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Abstract

The aim of this paper is to present numerically the transport mechanism of an incompressible microp-
olar fluid between two vertical walls when the motion occurs due to the buoyancy force. The governing
equations in non-dimensional form are solved numerically using the Matlab software. The obtained
numerical solutions for the velocity and micro-rotation profiles are displayed using the graphs for
various values of the vortex viscosity parameter and material parameter. It is found that the material
parameter has retarding effect on the velocity of micropolar fluid and to make the flow steady state
earlier for both thermal conditions. The effect of the vortex viscosity parameter is to decrease the
steady state time of the velocity and micro-rotation.
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Nomenclature

g Accelerationduetogravity
G˙r Grashofnumber

L Distancebetweentwoverticalwalls
P˙r Prandtlnumber
R Materialparameter
t Timeinnon− dimensionalform
t’ Time
T’˙c Temperatureofthewallaty’=L
T’˙h Temperatureofthewallaty’=0
T’˙m Initialtemperatureofthefluid
u V elocityinnon− dimensionalform
u’ V elocityoffluid
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y Dimensionlessco −
ordinateperpendiculartothewalls

y’ Co− ordinateperpendicularofthewall

Greek symbols

ω Dimensionless angular velocity
j Micro-inertia density
k Vortex viscosity
µ Dynamic viscosity
θ Temperature of the fluid in non-dimensional
form
u Kinematic viscosity of the fluid

1 Introduction

The dynamics of micropolar fluids has attracted
considerable attention by research workers
during the last few decades because traditional
Newtonian fluids cannot precisely describe the
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characteristics of fluid flow with suspended
particles. The basic idea about micropolar fluids
has originated from the need to model the flow
of fluids containing rotating micro-constituents.
Beside the usual equations for Newtonian
flow, this theory introduces some new material
parameters, an additional independent vector
field the microrotation and new constitutive
equations that must be solved simultaneously
with the usual Newtonian flow equations. In
the history of fluid mechanics, Eringen [1, 2],
a pioneering researcher, has first formulated
the theory of micropolar fluids. This theory
in formulating the governing equations takes
into account the effects arising from the local
structure and micro-motions of the fluid ele-
ments, and is able to describe the behavior of the
polymeric additives, animal blood, lubricants,
liquid crystals, dirty oils, solutions of colloidal
suspensions, etc.. The micropolar fluids exhibit
certain microscopic effects arising from local
structure and microrotation of fluid elements.

Sastry and Rao [3] have focused the numerical
solution of a micropolar fluid flow in a channel
with porous walls. Further, Bhargava and
Rani [4] have found the numerical solution on
the heat transfer phenomenon of the microp-
olar fluid flowing in a channel having porous
walls. Agarwal and Dhanapal [5] have analyzed
numerically the free convective flow of the
micropolar fluid between two parallel porous
vertical plates while Gorla et al. [6] have studied
on mixed convective flow of a micropolar fluid.
Kim [7] considered unsteady convection flow of
micropolar fluids past a vertical porous medium.
Srinivasacharya et al. [8] have investigated
the unsteady Stokes flow of a micropolar fluid
between two parallel porous plates. Kim [9] has
studied the unsteady MHD convective flow of
the polar fluids past a vertical moving porous
plate in a porous medium. Further, Kim and
Fedorov [10] have discussed on the transient
mixed radiative convection of the micropolar
fluid past a moving semi-infinite vertical porous
plate while Bhargava et al. [11] have studied the
numerical solution of MHD free convective flow
of the micropolar fluid flow between two parallel
porous vertical plates. Chamkha et al. [12]
reported the solution of fully developed free con-
vection of a micropolar fluid in a vertical channel.

Singh and Paul [13] have investigated the
transient natural convective flow between two
vertical walls heated/cooled asymmetrically.
Chen [14] has studied the non-linear stability
characterization of the thin micropolar liquid
film flowing down the inner surface of a rotating
vertical cylinder. Recently, Rahman [15] has
investigated the convective flows of the microp-
olar fluids from isothermal porous surfaces with
viscous dissipation and Joule heating where as
Ishak et al. [16] have shown the dual solutions
in mixed convective boundary layer flow of the
micropolar fluids. Sajid et al. [17] have consid-
ered the exact solutions for thin film flows of a
micropolar fluid. Further, Ishak et al. [18] have
conducted the MHD boundary-layer flow of a
micropolar fluid past a wedge with constant wall
heat flux. Pal and Chatterjee [19] have presented
the heat and mass transfer in MHD non-Darcian
flow of a micropolar fluid over a stretching sheet
embedded in a porous media with non-uniform
heat source and thermal radiation.

