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Abstract

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is
presented. This method is based on replacement of unknown function by truncated series of well known
Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms
have been estimated by Fast Fourier Transform (FFT). This is a grate advantage of this method which
has lowest operation count in contrast to other early methods which use operational matrices (with
huge number of operations) or involve intermediate numerical techniques for evaluating intermediate
integrals which presented in integral equation or solve special case of nonlinear integral equations.
Also rate of convergence are given. The numerical examples show the applicability and accuracy of
the method.

Keywords : Nonlinear Fredholm-Volterra integral equation; Chebyshev polynomials; Error analysis;
Fast Fourier Transform.
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1 Introduction

I
n this paper we present a computational
method for solving general nonlinear

Fredholm-Volterra integral equations of the
second kind:

x(s) = y(s) + λ1

∫ s
0 K1(s, t)f(t, x(t))

dt+ λ2

∫ 1
0 K2(s, t)g(t, x(t))dt,

0 ≤ s, t ≤ 1.

(1.1)

Several numerical methods for approximating the
solution of linear and nonlinear integral equa-
tions are known [1]-[19]. Brunner in [7] applied
a collocation-type method and Ordokhani in [17]
applied rationalized Haar function to nonlinear
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Volterra-Fredholm integral equations. A varia-
tion of the Nystrom method was presented in
[14]. A collocation type method was developed
in [12]. Also more recent works have solved sim-
ple case of these equations with operational ma-
trices with more huge computations and opera-
tion counts ([5],[11],[14],[15],[18],[19]). Borzabadi
in [6] converted the nonlinear Fredholm integral
equation to an optimal control problem and then
used a linear programming to solve the problem.
Orthogonal functions and polynomials receive at-
tention in dealing with various problems such as
integral equations. The main characteristic of us-
ing orthogonal basis is that it reduces these prob-
lems to solving a system of nonlinear algebraic
equations by truncated approximating series

x(t) ≃ xN (t) =
N−1∑
i=0

ciTi(t),
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where function x(t) ∈ L2([0, 1]) and cn =
(f(t), Tn(t)), in which (.,.) denotes the inner
product in L2([0, 1]) also C and T are matrices
given by

C = [c0, c1, . . . cN ]T ,

T(t) = [T0(t), T1(t), . . . , TN (t)]T ,
(1.2)

where Tn(t), 0 ≤ n ≤ N are Chebyshev poly-
nomials of the first kind and degree n which are
orthogonal with respect to the weight function
ω(t) = 1/

√
1− t2 on the interval [-1,1]. These

polynomials satisfy the following recursive for-
mula,

T0(t) = 1, T1(t) = t,
Tm+1(t) = 2tTm(t)− Tm−1(t),
m = 1, 2, . . . .

2 Fast method of solution for
general nonlinear integral
equations

Consider the nonlinear integral equation (1.1).
At first we approximate x(t) as

x(t) ≃ CTT(t), (2.3)

then we substitute this approximation into eq.
(1.1) to get

CTT(s) = y(s) + λ1

∫ s
0 K1(s, t)

f(t,CTT(t))dt+ λ2

∫ 1
0 K2(s, t)

g(t,CTT(t))dt.

(2.4)

In order to use Gaussian integration formula for
eq. (2.4), we transfer the intervals [0, si] and [0, 1]
into interval [−1, 1] by transformations

τ1 =
2

si
t− 1, τ2 = 2t− 1.

For Chebyshev polynomials we consider the col-
location points

si = cos(
iπ

N
), i = 0, 1, . . . , N, (2.5)

let
H1(s, t) = K1(s, t)f(t,C

TT(t)),
H2(s, t) = K2(s, t)g(t,C

TT(t)).

Using collocation points (2.5) in transformed eq.
(2.4), we get

CTT(si) = y(si)+

λ1
si
2

∫ 1
−1H1(si,

si(τ1+1)
2 )dτ1+

λ2
2

∫ 1
−1H2(si,

(τ2+1)
2 )dτ2.

