 4. Approzimate and analytical solution of example (5.1) for y < 0.
Table 2
The error of Adomian decomposition method for x <0 and y < 0 of example (5.1).
M| Iter 1 | Iter 2 | Iter 3 Iter 4 Iter 5 Iter 6
0 1.5 0.4 0.1335 0.1093 0.0810 0.0110
1 | 1.2013 | 0.2542 | 0.0423 | 1.2563 x 1073 | 2.2134 x 107° | 2.4704 x 10~°

We can also obtain similar alternative cases.
Example 5.2. Consider the system of fuzzy polynomial equations
323 +y = 223 + (2.5,1.375,4.859375),
{ x4+ 2y% = y? + (3.25,1.75,2.5).

Without any loss of generality, assume that x and y are positive, then the parametric form
of this equation is as follows:

( 323(r) + y(r) = 223(r) + (1.125 + 1.375r),
373 (r) + 7(r) = 223 (r) + (7.359375 — 4.859375r),
z(r) +242(r) = y2(r) + (1.5 + 1.75r),

| Z(r) + 2%(r) = G2(r) + (5.75 — 2.57).
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Initial guess is xg

= (0.75,0.25,0.25) and yo =

(1.25,0.25,

0.75).

107

By Adomian decomposition method, we obtain the numerical results for M = 0,1. See
figures 5,6 and Table 3 for more details.

Fig. 5. Approxzimate and analytical solution of example (5.2) for x.

Fig. 6. Approzimate and analytzcal solution of example (5.2) for y.
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Table 3
The error of Adomian decomposition method of example (5.2).
M| Iter 1 | Iter 2 | Iter 3 | Iter 4 Iter 5 Iter 6
0 | 1.4531 | 0.5312 | 0.1432 | 0.0339 0.0198 0.0114
1 | 0.4436 | 0.1253 | 0.0635 | 0.0092 | 1.5131 x 1073 | 3.464 x 10~*

Example 5.3. Consider the system of fuzzy polynomial equations
{ (27 ]-7 1)I + (37 ]-7 1)y2 = (_27 ]-7 1)y + (107 97 23)7
(3,1,1)z + (—2,1,1)y = (7,6, 10).

Without any loss of generality, assume that x is positive and y is negative, then the para-
metric form of this equation is as follows:

((1+
3 —

4 —

(
(2+
(

r)x(r

r r

r r

r r

)+
)
)
)

§||§§|

+ NP =
M) =

+(4-
+(=1=r)y(r) =
+(=

(—1 = 7)5(r) + (1 + 9r),
(=3 +r)y(r) + (33 — 237),
(1+ 67),

= (17 — 10r).
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Initial guess is xy = (1.25,0.5,0.25) and yo = (—1.25,0.25,0.25).
By Adomian decomposition method, we obtain the numerical results for M = 0,1. See
figures 7,8 and Table 4 for more details.
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Fig. 7. Approzimate and analytical solution of example (5.3) for z > 0.
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Fig. 8. Approzimate and analytical solution of example (5.3) for y <0.

Table 4

The error of Adomian decomposition method of example (5.3).
M| Iter 1 | Iter 2 | Iter 8 | Iter 4 Tter 5 Tter 6
0 | 2.6667 2 0.8238 | 0.1130 0.0847 0.0120

1 | 1.2431 | 0.8793 | 0.0634 | 0.0012 | 2.4121 x 10~* | 1.5664 x 10~°

We can also obtain similar alternative cases.

6 Conclusion

In this paper, we proposed a numerical method for solving a system of dual fuzzy
polynomial equations. Initially we wrote fuzzy polynomials in a parametric form and then
solved it by Adomian decomposition method.
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