In this paper, we have solved the unsteady free
convective flow formation of a micropolar fluid
between two infinitely long vertical walls as a re-
sult of symmetric and asymmetric heating. A
non-dimensional parameter is used in order to
characterize the temperature of the vertical walls
with respect to the fluid temperature. The par-
tial differential equations of governing flow and
heat transfer have been solved by using the Mat-
lab R2008a software. Finally, the results are dis-
played using the graphs and table.

2 Governing Equations

We consider the unsteady free-convective flow of
a micro-polar fluid between two vertical walls sep-
arated by a distance L apart. For mathematical
formulation, we take the x′-axis along one of the
vertical walls in the upward direction and the y′-
axis normal to it. Initially, the temperatures of
walls and the fluid are same says T ′

m . At time
t′ > 0, the temperature of the walls at y′ = 0
and L is instantaneously raised or lowered to T ′

h

and T ′
c respectively such that (T ′

h > T ′
c) which is

there after maintained constant. As the walls are
of infinite extent, the flow depends only on the
transverse co-ordinate y′ and time t′. We have
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assumed that the fluid properties are not affected
by the temperature difference except the density
in the body force term. Under these assumptions,
the governing equations corresponding to the con-
sidered model are derived as follows:

ρ
∂u′

∂t′
= (µ+k)

∂2u′

∂y′2
+k

∂ω′

∂y′
+ρgβ(T ′−T ′

m), (2.1)

ρ
∂ω′

∂t′
= (µ+ 0.5k)

∂2ω′

∂y′2
− k

(
2ω′ +

∂u′

∂y′

)
, (2.2)

ρ
∂T

∂t′
= α

∂2T ′

∂y′2
. (2.3)

The initial and boundary conditions for the ve-
locity, angular velocity field and temperature are
as follows:

t ≤ 0 u′ = ω′ = 0 T ′ = T ′
m, 0 ≤ y′ ≤ L;

t > 0 u′ = ω′ = 0 T ′ = T ′
h, y′ = 0;

u′ = ω′ = 0 T ′ = T ′
c, y = L. (2.4)

In order to non-dimensionalize the above equa-
tions, we introduce the following non dimensional
variables and physical parameters defined as fol-
lows:

Y = y′/L, t = vt′/L2,

u = u′v/βgL2(T ′
h − T ′

m),

θ = (T ′ − T ′
m)/(T ′

h − T ′
m),

ω = ω′v/βgL(T ′
h − T ′

m), P r = v/α,

m = (T ′
c − T ′

m)/(T ′
h − T ′

m), b = L2/j,

R = k/µ. (2.5)

The physical quantities used in the above equa-
tions are defined in the Nomenclature. Use
of non-dimensional variables and parameters de-
fined in (2.5) into Equations (2.1) - (2.3), have re-
sulted the following equations in non-dimensional
form:

∂u

∂t
= (1 +R)

∂2u

∂y2
+ θ +R

∂ω

∂y
, (2.6)

∂ω

∂t
= (1 + 0.5R)

∂2ω

∂y2
−Rb

(
∂u

∂y
+ 2ω

)
, (2.7)

∂θ

∂t
=

1

Pr

∂2θ

∂y1
. (2.8)

The boundary conditions corresponding to the
considered model in dimensionless form are de-
rived as follows:

t ≤ 0 u = ω = θ = 0, 0 ≤ y ≤ 1;

t > 0 u = ω = 0, θ = 1 y = 0;

u = ω = 0, θ = m y = 1. (2.9)

3 Numerical solution

The linear parabolic partial differential equations
(2.6), (2.7) and (2.8) with their appropriate initial
and boundary conditions are solved numerically
by using Matlab R2008a software. The numerical
solution is obtained on a mesh produced by 20
equally spaced points for the spatial interval [0, 1]
starting from initial value of time to steady state
value.

4 Steady state solution

In order to check the accuracy of the numeri-
cal solutions obtained with MATLAB software,
we compare the steady-state numerical solution
with the analytical solutions of the correspond-
ing steady flow. Denoting these solutions as us
and ωs, it can be shown that

us = −2c1y + c2k11e
√
k4y − c3k11e

−
√
k4y

−k12y
3 − k8y

2 + k13y + c4, (4.10)

ωs = c1 + c2e
√
k4y + c3e

−
√
k4y

+k7y
2 + k8y. (4.11)

where

k1 = 2Rb/(2 +R), k2 = 1/k1,
k3 = (1 +R)k2, k4 = (2 +R)/k3,
k5 = (m− 1)/k3, k6 = 1/k3,
k7 = k5/2k4, k8 = k6/k4,
k9 = k2k4, k10 = (k9 − 2),
k11 = k10/