(2.6)

Now we use Clenshaw-Curtis quadrature formula
[10] to get

CTT(si) = y(si)+
N∑
k=0

′′wk[λ1
si
2
H1(si,

si(sk + 1)

2
)+

λ2
2 H2(si,

(sk+1)
2 )],

(2.7)

for i = 0, 1, . . . , N , where

wk =
4

N

N∑
even n=0

′′ 1

1− n2
cos(

nkπ

N
), (2.8)

and double prime means that the first and the
last terms are halved. The system (2.7) consist of
N+1 nonlinear equations which can be solved by
usual iterative method such as Newton’s method
or simplex method. The Fast Fourier Transform
(FFT) technique is used to evaluate the summa-
tion part in (2.7) in O(N logN) operations. In
fact eq. (2.8) for weights wk can also be viewed
as the discrete cosine transformation of the vector
v with entries:

vn =

{
2/(1− n2), n even
0, n odd.

The weights wk therefore is computed directly
in O(N logN) operations, this will be the faster
computation when we integrate functions in (2.6)
using the same value of N . Therefore one of
the good advantages of this method to all early
methods which use m-power of operational ma-
trices with operation cost of at least O(mN3)
orO(m2N5) ([5],[9],[11],[13],[15],[18],[19]) (for the
simple case (x(t))m as the nonlinear term of inte-
gral equations) is that the method is reasonable
in cost and also very stable against rounding er-
rors as we see in the next section.

3 Convergence and error analy-
sis

In this section, we discuss the convergence of
the Chebyshev polynomial method for the gen-
eral nonlinear integral equation (1.1). The follow-
ing proposition is fundamental to the convergence
analysis:
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Table 1: Mean absolute error for Example 4.1, order of operations and CPU times.

Method of [19] N=16 e=0.0039 O(mˆ2Nˆ2) C̃PU = 4.5562

method of [5] N=16 e=1.52d-4 O(mNˆ3) CPU=-

method of [13] N=16 e=2.2011d-2 O(mˆ2Nˆ2) CPU=-

method of [12] n=8,m=8 e=2.7255 O(mˆ2Nˆ2) CPU=-

present method: N=6 e=1.21d-3 O(N lnN) CPU=4.01*10ˆ-2
N=16 e=0.66d-8 1.65*10ˆ-1
N=32 e=0.28d-15 4.13*10ˆ-1

Table 2: Absolute error of Example 4.2 by introduced method (N= the number of basis functions) and their
operation counts(OC).

t N=5 metod of [17] (N=16)

0.0 0.306e-3 0.0e-3
0.1 0.305e-3 0.1e-3
0.2 0.304e-3 0.0e-3
0.3 0.311e-3 0.2e-3
0.4 0.336e-3 0.1e-1
0.5 0.391e-3 0.1e-3
0.6 0.485e-3 0.1e-3
0.7 0.620e-3 0.1e-3
0.8 0.785e-3 0.0e-3
0.9 0.953e-3 0.1e-3
1.0 0.107e-3 0.1e-3

OC 8.0472 65536

Table 3: Absolute error of Example [3] by introduced method (N= the number of basis functions).

t N=3 N=5 N=7 metod of [6]

0.0 0.001e-3 0.229e-4 0.258e-5 0.2e-2
0.2 0.324e-3 0.305e-4 0.735e-5 0.1e-1
0.4 0.258e-3 0.167e-4 0.793e-5 0.2e-1
0.6 0.207e-3 0.075e-4 0.255e-5 0.1e-1
0.8 0.177e-3 0.214e-4 0.398e-5 0.0e-2
1.0 0.176e-3 0.062e-4 0.264e-5 0.1e-3

Table 4: Numerical results for Example 4.4.

