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Abstract
A model of the equations of two-dimensional problems is studied in a half space, whose
surface in a medium free of micropolar thermoelastic possesses cubic symmetry as a result
of inclined load. There acts an initial magnetic �eld parallel to the plane boundary of the
half-space. The inclined load is assumed to be a linear combination of a normal load and
a tangential load. The formulation is performed in the context of the Lord-Shulman and
Green-Lindsay theories, as well as the classical dynamical coupled theory. Comparisons
are made with the results in the presence of a magnetic.
Keywords : Lord-Shulman theory, Green-Lindsay theory, Magneto-thermoelasticity, Cubic symme-
try, Microrotation, Micropolar thermoelastic.
||||||||||||||||||||||||||||||||{

1 Introduction

The linear theory of elasticity is of paramount importance in the stress analysis of steel,
which is the commonest engineering structural material. To a lesser extent, linear elastic-
ity describes the mechanical behavior of the other common solid materials, e.g., concrete,
wood and coal. However, the theory does not apply to the behavior of many of the
new synthetic materials of the clastomer and polymer type, e.g., polymethyl-methacrylate
(Perspex), polyethylene and polyvinyl chloride. The linear theory of micropolar elasticity
is adequate to represent the behavior of such materials. For ultrasonic waves, i.e., for
�Corresponding author. Email address: m i othman@yahoo.com, Tel: 00966 0559469113
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the case of elastic vibrations characterized by high frequencies and small wavelengths, the
in
uence of the body microstructure becomes signi�cant. This in
uence of microstructure
results in the development of new types of waves, not in the classical theory of elasticity.
Metals, polymers, composites, soils, rocks, and concrete are typical media with microstruc-
tures. More generally, most of the natural and man-made materials including engineering,
geological and biological media possess a microstructure. Eringen and Suhubi [2] and
Eringen [3] developed the linear theory of micropolar elasticity.
Thermoelasticity theories, which admit a �nite speed for thermal signals, have been re-
ceiving a lot of attention for the past four decades. In contrast to the conventional coupled
thermoelasticity theory based on a parabolic heat equation (Biot, [1] ), which predicts an
in�nite speed for the propagation of heat, these theories involve a hyperbolic heat equation
and are referred to as generalized thermoelasticity theories.
Two generalizations to the coupled theory were introduced. The �rst is ascribed to Lord
and Shulman [19] who introduced the theory of generalized thermoelasticity with one re-
laxation time by postulating a new law of heat conduction to replace the classical Fourier's
law. Othman [22] constructed the model of generalized thermoelasticity in an isotropic
elastic medium under the dependence of the modulus of elasticity on the reference tem-
perature with one relaxation time.
The second generalization to the coupled theory of thermoelasticity is what is known as
the theory of thermoelasticity with two relaxation times or the theory of temperature rate
dependent thermoelasticity, and was proposed by Green and Lindsay [4]. It is based on
a form of the entropy inequality proposed by Green and Laws [5]. Green and Lindsay [4]
obtained another version of the constitutive equations. These equations were also obtained
independently and more explicitly by Suhubi [25]. This theory contains two constants that
act as relaxation times and modi�es all the equations of the coupled theory, not only the
heat equation. The classical Fourier's law of heat conduction is not violated if the medium
under consideration has a center of symmetry. Othman [23] studied the relaxation e�ects
on on thermal shock problems in the elastic half space of generalized magneto- thermoe-
lastic waves under three theories.
Following various methods, the elastic �elds of various loadings, inclusion and inhomogene-
ity problems, and interaction energy of point defects and dislocation arrangement have
been discussed extensively in the past. Generally, all materials have elastic anisotropic
properties which mean the mechanical behavior of an engineering material is character-
ized by the direction dependence. However, the three dimensional study for an anisotropic
material is much more complicated to obtain than the isotropic one, owing to the large
number of elastic constants involved in the calculation. In particular, transversely isotropic
and orthotropic materials, which may not be distinguished from each other in plane strain
and plane stress, have been more regularly studied. A brief look at the literature on
micropolar orthotropic continua shows that Iesan [7]-[9] analyzed the static problems of
plane micropolar strain of a homogeneous and orthotropic elastic solid, the torsion prob-
lem of homogeneous and orthotropic cylinders in the linear theory of micropolar elasticity
and bending of orthotropic micropolar elastic beams by terminal couple. Nakamura et al.
[21] applied the �nite element method to orthotropic micropolar elasticity. Kumar and
Choudhary [10]-[14] have discussed various problems in orthotropic micropolar continua.
Singh and Kumar [26] and Singh [27] have also studied the plane waves in micropolar
generalized thermoelastic solid.
A wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al etc., which are some fre-
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quently used substances, belong to cubic materials. The cubic materials have nine planes
of symmetry whose normals are on the three coordinate axes and on the coordinate planes
making an angle with the coordinate axes. With the chosen coordinate system along the
crystalline directions, the mechanical behavior of a cubic crystal can be characterized by
�ve independent elastic constants.
Minagawa et. al. [20] discussed the propagation of plane harmonic waves in a cubic mi-
cropolar medium. Kumar and Rani [15] studied time harmonic sources in a thermally
conducting cubic crystal. Kumar and Ailawalia [16, 17] discussed some source problems
in micropolar media with cubic symmetry. Kuo [18] and Garg et al. [6] have discussed
the problem of inclined load in the theory of elastic solids. The deformation due to other
sources such as strip loads, continuous line loads, etc. can also be similarly obtained.
The deformation at any point of the medium is useful to analyze the deformation �eld
around mining tremors and drilling into the crust of the earth. It can also contribute to
the theoretical consideration of the seismic and volcanic sources since it can account for
the deformation �elds in the entire volume surrounding the source region. No attempt
has been made so far to study the response of inclined load in micropolar thermoelastic
media possessing cubic symmetry.
The purpose of the present paper is to determine the normal displacement, normal force
stress, and tangential couple stress in a micropolar elastic solid with cubic symmetry. The
normal mode method is used to obtain the exact expressions for the considered variables.
The distributions of the considered variables are represented graphically. A comparison
is carried out between the temperature, stresses, couple stress, microrotation and dis-
placement components as calculated from the generalized thermoelasticity (L-S), (G-L)
and (CD) theories for the propagation of waves in semi-in�nite elastic solids with cubic
symmetry.

