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Abstract

In this paper, a Klein-Gordon equation is solved by using the Adomian’s decomposition
method, variational iteration method and modified form of these methods. The approxi-
mate solution of this equation is calculated in the form of series in which its components
are computed by applying a recursive relation. The existence and uniqueness of the so-
lution and the convergence of the proposed methods are proved. A numerical example is
studied to demonstrate the accuracy of the presented methods.

Keywords : Klein-Gordon equation, Adomian decomposition method (ADM) , Modified Adomian
decomposition method (MADM), Variational iteration method (VIM), Modified variational itera-
tion method (MVIM).

1 Introduction

Klein-Gordon equation plays an important role in mathematical physics. The equation has
attracted much attention in studying solitons and condensed matter physics [6], in inves-
tigating the interaction of solitons in a collisionless plasma, the recurrence of initial states,
and in examining the nonlinear wave equations [8]. In recent years some works have been
done in order to find the numerical solution of this equation, for example, spline difference
method for solving Klein-Gordon equations [16], invariant-conserving finite difference al-
gorithms for the nonlinear Klein-Gordon equation [21], a Legendre spectral method [5],
Adomian decomposition method [10, 17, 18], the variational iteration method [24], ap-
plication of homotopy perturbation method to Klein-Gordon equation [4]. In this work,
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we compare the ADM, VIM, MADM and MVIM to solve the Klein-Gordon equation as
follows:

u  u _
o2 9r2

with the initial conditions given by:

_F(u), (1.1)

u(z,0) = f(z), 2420 | _= g(x).

Where, F(u) is a linear or nonlinear function and u(x,t) is unknown. The paper is
organized as follows. In section 2, the mentioned iterative methods are introduced for
solving Eq. (1.1). Also, the existence and uniqueness of the solution and convergence of
the proposed method are proved in section 3. Finally, the numerical example is presented
in section 4 to illustrate the accuracy of these methods.

To obtain the approximate solution of Eq. (1.1), by integrating 2 times from Eq. (1.1)
with respect to ¢t and using the initial conditions we obtain,

(o, t) = //82 dm—// ) dr dr,  (1.2)

G(z,t) = f(x) + tg(x).

The double integrals in Eq. (1.2) can be written as [22]:

where,

fo t 92 u x, T dT dT — fot(t o 7_) 82’(1,(1'77—) dT,

Ox2 O0x2

fo fo ) dr dT = fo (t —7) F(u(z,T)) dr.
So, we can write Eq. (1.2) as follows:

t 20(z t
u(z,t) = G(z,t) +/0 (t—1) % dr —/0 (t —7) F(u(z,7)) dr. (1.3)

In Eq. (1.3), we assume G(z,t) is bounded for all 7,¢ in J = [0,T](T" € R) and
lt—7|<M, YVO<t,7<T,M €R

We assume the terms D?(u(z, 7)) = %u(x, t) and F(u) are Lipschitz continuous with

| D?(u) = D*(u*) |< Ly | u—u* || F(u) = F(u") |[< Ly | u—u” |

and
a:=T (ML + M L),

B:=1-T%1-a),

vi=1-T?aq.
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2 The iterative methods

2.1 Description of the MADM and ADM

The Adomian decomposition method is applied to the following general nonlinear equation
Lu+ Ru+ Nu = g1(x), (2.4)

where u is the unknown function, L is the highest order derivative operator which is
assumed to be easily invertible, R is a linear differential operator of order less than L, Nu
represents the nonlinear terms, and g is the source term [4, 11]. Applying the inverse
operator L~! to both sides of Eq. (2.4), and using the given conditions we obtain

u= f(z) — L7 (Ru) — L™"(Nu), (2.5)

where the function f(z) represents the terms arising from integrating the source term
g1(z). The nonlinear operator Nu = G(u) is decomposed as

Gu) =) Ay, (2.6)
n=0

where A, n >0 are the Adomian polynomials determined formally as follows [9]:

. %[%[N(Z ) [Iaco. (2.7)

=0

These polynomials can be obtained as [19, 20, 23]:

AO = G(“O)a
A1 = ulG'(uo),
1
Ay = UQGI(U()) + EU%G”(UO)’ (28)

1
Az = u3G'(u0) + ul’LLQG”(U()) + iu%G"'(uo),

2.1.1 Adomian decomposition method

The standard decomposition technique represents the solution of v in Eq. (2.4) as the
following series,

oo
u(z,t) = Zui(xat)a (2.9)
i=0
where, the components wug, uq,... are usually determined recursively by

uy = G(x,t)
w1 :/0 (t —7) Lo(x,7) dr —/0 (t—71) Ap(z, 1) dT,

t t
Uiy = /0 (t = 7) Lo(z,7) diau —/0 (t—7) Ap(z,7) dr, n>0.  (2.10)
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Substituting Eq. (2.8) into Eq. (2.10) leads to the determination of the components of u.
Having determined the components ug,u1,... the solution u in a series form defined by
Eq. (2.9) follows immediately .

2.1.2 The modified Adomian decomposition method

The modified decomposition method was introduced by Wazwaz [22]. The modified forms
were established based on the assumption that the function G(z,t) can be divided into
two parts, namely G1(z,t) and Ga(x,t). Under this assumption we set

G(z,t) = Gi(z,t) + Go(z,1). (2.11)

Accordingly, a slight variation was proposed only on the components uy and u;. The
suggestion was that only the part G is assigned to the zeroth component wug, whereas
the remaining part G5 is combined with the other terms given in Eq. (2.10) to define u;.
Consequently, the modified recursive relation

uy = G1 (I,t),
up = Go(z,t) — L_I(RU[)) — L_I(Ag), (2.12)

Uny1 = —L Y (Ru,) — L1 (A,), n>1,

was developed.
To obtain the approximation solution of Eq. (1.1), according to the MADM, we can
write the iterative formula (2.12) as follows:

uo(z,t) = Gy(z,1),
wi(z,t) = Go(x,t) + [ (t — ) Lo(x,7) dr — [3(t —T) Ag(z,7) dr,

(2.13)
Upt1(z,t) = fot(t —7) Ly(z,7) dr — fot(t —7) Ap(z,7) drT.

The operators D?(u(z, 7)) = j—;u(x,t) and F(u(x,7)) are usually represented by the

infinite series of the Adomian polynomials as follows:

Flu)=Y A4; D*u)=> L,
i=0 1=0

where A; and L;(7 > 0) are the Adomian polynomials.
Also, we can use the following formula for the Adomian polynomials [9]:

Ly, = DQ(sn) - Z?;OI L;,
) (2.14)
An = F(sn) - ZZL:_O Ai-

where the partial sum is s, = > u;(z, t).
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2.2 Description of the VIM and MVIM

In the VIM [12]-[15], we consider the following nonlinear differential equation:
Lu+ Nu=g, (2.15)

where L is a linear operator, N is a nonlinear operator and g is a known analytical function.
In this case, a correction functional can be constructed as follows:

Unt1(t) = un(t) +/0 AT {L(un (7)) + N(up(7)) — g(7)}dr, n >0, (2.16)

where A is a general Lagrange multiplier which can be identified optimally via variational
theory. Here the function w, (7) is a restricted variation which means du, = 0. Therefore,
we first determine the Lagrange multiplier A that will be identified optimally via inte-
gration by parts. The successive approximation u,(t), n > 0 of the solution u(t) will be
readily obtained upon using the obtained Lagrange multiplier and by using any selective
function ug. The zeroth approximation uy may selecte any function that just satisfies at
least the initial and boundary conditions. With A determined, then several approximation
un(t), n > 0 follow immediately. Consequently, the exact solution may be obtained by
using

u(z,t) = lim uy(z,t). (2.17)

n—o0

The VIM has been shown to solve effectively, easily and accurately a large class of
nonlinear problems with approximations converge rapidly to accurate solutions.