N ∥e∥∞ OC

method of [14] 20 2.051e-5 763
50 3.370e-6 2121
100 9.182e-7 4221

present method 20 2.725e-8 59.91
50 1.21e-11 195.60
100 0.66e-20 460.51

Proposition 3.1 Let x(t) ∈ Hk(−1, 1) (Sobolev
space) and Tn(x(t)) =

∑n
i=0 ciTi(t) be the approx-

imation polynomial of x(t) in L2 norm. Thus, the

truncation error is:

∥x(t) − Tn(x(t))∥L2[−1,1]≤ C0n
−k∥x(t)∥Hk(−1,1),

where C0 is a positive constant which depends



84 F. Fattahzadeh /IJIM Vol. 8, No. 1 (2016) 81-86

on the selected norm and is independent of x(t)
and n; n is the degree of Chebyshev polyno-
mials (proof [8]). From proposition 3.1 it is
concluded that approximation rate of Chebyshev
polynomials is n−k. If x(t) is approximated by
xN (t) =

∑N
n=0 cnTn(t), and we find cn ( cn is

an approximation of cn and xN =
∑N

n=0 cnTn(t))
then for t ∈ [−1, 1], we have

∥x(t)− xN (t)∥≤ C0N
−k∥x(t)∥+

C2(N + 1)1/2N−k+1.

From [7] and by using closed N + 1-point Gauss-
Chebeshev rule for approximation of cn we realize
[11], |cn − cn|≤ C1N

−k+1, so it verifies the accu-
racy of the method. Given the truncated Cheby-
shev series (2.3) is an approximation of eq. (1.1),
it should approximately satisfy these equations,
thus for each si ∈ [0, 1],

E(si) = CTT(si)− y(si)−
λ1

∫ si
0 k1(si, t)f(t,C

TT(t))dt

−λ2

∫ 1
0 k2(si, t)g(t,C

TT(t))dt ≈ 0

If maxE(si) = 10−k (k is any positive integer)
is prescribed then the truncation limit N is in-
creased until the difference E(si) at each points
si becomes smaller than the prescribed 10−k. We
can discuss a less strong proposition:

Proposition 3.2 Assume that (C(J), ∥.∥) is the
Banach space of all continuous functions on J =
[0, 1] with norm ∥x(s)∥= max0≤s≤1|x(s)| and the
following conditions on K1,K2 and f, g for eq.
(1.1) are satisfied and we define Ks ≡ K(s, t) for
s, t ∈ [0, 1],

1. lims→τ∥Ks −Kτ∥= 0, τ ∈ [0, 1],
2. M1 = sup0≤s,t≤1|K1(s, t)|< ∞,

M2 = sup0≤s,t≤1|K2(s, t)|< ∞,

3. f(s, t), g(s, t) are continuous in
s ∈ [0, 1]
and Lipschitz continuous in
t ∈ (−∞,∞), i.e. there exists a
constant C1 and C2 > 0 for which
|f(s, t1)− f(s, t2)|≤ C1|t1 − t2|,
for all t1, t2 ∈ (−∞,∞) and
|g(s, t1)− g(s, t2)|≤ C2|t1 − t2|,
for all t1, t2 ∈ (−∞,∞),

then the solution of nonlinear equation (1.1) con-
verges ([13],[16]).

Also in the L∞[0, 1] we can propose as follow:
Let (C[0, 1], ∥.∥) is the Banach space of all con-
tinuous functions on interval [0, 1] with ∥x(t)∥∞=

maxt∈[0,1]|x(t)|. Assume |K1(s, t)|≤ M1 and
|K2(s, t)|≤ M2 and suppose the nonlinear terms
f(t, x(t)) = F (t) and g(t, x(t)) = G(t) are satis-
fied in Lipschitz conditions:

|F (u)− F (v)|≤ L1|u− v|,
|G(u)−G(v)|≤ L2|u− v|.

Moreover define α = |λ1|M1L1 + |λ2|M2L2. If
x(s) and xN (s) show respectively the exact and
approximate solutions of eq. (1.1), we have

Theorem 3.1 The solution of general nonlinear
Fredholm-Volterra Integral equation (1.1) by us-
ing Chebyshev polynomials converges if α ≥ 1; in
other words limN→∞∥x(s)− xN (s)∥= 0.