2 Formulation of the problem

We consider a homogeneous, micropolar generalized thermoelastic solid half-space with
cubic symmetry. We consider rectangular coordinate system (x; y; z) having the origin on
the surface y = 0 and the y�axis pointing vertically into the medium. A magnetic �eld
with constant intensity H = (0; 0;H0) acts parallel to the bounding plane (taken as the
direction of the z�axis). Suppose that an inclined line load is acting along the interface
of the y�axis and its inclination with the z�axis is �.
Due to the application of initial magnetic �eld H, there are results of an induced magnetic
�eld h and an induced electric �eld E . The simpli�ed linear equations of electrodynamics
of a slowly moving medium for a homogeneous, thermally and electrically conducting
elastic solid are

curlh = J + "0E (2.1)

curlE = ��0h (2.2)

dvih = 0 (2.3)

E = ��0 ( _u�H) (2.4)

where _u is the partied velocity of the medium, "0 is the dielectric constant, �0 is the
magnetic permeability, and the small e�ect of temperature gradient on J is ignored. The
dynamic displacement vector is actually measured from a steady state deformed position
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and the deformation is supposed to be small.
The components of the magnetic intensity vector in the medium are

Hx = 0; Hy = 0; Hz = H0 + h(x; y; z) (2.5)

The electric intensity vector is normal to both the magnetic intensity and the velocity
vectors. Thus, it has the components

Ex = ��0H0 _v; Ey = �0H0 _u; Ez = 0 (2.6)

The current density vector J is parallel to E , thus

Jx =
@h
@y

+ �0H0"0�v; Jy = �@h
@x
� �0H0"0�u; Jz = 0 (2.7)

h = �H0(0; 0; e) (2.8)

