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Numerial Solution of Klein-Gordon Equation byUsing the Adomian's Deomposition andVariational Iterative MethodsSh. Sadigh Behzadi �Young Researhers Club, Central Tehran Branh , Islami Azad University, P.O.Box: 15655/461,Tehran, Iran.Reeived 7 February 2011; revised 2 May 2011; aepted 5 May 2011.|||||||||||||||||||||||||||||||-AbstratIn this paper, a Klein-Gordon equation is solved by using the Adomian's deompositionmethod, variational iteration method and modi�ed form of these methods. The approxi-mate solution of this equation is alulated in the form of series in whih its omponentsare omputed by applying a reursive relation. The existene and uniqueness of the so-lution and the onvergene of the proposed methods are proved. A numerial example isstudied to demonstrate the auray of the presented methods.Keywords : Klein-Gordon equation, Adomian deomposition method (ADM) , Modi�ed Adomiandeomposition method (MADM), Variational iteration method (VIM), Modi�ed variational itera-tion method (MVIM).||||||||||||||||||||||||||||||||{1 IntrodutionKlein-Gordon equation plays an important role in mathematial physis. The equation hasattrated muh attention in studying solitons and ondensed matter physis [6℄, in inves-tigating the interation of solitons in a ollisionless plasma, the reurrene of initial states,and in examining the nonlinear wave equations [8℄. In reent years some works have beendone in order to �nd the numerial solution of this equation, for example, spline di�erenemethod for solving Klein-Gordon equations [16℄, invariant-onserving �nite di�erene al-gorithms for the nonlinear Klein-Gordon equation [21℄, a Legendre spetral method [5℄,Adomian deomposition method [10, 17, 18℄, the variational iteration method [24℄, ap-pliation of homotopy perturbation method to Klein-Gordon equation [4℄. In this work,�Email address: Shadan Behzadi�yahoo.om . 79



80 Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89we ompare the ADM, VIM, MADM and MVIM to solve the Klein-Gordon equation asfollows: �2u�t2 � �2u�x2 = �F (u); (1.1)with the initial onditions given by:u(x; 0) = f(x); �u(x;t)�t jt=0= g(x):Where, F (u) is a linear or nonlinear funtion and u(x; t) is unknown. The paper isorganized as follows. In setion 2, the mentioned iterative methods are introdued forsolving Eq. (1.1). Also, the existene and uniqueness of the solution and onvergene ofthe proposed method are proved in setion 3. Finally, the numerial example is presentedin setion 4 to illustrate the auray of these methods.To obtain the approximate solution of Eq. (1.1), by integrating 2 times from Eq. (1.1)with respet to t and using the initial onditions we obtain,u(x; t) = G(x; t) + Z t0 Z t0 �2u(x; �)�x2 d� d� � Z t0 Z t0 F (u(x; �)) d� d�; (1.2)where, G(x; t) = f(x) + tg(x):The double integrals in Eq. (1.2) an be written as [22℄:R t0 R t0 �2u(x;�)�x2 d� d� = R t0 (t� �) �2u(x;�)�x2 d�;R t0 R t0 F (u(x; �)) d� d� = R t0 (t� �) F (u(x; �)) d�:So, we an write Eq. (1.2) as follows:u(x; t) = G(x; t) + Z t0 (t� �) �2u(x; �)�x2 d� � Z t0 (t� �) F (u(x; �)) d�: (1.3)In Eq. (1.3), we assume G(x; t) is bounded for all �; t in J = [0; T ℄(T 2 R) andj t� � j�M 0 ; 8 0 � t; � � T;M 0 2 R:We assume the terms D2(u(x; �)) = d2dx2u(x; t) and F (u) are Lipshitz ontinuous withj D2(u)�D2(u�) j� L1 j u� u� jj F (u)� F (u�) j� L2 j u� u� jand � := T (M 0L1 +M 0L2);� := 1� T 2(1� �); := 1� T 2�:



Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89 812 The iterative methods2.1 Desription of the MADM and ADMThe Adomian deomposition method is applied to the following general nonlinear equationLu+Ru+Nu = g1(x); (2.4)where u is the unknown funtion, L is the highest order derivative operator whih isassumed to be easily invertible, R is a linear di�erential operator of order less than L;Nurepresents the nonlinear terms, and g is the soure term [4, 11℄. Applying the inverseoperator L�1 to both sides of Eq. (2.4), and using the given onditions we obtainu = f(x)� L�1(Ru)� L�1(Nu); (2.5)where the funtion f(x) represents the terms arising from integrating the soure termg1(x). The nonlinear operator Nu = G(u) is deomposed asG(u) = 1Xn=0An; (2.6)where An; n � 0 are the Adomian polynomials determined formally as follows [9℄:An = 1n! [ dnd�n [N( 1Xi=0 �iui)℄℄�=0: (2.7)These polynomials an be obtained as [19, 20, 23℄:A0 = G(u0);A1 = u1G0(u0);A2 = u2G0(u0) + 12!u21G00(u0); (2.8)A3 = u3G0(u0) + u1u2G00(u0) + 13!u31G000(u0); :::2.1.1 Adomian deomposition methodThe standard deomposition tehnique represents the solution of u in Eq. (2.4) as thefollowing series, u(x; t) = 1Xi=0 ui(x; t); (2.9)where, the omponents u0; u1; : : : are usually determined reursively byu0 = G(x; t)u1 = Z t0 (t� �) L0(x; �) d� � Z t0 (t� �) A0(x; �) d�;...un+1 = Z t0 (t� �) Ln(x; �) dtau� Z t0 (t� �) An(x; �) d�; n � 0: (2.10)



82 Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89Substituting Eq. (2.8) into Eq. (2.10) leads to the determination of the omponents of u.Having determined the omponents u0; u1; : : : the solution u in a series form de�ned byEq. (2.9) follows immediately .2.1.2 The modi�ed Adomian deomposition methodThe modi�ed deomposition method was introdued by Wazwaz [22℄. The modi�ed formswere established based on the assumption that the funtion G(x; t) an be divided intotwo parts, namely G1(x; t) and G2(x; t). Under this assumption we setG(x; t) = G1(x; t) +G2(x; t): (2.11)Aordingly, a slight variation was proposed only on the omponents u0 and u1. Thesuggestion was that only the part G1 is assigned to the zeroth omponent u0, whereasthe remaining part G2 is ombined with the other terms given in Eq. (2.10) to de�ne u1.Consequently, the modi�ed reursive relationu0 = G1(x; t);u1 = G2(x; t)� L�1(Ru0)� L�1(A0); (2.12)...un+1 = �L�1(Run)� L�1(An); n � 1;was developed.To obtain the approximation solution of Eq. (1.1), aording to the MADM, we anwrite the iterative formula (2.12) as follows:u0(x; t) = G1(x; t);u1(x; t) = G2(x; t) + R t0 (t� �) L0(x; �) d� � R t0 (t� �) A0(x; �) d�;...un+1(x; t) = R t0 (t� �) Ln(x; �) d� � R t0 (t� �) An(x; �) d�: (2.13)
The operators D2(u(x; �)) = d2dx2u(x; t) and F (u(x; �)) are usually represented by thein�nite series of the Adomian polynomials as follows:F (u) = 1Xi=0 Ai; D2(u) = 1Xi=0 Li;where Ai and Li(i � 0) are the Adomian polynomials.Also, we an use the following formula for the Adomian polynomials [9℄:Ln = D2(sn)�Pn�1i=0 Li;An = F (sn)�Pn�1i=0 Ai: (2.14)where the partial sum is sn =Pni=0 ui(x; t).



Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89 832.2 Desription of the VIM and MVIMIn the VIM [12℄-[15℄, we onsider the following nonlinear di�erential equation:Lu+Nu = g; (2.15)where L is a linear operator, N is a nonlinear operator and g is a known analytial funtion.In this ase, a orretion funtional an be onstruted as follows:un+1(t) = un(t) + Z t0 �(�)fL(un(�)) +N(un(�))� g(�)gd�; n � 0; (2.16)where � is a general Lagrange multiplier whih an be identi�ed optimally via variationaltheory. Here the funtion un(�) is a restrited variation whih means Æun = 0. Therefore,we �rst determine the Lagrange multiplier � that will be identi�ed optimally via inte-gration by parts. The suessive approximation un(t), n � 0 of the solution u(t) will bereadily obtained upon using the obtained Lagrange multiplier and by using any seletivefuntion u0. The zeroth approximation u0 may selete any funtion that just satis�es atleast the initial and boundary onditions. With � determined, then several approximationun(t), n � 0 follow immediately. Consequently, the exat solution may be obtained byusing u(x; t) = limn!1un(x; t): (2.17)The VIM has been shown to solve e�etively, easily and aurately a large lass ofnonlinear problems with approximations onverge rapidly to aurate solutions.To obtain the approximation solution of Eq. (1.1), aording to the VIM, we an writeiteration formula (2.16) as follows:un+1(x; t) = un(x; t) + L�1t �� hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �) F (un(x; �)) d�i� ; (2.18)where, L�1t (:) = Z t0 Z t0 (:) d� d�:To �nd the optimal �, we proeed asÆun+1(x; t) = Æun(x; t) + ÆL�1t �� hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �) F (un(x; �)) d�i�= Æun(x; t) + �Æun(x; t) � L�1t [Æun(x; t)�0 ℄: (2.19)From Eq. (2.19), the stationary onditions an be obtained as follows:�0 = 0; 1 + � = 0