√
k4, k12 = 2k7/3,

k13 = 2k2k7,
k14 = k13 − k8 − k12,

k15 = 2 + k11e
√
k4 − k11,

k16 = 2− k11e
−
√
k4 + k11, k17 = e

√
k4 − 1,

k18 = e−
√
k4 − 1, k19 = k7 + k8,

k20 = −k16/
√
k15, k21 = −k14/k15,

k22 = k20k17 + k18, k23 = k21k17 + k19,
k24 = −k23/k22, k25 = k20k24 + k21,
k26 = −k25 − k24,
k27 = k24k11 − k25k11,
c1 = k26, c2 = k25.
c3 = k24, c4 = k27.

In Table 1, we have given the numerical values
of the steady-state velocity and microrotation ob-
tained by using Matlab software with us and ωs

for m = 0 and 1. One can see that the numer-
ical and analytical results agree very well. The
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Table 1: Numerical values of steady state velocity field and microrotation profile for m=0 and m = 1.0.

M R b y velocity field microrotation profile
Matlab-R2008a By Eq. (4.10) Matlab-R2008a By Eq. (4.11)

0.0 0.5 1.0 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.032050 0.032063 -7.94E-04 -0.000790
0.4 0.042770 0.042781 6.84E-05 0.000074
0.6 0.037410 0.037429 0.001110 0.001121
0.8 0.021350 0.021364 0.001300 0.001308
1.0 0.000000 0.000000 0.000000 0.000000

1.0 0.5 0.1 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.053330 0.053343 -2.13E-04 -0.000210
0.4 0.080000 0.080021 -1.06E-04 -0.000110
0.6 0.080000 0.080021 1.06E-04 0.000106
0.8 0.053330 0.053343 2.13E-04 0.000213
1.0 0.000000 0.000000 0.000000 0.000000

0.0 0.5 2.0 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.032110 0.032123 -0.001600 -0.001590
0.4 0.042870 0.042892 8.35E-05 0.000093
0.6 0.037500 0.037521 0.002140 0.002148
0.8 0.021380 0.021394 0.002530 0.002538
1.0 0.000000 0.000000 0.000000 0.000000

1.0 0.5 2.0 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.053510 0.053518 -0.004130 -0.004130
0.4 0.080390 0.080413 -0.002050 -0.002060
0.6 0.080300 0.080413 0.002050 0.002055
0.8 0.053510 0.053518 0.004130 0.004131
1.0 0.000000 0.000000 0.000000 0.000000

0.0 0.5 0.5 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.032020 0.032032 -3.42E-04 -0.000390
0.4 0.042700 0.042724 -1.14E-04 0.000045
0.6 0.037360 0.037381 5.93E-04 0.000573
0.8 0.021330 0.021348 6.40E-04 0.000665
1.0 0.000000 0.000000 0.000000 0.000000

1.0 0.5 0.5 0.0 0.000000 0.000000 0.000000 0.000000
0. 0.053340 0.053380 -0.001060 -0.001060
0.4 0.080040 0.080106 -5.28E-04 -0.000530
0.6 0.080040 0.080106 -5.28E-04 0.000528
0.8 0.053340 0.053380 0.001060 0.001058
1.0 0.000000 0.000000 0.000000 0.000000

0.0 2.0 0.5 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.016070 0.016079 -5.00E-04 -0.000500
0.4 0.021470 0.021476 3.79E-05 0.000042
0.6 0.018780 0.018786 6.92E-04 0.000696
0.8 0.010700 0.010705 8.12E-04 0.000814
1.0 0.000000 0.000000 0.000000 0.000000

1.0 2.0 0.5 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.026750 0.026783 -0.001310 -0.001310
0.4 0.040210 0.040262 -6.54E-04 -0.000650
0.6 0.040210 0.040262 -6.54E-04 0.000654
0.8 0.026750 0.026783 0.001310 0.001312
1.0 0.000000 0.000000 0.000000 0.000000
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Figure 1: Velocity profile for different val-
ues of t at m = 0.0, R = 0.5, P r = 1.0.

Figure 2: Velocity Profile for different val-
ues of t at m = 1.0, R = 0.5, P r = 1.0.

physical parameters appearing into the model are
vortex viscosity parameter R, material parameter
b, Prandtl number Pr and temperature ratio pa-
rameter m having values 0 and 1 for asymmetric
and symmetric heating of the vertical walls, re-
spectively. In this study, we have focused our
attention on the physical parameters R, b and Pr
and presented their influences through Figs. 1-12
on the velocity as well as micro-rotation profiles
for asymmetric and symmetric heating of the ver-
tical walls.