If we restrict our analysis to plane strain parallel to the xy�plane with displacement vector
u = (u; v; 0) and the microrotation vector is ' = (0; 0; '3), then the �eld equations and
constitutive relations for the micropolar thermoelastic solid with cubic symmetry in the
absence of body forces, body couples and heat sources can be written by following the
equations given by Minagawa et. al. [20], Green and Lindsay [4] and Othman and Baljeet
[24] as,

A1
@2u
@x2 +A3

@2u
@y2 + (A2 +A4) @2v

@x@y + (A3 �A4)@'3
@y + �0H2

0
@e
@x � �2

0H2
0"0

@2u
@t2

�v @
@x
�
T + t1 @T@t

�
= �@

2u
@t2

(2.9)

A3
@2v
@x2 +A1

@2u
@y2 + (A2 +A4) @2u

@x@y � (A3 �A4)@'3
@x + �0H2

0
@e
@y � �2

0H2
0"0

@2v
@t2

�v @
@y
�
T + t1 @T@t

�
= �@

2v
@t2

(2.10)

B3r2'3 + (A3 �A4)
�
@v
@x � @u

@y

�� 2(A3 �A4)'3 = �j @
2'3
@t2 (2.11)

K�r2T � �C�(n1 + t0 @@t) _T = �T0(n1 + n0t0 @@t) _e (2.12)

�xx = A1
@u
@x +A2

@v
@y � �

�
T + t1 @T@t

�
(2.13)

�yy = A2
@u
@x +A1

@v
@y � �

�
T + t1 @T@t

�
(2.14)

�xy = A4

�
@u
@y � '3

�
+A3

� @v
@x + '3

�
(2.15)

�yx = A4
� @v
@x � '3

�
+A3

�
@u
@y + '3

�
(2.16)

myz = B3
@'3
@y (2.17)

mxz = B3
@'3
@x (2.18)
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where �ij and mij are the components of force stress and coupled stress, respectively. �
is the density, T is the absolute temperature, � = (A1 + 2A2)�T , �T is the coe�cient of
linear expansion, j is the microinertia, K� is the coe�cient of thermal conductivity, C� is
the speci�c heat at constant strain; t0 and t1 are the thermal relaxation times and

r2 =
@2

@x2 +
@2

@y2

For the thermoelastic micropolar isotropic medium, A1, A2, A3, A4 and B3 are character-
istic constants of the material de�ned as

A1 = �+ 2�+ k; A2 = �; A3 = �+ k; A4 = �; B3 = 
 (2.19)

where, �, �, k and 
 are moduli of the medium.
For simpli�cation, we shall use the following non-dimensional variables:

xi = !�
C0
xi; ui = �C0!�

�T0
ui; t = !�t; t0 = !�t0; t1 = !�t1; T = T

T0

�ij = �ij
�T0

; mij = !�
C0�T0

mij ; '3 = �C2
0

�T0
'3; g = C0

!� g; h = h
H0
; fF 1; F 2g = fF1;F2g

�T0
(2.20)

where !� = �C�C2
0

K� and C2
0 = A1

� .

Eqs. (2.9)-(2.12) take the following form (dropping the dashed for convenience)

�
@2u
@t2

=
@2u
@x2 +

A3

A1
� @2u
@y2 +

(A2 +A4)
A1

� @2v
@x@y

+
(A3 �A4)

A1
� @'3

@y
+RH

@e
@x
� @
@x

�
T + t1

@T
@t

�
(2.21)

�
@2v
@t2

=
@2v
@y2 +

A3

A1
� @2v
@x2 +

(A2 +A4)
A1

� @2u
@x@y

+
(A3 �A4)