Proof:

∥x(s)− xN (s)∥∞= maxs∈[0,1]
|x(s)− xN (s)|= maxs∈[0,1]|λ1∫ s
0 K1(s, t)(F (x(t))− F (xN (t)))dt|+
maxs∈[0,1]|λ2

∫ s
0 K2(s, t)

(G(x(t))−G(xN (t)))dt|≤ |λ1|M1L1s
∥x(s)− xN (s)∥∞+|λ2|M2L2

∥x(s)− xN (s)∥∞⇒
∥x(s)− xN (s)∥∞≤ α∥x(s)− xN (s)∥∞.

so the proof is completed.

4 Illustrative Examples

In this section we consider some nonlinear Fred-
holm and Volterra integral equations which have
been solved with other early methods such as op-
erational matrix approach and solve them by in-
troduced method.

Example 4.1 Consider the Fredholm integral
equation

x(s) = y(s) +
∫ s
0 (s− t)x2(t)dt+∫ 1

0 (s+ t)x(t)dt,
(4.9)

with the exact solution x(s) = s2 − 2 and y(s) =
−1
30 s

6+ 1
3s

4−s2+ 5
3s−

5
4 . We use five methods for

this example. Table (1) shows the mean absolute
error ∥x−xN∥2 for equal spaced points of interval
in each methods and N stands for the number of
basis functions and times are in arbitrary unit.

In this table, C̃PU stands for CPU time of a
problem with the same complexity as this exam-
ple. However a closer inspection of the results
shows that the other methods behave rather dif-
ferently asN increases and our fast algorithm due
to its low operation count yields much smaller
round of errors than the other methods.
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Example 4.2 Consider Volterra-Fredholm
Hammerstein integral equation given in [12],

x(s) = 2 cos(s)− 2+
3
∫ s
0 sin(s− t)x2(t)dt+
6

7−6 cos 1

∫ 1
0 (1− t) cos2(s)(t+ x(t))dt,

(4.10)

with the exact solution x(s) = cos(s). Table (2)
shows the absolute error |x− xN | in some points
of [0, 1] where xN is the approximate solution and
N stands for the number of basis functions in the
approximate solution.
Table (2) shows that by this fast method we can
obtain the same results with lowest operations
than do by method of [17].

Example 4.3 Consider nonlinear Fredholm in-
tegral equation given in [6],

x(s) = exp(1)s+ 1−
∫ 1

0
(s+ t)ex(t)dt, (4.11)

which has the exact solution x(t) = t. As in pre-
ceding examples Table (3) shows the absolute er-
ror ∥x− xN∥2 in some points of [0, 1].

Example 4.4 Consider the following boundary
value problem

x′′(t)− ex(t) = 0, 0 ≤ t ≤ 1,
x(0) = x(1) = 0,

(4.12)

which is of grate interest in hydrodynamics [14]
with exact solution

x(t) = − ln(2) + ln(λ(t)),

where
λ(t) = (

c

cos(12c(t− 0.5))
)2.

Here c is the root of the equation

(
c

cos( c4)
)2 = 2.

Problem (4.12) can be reformulated as the inte-
gral equation

x(s) =

∫ 1

0
k(s, t)ex(t)dt, 0 ≤ t ≤ 1,

where

k(s, t) =

{
−t(1− s), t ≤ s,
−s(1− t), s ≤ t.

Table 4 shows maximum error for the method
of [14] and our fast method and their operation
counts (OC). This table also shows that the fast
method is a factor of 10 better.

5 Conclusion

As shown by numerical examples, the method in-
troduced here can be simply implemented to gen-
eral nonlinear integral equations of the second
kind. The advantages are much less implemen-
tations and fast computations which is compara-
ble with all huge cost early methods with simple
nonlinear terms. We also have shown the conver-
gence and the rate of the convergence.
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