84 Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89Therefore, the Lagrange multipliers an be identi�ed as � = �1 and by substituting inEq. (2.18), the following iteration formula is obtained:u0(x; t) = G(x; t);un+1(x; t) = un(x; t)� L�1t �hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �)F (un(x; �)) d�i� ; n � 0: (2.20)To obtain the approximation solution of Eq. (1.1), based on the MVIM [1, 2, 3℄, we anwrite the following iteration formula:u0(x; t) = G(x; t);un+1(x; t) = un(x; t)� L�1t �h� R t0 (t� �) D2(un(x; �) � un�1(x; �)) d�+ R t0 (t� �) F (un(x; �) � un�1(x; �)) d�i� ; n � 0:(2.21)Relations (2.20) and (2.21) will enable us to determine the omponents un(x; t) reursivelyfor n � 0.3 Existene and onvergeny of iterative methodsTheorem 3.1. Let 0 < � < 1, then Klein-Gordon equation (1), has a unique solution.Proof: Let u and u� be two di�erent solutions of (1.3) thenju� u�j = ���R t0 (t� �) �D2(u(x; �)) �D2(u�(x; �))� d�� R t0 (t� �)[F (u(x; �)) � F (u�(x; �))℄ d� ���� R t0 j(t� �)j � jD2(u(x; �)) �D2(u�(x; �))j d�+ R t0 j(t� �)j � jF (u(x; �)) � F (u�(x; �))j d�� T (M 0L1 +M 0L2)ju� u�j= �ju� u�jFrom whih we get (1 � �) j u � u� j� 0. Sine 0 < � < 1. then j u � u� j= 0. Impliesu = u� and ompletes the proof.Theorem 3.2. The series solution u(x; t) =P1i=0 ui(x; t) of problem (1.1) using MADMand ADM onvergene when 0 < � < 1; ju1(x; t)j <1Proof: We denote (C[J ℄; k : k) as the Banah spae of all ontinuous funtions onJ with the norm k f(t) k= max j f(t) j, for all t in J and de�ne the sn and sm as the



Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89 85arbitrary partial sums with n � m. We are going to prove that sn is a Cauhy sequenein this Banah spae:ksn � smk = max8t2J j sn � sm j= max8t2J ��Pni=m+1 ui(x; t)��= max8t2J ���Pni=m+1 R t0 (t� �) Li d� �Pni=m+1 R t0 (t� �) Ai d� ���= max8t2J ���R t0 (t� �) (Pn�1i=m Li) d� + R t0 (t� �) (Pn�1i=mAi) d� ��� :From Eq. (2.14), we have Pn�1i=m Li = D2(sn�1 � sm�1);Pn�1i=mAi = F (sn�1 � sm�1):So,ksn � smk = max8t2J ���R t0 (t� �) [D2(sn�1 � sm�1)℄ d� � R t0 (t� �)[F (sn�1 � sm�1)℄ d�)���� R t0 j(t� �)j � jD2(sn�1 � sm�1)jd� + R t0 j(t� �)j � jF (sn�1 � sm�1)jd�� �ksn�1 � sm�1k:Let n = m+ 1, then ksn � smk � �ksm � sm�1k� �2ksm�1 � sm�2k...� �mks1 � s0kFrom the triangle inequality we haveksn � smk � ksm+1 � smk+ ksm+2 � sm+1k+ � � �+ ksn � sn�1k� [�m + �m+1 + � � � + �n�1℄ks1 � s0k� �m[1 + �+ �2 + � � �+ �n�m�1℄ks1 � s0k� �m[1��n�m1�� ℄ku1(x; t)kSine 0 < � < 1, we have (1� �n�m) < 1, thenk sn � sm k� �m1� � max8t2J j u1(x; t) j :But j u1(x; t) j<1 ( sine G(x; t) is bounded), so, as m!1, then k sn � sm k! 0. Weonlude that sn is a Cauhy sequene in C[J ℄, therefore the series is onvergene and theproof is omplete.Theorem 3.3. The solution un(x; t) obtained from the relation (2.20) using VIM on-verges to the exat solution of the problem (1.1) when 0 < � < 1 and 0 < � < 1.