A1
� @'3

@x
+RH

@e
@y
� @
@y

�
T + t1

@T
@t

�
(2.22)

r2'3 +
(A3 �A4)C2

0
B3!�2

�
@v
@x
� @u
@y

�
� 2

2(A3 �A4)C2
0

B3!�2
'3 =

�jC2
0

B3
� @2'3

@t2
(2.23)

r2T =
�
n1 + t0

@
@t

�
@T
@t

+ "(n1 + n0t0
@
@t

)
@
@T

�
@u
@x

+
@v
@y

�
(2.24)

Introducing potential functions de�ned by

u =
@q
@x

+
@ 
@y
; v =

@q
@y

+
@ 
@x

(2.25)

in Eqs. (2.21)-(2.24), where q(x; y; t) and  (x; y; t) are scalar potential functions, we obtain�
�2r2 � � @2

@t2

�
q =

�
1 + t1

@
@t

�
T (2.26)

�
a11r2 � � @2

@t2

�
 = a12'3 (2.27)
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a13r2 +
�
r2 + 2a13 � a14

@2

@t2

�
'3 = 0 (2.28)�

r2 �
�
n1

@
@t

+ t0
@2

@t2

��
T = "

�
n1 + n0t0

@
@t

�
@
@t
r2q (2.29)

From Eqs. (2.8) and (2.25), we can obtain

h = �r2q (2.30)

where
a11 = A3

A1
; a12 = A3�A4

A1
; a13 = (A4�A3)C2

0
B3!�2 ; a14 = �jC2

0
B3

;

" = �2T0
�!�K� ; RH = �0H2

0
�C2

0
; �2 = 1 +RH

(2.31)

3 Normal mode analysis

The solution of the considered physical variables can be decomposed in terms of normal
modes in the following form:

['3;  ; e; �ij ; q;mij ; T ] (x; y; t) =
�
'�3(y);  �(y); e�(y); ��ij(y); q�(y);m�ij(y); T �(y)

�
exp(!t+iax)

(3.32)
where ! is a complex constant and a is the wave number in the x�direction. Using

Eqs. (2.26)-(2.30) and (3.32),�
D2 � a2 � b2!2� q� � n3T � = 0 (3.33)

�
D2 � a2 � a1!2� � � a2'�3 = 0 (3.34)

a13
�
D2 � a2� � +

�
D2 � a2 � 2a14 � a15!2�'�3 = 0 (3.35)�

D2 � a2 � n4
�
T � � "� �D2 � a2� q� = 0 (3.36)

where
b2 = �

�2 ; a1 = �
a11
; a2 = a12

a11
;

n3 = 1+t1!
�2 ; n4 = !(n1 + t0!); "� = "!(n1 + n0!t0)

Eliminating  � and T � in Eqs. (3.33)-(3.36), we obtain�
D4 �B1D2 +B2

�
(q�; T �) = 0 (3.37)

and �
D4 �B3D2 +B4

�
('�;  �) = 0 (3.38)

where
B1 = 2a2 + n4 + b2!2 + n3"� (3.39)

B2 = a4 +
�
n4 + b2!2 + n3"�

�
a2 + n4b2!2 (3.40)
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B3 = 2a2 + (a1 + a15)!2 � 2a13 � a2a13 (3.41)

B4 = a4 +
�
a1!2 � 2a13 + a14!2 � a2a13

�
+ a1!2 ��2a13 + a14!2� (3.42)

The solutions of Eqs. (3.37) and (3.38), which are bounded for y > 0, are given by

q� =
2X
j=1

Mj(a; !)e�kjy (3.43)

T � =
2X
j=1

M
0
j(a; !)e�kjy (3.44)

 � =
4X

n=3
Mn(a; !)e�kny (3.45)

'�3 =
4X

n=3
M
0
n(a; !)e�kny (3.46)

where Mj(a; !), M 0
j(a; !), Mn(a; !) and M 0

n(a; !) are some parameters depending on a and
!. k2

j ; (j = 1; 2) are the roots of the characteristic equation of Eq. (3.37) and k2
n; (n = 3; 4)

are the roots of the characteristic equation of Eq. (3.38). Setting Eqs. (3.43)-(3.46) into
Eqs. (3.37) and (3.38), we get the following relations