Figures 1 and 2 show the effect of material
parameter b on the velocity profiles for different
values of t when Pr = 1.0 and R = 0.5 for the
cases of asymmetric and symmetric heating, re-
spectively. In both thermal cases, we can observe
that the velocity of fluid has attained steady
state by increasing with the time and steady
state times are 0.85 and 0.75 for asymmetric

Figure 3: Velocity Profile for different val-
ues of t at m = 0.0, b = 0.5, P r = 1.0.

Figure 4: Velocity Profile for different val-
ues of t at m = 1.0, b = 0.5, P r = 1.0.

heating case while 0.95 and 0.85 for symmetric
heating case when b = 0.1 and 1.0, respectively.
Thus the steady state is achieved in the case
of asymmetrical heating faster than in the case
of symmetric heating. The effect of material
parameter b is to make the flow steady state
earlier. The influence of the vortex viscosity
as well as time parameter on magnitude of the
velocity profile for b = 0.5 and Pr = 1.0 is
presented in Figs. 3 and 4 corresponding to the
asymmetric and symmetric thermal cases. For
both thermal cases, the velocity profiles have
increasing tendency with time and have attained
steady state profiles at t = 0.90 and 0.85 for
R = 0.4 and 0.6, respectively. Hence, the vortex
viscosity parameter has decreasing tendency on
the velocity profiles and as well as on the steady
state time. Figures 5 and 6 present the effect of
Prandtl number Pr on the velocity profile for
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Figure 5: Velocity Profile for different val-
ues of t at m = 0.0, R = 0.5, b = 0.5.

Figure 6: Velocity Profile for different val-
ues of t at m = 1.0, R = 0.5, b = 0.5.

the cases of asymmetric and symmetric heating
at R = 0.5 and b = 0.5. From these figures we
can observed that the magnitude of the velocity
profile decreases with increase in the value of
Prandtl number for both cases. The steady state
time is increasing with the Pr.

Figures 7 and 8 illustrate that the effect
of material parameter b on the micro-rotation
profiles for different values of t when Pr = 1.0
and R = 0.5 in the cases of asymmetric and
symmetric heating, respectively. In both thermal
cases, the steady state time and the magnitude
of the micro-rotation have increasing tendency
with the material parameter. A close study of
these figures reveals that the steady state time
in case of asymmetric heating is more than the
symmetric heating. Figures 9 and 10 show the
micro rotation profiles corresponding to the
asymmetric and symmetric thermal cases for

Figure 7: Micro-rotation profile for differ-
ent values of t at m = 0.0, R = 0.5, P r = 1.0.

Figure 8: Micro-rotation profile for differ-
ent values of t at m = 1.0, R = 0.5, P r = 1.0.

Pr = 1.0 and b = 0.5. From these figures we find
that steady state time are 0.90(R = 0.4) and
0.85(R = 0.6) for both thermal cases and thus the
steady state time decreases as R increases. Also,
the magnitudes of the micro-rotation profiles
show the increasing tendency with R. Figures
11 and 12 show the effect of Prandtl number Pr
at R = b = 0.5 for asymmetric and symmetric
heating, respectively. As discussed earlier, the
variation in the magnitude of micro-rotation
profile decreases. We found that the steady state
times are 0.95 and 0.80 for Pr = 1.0 and 0.71
for both thermal conditions and thus the steady
state time of micro-rotation increases with the
Prandtl number Pr for both thermal cases.
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Figure 9: Micro-rotation profile for differ-
ent values of t at m = 0.0, P r = 1.0, b = 0.5.

Figure 10: Micro-rotation profile for differ-
ent values of t at m = 1.0, P r = 1.0, b = 0.5.

5 Conclusion

Here, we have investigated the effects of vor-
tex viscosity parameter, material parameter and
Prandtl number on free convective flow along ver-
tical walls in case of asymmetric and symmetric
heating or cooling of walls by obtaining the nu-
merical solutions using the Matlab R2008a pro-
gramming language code. It is seen that the
steady state time of velocity profile is more for
symmetric case than asymmetric case while the
steady state time of micro-rotation profile for
asymmetric heating is more than the symmet-
ric heating with respect to the material param-
eter. The velocity profile decreases and micro-
rotation profile of fluid increases at any point of
fluid regime with vortex viscosity parameter. As
the Prandtl number increases the steady state
time for the velocity profile and micro-rotation

Figure 11: Micro-rotation profile for differ-
ent values of t at m = 0.0, R = 0.5, b = 0.5.

Figure 12: Micro-rotation profile for differ-
ent values of t at m = 1.0, R = 0.5, b = 0.5.

profile increases for both thermal cases.
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