86 Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89Proof:un+1(x; t) = un(x; t)� L�1t �hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �)F (un(x; �)) d�i� (3.22)and u(x; t) = u(x; t)� L�1t �hu(x; t)�G(x; t)� R t0 (t� �)D2(u(x; �)) d�+ R t0 (t� �) F (u(x; �)) d�i� (3.23)By subtrating Eq. (3.22) from Eq. (3.23),un+1(x; t)� u(x; t) = un(x; t)� u(x; t)�L�1t �un(x; t)� u(x; t)� R t0 (t� �)[D2(un(x; �))�D2(u(x; �))℄ d�+ R t0 (t� �)[F (un(x; �)) � F (u(x; �))℄ d�� ;if we set, en+1 = un+1(x; t)� un(x; t), en = un(x; t)� u(x; t), thenen+1 = en � L�1t �en � R t0 (t� �)[D2(un(x; �)) �D2(u(x; �))℄ d�+ R t0 (t� �)[F (un(x; �)) � F (u(x; �))℄ d��� en � T 2(en � jenj(M 0L1 +M 0L2))If en > 0 then jenj = en so we haveen+1 = en(1� T 2(1� �)) = en�Therefore, ken+1k = max8t2J jen+1j� �max8t2J jenj= �kenkSine 0 < � < 1, then kenk ! 0. So, the series onverges and the proof is omplete.Theorem 3.4. The solution un(x; t) obtained from the relation (2.21) using MVIM forthe problem (1.1) onverges when 0 < � < 1 , 0 <  < 1.Proof: The Proof is similar to the previous theorem.Remark 3.1. Proving of onvergene the ADM is similar toproving of onvergene MADM.



Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89 874 Numerial exampleIn this setion, we ompute a numerial example whih is solved by the MADM, VIM,ADM and MVIM. The program has been provided with Mathematia 6 aording to thefollowing algorithm where " is a given positive value.Algorithm (ADM and MADM)Step 1. Set n 0.Step 2. Calulate the reursive relation (10) for ADM and (13) for MADM.Step 3. If j un+1 � un j< " then go to step 4,else n n+ 1 and go to step 2.Step 4. Print u(x; t) =Pni=0 ui(x; t) as the approximate of the exat solution.Algorithm (VIM and MVIM)Step 1. Set n 0.Step 2. Calulate the reursive relation (20) for VIM and (21) for MVIM.Step 3. If j un+1 � un j< " then go to step 4,else n n+ 1 and go to step 2.Step 4. Print un(x; t) as the approximate of the exat solution.Example 4.1. [7, 24℄, Consider the nonlinear Klein-Gordon equationutt � uxx = �u2;with the initial onditions u(x; 0) = 1 + sinx; ut(x; 0) = 0:Table 1Numerial results for Example (4.1)x t=0.3 t=0.4MADM(n=11) VIM(n=7) ADM(n=13) MVIM(n=3) MADM(n=12) VIM(n=7) ADM(n=14) MVIM(n=4)0.0 0:9849999861 0:992000024 0:98133425 0:99833421 0:986699116 0:99234421 0:981234262 0:99798330.1 1:092291132 1:0931672174 1:09179866 1:09383508 1:072423730 1:073226319 1:07189354 1:07388260.2 1:189702983 1:190103087 1:18885990 1:19085859 1:169634875 1:170138050 1:16869202 1:170782550.3 1:277668610 1:282668848 1:26899334 1:28858484 1:247326130 1:252361032 1:23779468 1:258789090.4 1:367844211 1:371844710 1:36019967 1:37860068 1:337423788 1:34042104 1:32739734 1:34798688Table 1 shows that, approximate solution of the nonlinear Klein-Gordon equation isonvergene with 3 iterations in t = 0:3 and with 4 iterations in t = 0:4. by using theMVIM. Comparing the results of table 1 , we an observe that the MVIM is more rapidonvergene than the MADM, VIM and ADM.5 ConlusionThe MVIM has been shown to solve e�etively, easily and aurately a large lass ofnonlinear problems with the approximations whih are rapidly onvergent to exat solu-tions. In this work, the MVIM has been suessfully employed to obtain the approximateanalytial solution of the Klein-Gordon equation.
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