T � =
2X
j=1

RjMj(a; !)e�kjy (3.47)

'�3 =
4X

n=3
RnMn(a; !)e�kny (3.48)

where
R1;2 =

1
n1

�
K2

1;2 � a2 � b2!2� (3.49)

R3;4 =
1
a1

�
K2

3;4 � a2 � a1!2� (3.50)

The roots K2
1;2 and K2

3;4 of Eqs. (3.37) and (3.38), respectively, are given by

K2
1;2 =

1
2

�
B1 �

q
B2

1 � 4B2

�
(3.51)

K2
3;4 =

1
2

�
B3 �

q
B2

3 � 4B4

�
(3.52)
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4 Application

We consider a normal line load F1 acting in the positive y�direction on the interface
y = 0 along the z�axis and the tangential load F2 acting at the origin in the positive
x�direction, then the boundary conditions at the horizontal plane y = 0 are

�yy = �F1; �yx = �F2; myz = 0; T = f(x; t) (4.53)

Using (2.20), (2.25), (2.26)-(2.29) in the non-dimensional boundary conditions and us-
ing (3.43), (3.45), (3.47)-(3.48), we obtain the expressions of displacements, force stress,
coupled stress and temperature distribution for the micropolar generalized thermoelastic
medium with magnetic �eld as follows:

u�(y) = ia
�
M1e�k1y +M2e�k2y

�� k3M3e�k3y � k4M4e�k4y (4.54)

v�(y) = �k1M1e�k1y � k2M2e�k2y � ia�M3e�k3y + k4M4e�k4y
�

(4.55)

��yy(y) = s1M1e�k1y + s2M2e�k2y + s3M3e�k3y + s4M4e�k4y (4.56)

��yx(y) = r1M1e�k1y + r2M2e�k2y + r3M3e�k3y + r4M4e�k4y (4.57)

m�yz(y) = �B3

�
k3R3M3e�k3y + k4R4M4e�k4y

�
!�2=�C4

0 (4.58)

T �(y) = R1M1e�k1y +R2M2e�k2y (4.59)

where
s1 = �a2A2=�C2

0 +A1k2
1=�C2

0 �R1(1 + !t1)

s2 = �a2A2=�C2
0 +A1k2

2=�C2
0 �R2(1 + !t1)

s3 = iak3(A1 �A2)=�C2
0

s4 = iak4(A1 �A2)=�C2
0

r1 = �iak1(A3 +A4)=�C2
0

r2 = �iak2(A3 +A4)=�C2
0

r3 =
�
a2A4 +R3(A3 �A4) +A3k2

3
�
=�C2

0

r4 =
�
a2A4 +R4(A3 �A4) +A3k2

4
�
=�C2

0

(4.60)

Invoking the boundary conditions (4.53) at the surface y = 0 of the plate, we obtain a
system of four equations. After applying the inverse of matrix method, we have the values
of the four constants Mj ; (j = 1; 2) and Mn; (n = 3; 4). Hence, we obtain the expressions of
displacements, force stress, coupled stress and temperature distribution for the micropolar
generalized thermoelastic medium.
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5 Numerical results and discussions

In order to illustrate the theoretical results obtained in the preceding section and to
compare these in the context of various theories of thermoelasticity, we now present some
numerical results. In the calculation process, we take the case of magnesium crystal
(Eringen, 1984) as the material subjected to mechanical and thermal disturbances for
numerical calculations considering the material medium as that of copper. Since, ! is
complex, then we take ! = !0 + i� . The other constants of the problem are taken as
!0 = �2; � = 1; The physical constants used are:

� = 1:74 gm=cm3; j = 0:2� 10�15 cm3; � = 9:4� 1011 dyne=cm2;

T0 = 23 �C; � = 4:0� 1011 dyne=cm2; K = 1:0� 1011 dyne=cm2;


 = 0:779� 10�4 dyne; C� = 0:23 cal=gm�C; K� = 0:6� 10�2 cal=cm sec�C
The variation of the normal component of displacement u, normal force stress �zz, tan-
gential couple stress mzy and temperature distribution with distance y at the plane x = 2,
a = 2, t = 0:1, F1 = F cos �, F2 = F sin �, F = 1, � = 45� and f = 2.

The numerical values for the normal displacement component u, the temperature T ,
the force stress component �yx, �yy and the couple stress myz are shown in Fig. 1-
Fig. 6. These �gures represent the solution obtained using the coupled theory (CD theory:
n0 = 0; n1 = 1; n2 = 1; t0 = 0; t1 = 0), the generalized theory with one relaxation time
(Lord-Shulman (L-S) theory: n0 = 1; n1 = 1; n2 = 1; t0 = 0:02; t1 = 0 ), and generalized
theory with two relaxation times (Green-Lindsay (G-L) theory: n0 = 0; n1 = 1; n2 =
1; t0 = 0:02; t1 = 0:03).
Fig. 1. shows that temperature satis�es the boundary condition at y = 0. For the three
theories, temperature decreases exponentially as distance y increases. Fig. 2. shows that
the displacement component u increases as y increases. Fig. 3. shows that the displace-
ment component v decreases at the beginning and starts increasing at y = 0:5 (minimum)
and then converges to zero as y increases. Fig. 4. shows that the stress component
�yy satis�es the boundary condition at y = 0. It increases at the beginning and starts
decreasing at y = 0:5 (maximum) in the context of the three theories. Fig. 5. shows
that the stress component �yx satis�es the boundary condition at y = 0. It increases at
the beginning and starts decreasing at y = 0:2 (maximum) in the context of the three
theories. Fig. 6. explains that the tangential coupled stress myz satis�es the boundary
condition at y = 0 . It increases at the beginning and starts decreasing around y = 0:2
(maximum) and increases at y = 0:7 (minimum) and then converges to zero as y increas-
ing. Fig. 7. shows that the microrotation component '3 increases at the beginning and
starts decreasing at y = 0:4 (maximum) in the context of the three theories. Fig. 8-Fig.
13 show the comparison between the temperature T , displacement components u, v, the
force stress component �yy, the couple stress myz the microrotation component '3 in the
case of di�erent inclined load (variation of angles at � = 5; � = 10 and � = 15) under GL
theory.
By comparing �gures of solutions obtained under the three thermoelastic theories, im-
portant phenomena are observed: the curves in the context of the (L-S), (G-L) and CD
theories decrease exponentially as distance y and inclined load increase. The value of all
the physical quantities converges to zero with an increase in distance y. The amplitude
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of displacement component u, force stress component �yy, �yx the couple stress myz and
the microrotation component '3 increase and then decrease with an increase in distance
y, but the temperature component T and displacement components v decrease with an
increase in distance y.
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Fig. 1. Variation of temperature distribution T at � = 45�
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Fig. 2. Variation of displacement distribution u at � = 45�
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Fig. 3. Variation of displacement distribution v at � = 45�
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Fig. 4. Variation of stress distribution �yy at � = 45�
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Fig. 5. Variation of stress distribution �yx at � = 45�
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Fig. 6. Variation of tangential couple stress myz at � = 45�
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Fig. 7. Variation of the microrotation component '3 at � = 45�
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Fig. 8. Temperature distribution T with variation of angles under GL theory
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Fig. 9. Displacement distribution u with variation of angles under GL theory
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Fig. 10. Displacement distribution v with variation of angles under GL theory
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Fig. 11. Stress distribution �yy with variation of angles under GL theory
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Fig. 12. Tangential couple stress myz with variation of angles under GL theory
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Fig. 13. The microrotation component '3 with variation of angles under GL theory

6 Conclusion

The properties of a body depend largely on the direction of symmetry and the inclination
of the applied source. When concentrated force is applied to the surface of a solid, the
values of of normal displacement, tangential force stress and the couple stress decrease
as the angle of inclination of the source increase. The value of all the physical quantities
converge to zero with an increase in the distance y.
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