To obtain the approximation solution of Eq. (1.1), according to the VIM, we can write
iteration formula (2.16) as follows:

ns1(@,8) = un(@,1) + L7 (A [un(a,8) = Gl@,0) = [t = 7) D*(un(w, 7)) dr oy
2.18
+ 5t = 1) Flun(z,7)) dr|),

Ltlﬂ)ziﬁt[jﬂ)der

To find the optimal A, we proceed as

where,

Stns1(z,t) = dun(z,t) + 0L, " (A [un(x,t) — G(z,t) — [t —7) D(un(z,7)) dr

+ [y (t=7) Flun(z,7)) dr|)
= Sup (2, 1) + Aoup (z,t) — L7 [dup (2, t)N].

(2.19)
From Eq. (2.19), the stationary conditions can be obtained as follows:

AN=0, 1+A=0
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Therefore, the Lagrange multipliers can be identified as A = —1 and by substituting in
Eq. (2.18), the following iteration formula is obtained:
uo(x, t) = G(z,t),
w1 () = un(o,t) = L ([un(e,8) = Gl 1) = [t = 7) D(un(,7) dr (2,90
+ 5t = TP (un (2, 7)) dr ) ;> 0.

To obtain the approximation solution of Eq. (1.1), based on the MVIM [1, 2, 3|, we can
write the following iteration formula:

uo(x, 1) = G(z,t),
wns1(2,8) = un(z,t) = L7 (= fo (6 = 7) D2 (un(e,7) = wn 1 (2,7)) dr

+ 5t = 7) Fun(,7) = w1 (2,7)) dr| ) ;0> 0.
(2.21)
Relations (2.20) and (2.21) will enable us to determine the components u,,(z,t) recursively
for n > 0.

3 Existence and convergency of iterative methods

Theorem 3.1. Let 0 < a < 1, then Klein-Gordon equation (1), has a unique solution.

Proof: Let u and u* be two different solutions of (1.3) then
ju—wt| = | [yt =) [D>(ule, 7)) = DX(w (w,7))] dr
— [yt = D[P (u(@, 7)) - F(u* (z,7))] dr|
< Jo It =) |D*(u(=, 7)) — D*(u*(z,7))| dr
+ Jy 1t = )| - [P (u(z, 7)) — F(u*(2,7))| dr
<T (M'Ly + M Ly)|u — u*|
= alu — u*|

From which we get (1 — «) | u —u* |< 0. Since 0 < a < 1. then | u — u* |= 0. Implies
u = u* and completes the proof.

Theorem 3.2. The series solution u(z,t) =Y .oy ui(x,t) of problem (1.1) using MADM
and ADM convergence when

0<a<l, |u(zt)]<oo

Proof: We denote (C[J],|| . ||) as the Banach space of all continuous functions on
J with the norm || f(¢) ||= maz | f(¢) |, for all ¢ in J and define the s, and s,, as the
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arbitrary partial sums with n > m. We are going to prove that s, is a Cauchy sequence
in this Banach space:

Hsn - SmH = MaXvyicg | Sn — Sm |
= mazwie] |21y Wil 1)

= mazvies [Si iy fo(t = 7) Lidr = S0 Jy (6= 7) A; dr|

= mazvies | [t =) (T L) dr+ fy (6= 7) (054 A dr].
From Eq. (2.14), we have
S Li = D?(sp—1 — $m—1),
E?;WIL Ai=F(sp-1— Sm-1)-
So,
$n — Smll = mazyics ‘ Jy(t = 7) [D*(sn_1 — $m1)] d7 — [5(t = T)[F(sn—1 — $m—1)] dr)
< Jo It =) 1D*(sn-1 = smoa)ld7 + g |(E = 7)] - |F(sn-1 = sm-)ld7
< aflsp—1 — sm-1]l-

Let n =m + 1, then
lsn —smll < allsm — sm—1l|

< a?|sm—1 — Sm—2||

< a™[|s1 = so|

From the triangle inequality we have
s = smll < llsmt+1 = smll + lsm+2 — sm+1ll + - + [[sn — sn—1|
<[a™ + o™t 4o s — sol|
<aml+a+a?+-+ a5 — s

< o[ fun (2, 1)

Since 0 < @ < 1, we have (1 —a"™™) < 1, then
am
| $n = sm [I< 1= g Matvier | ui(z,t) | .

But | ui(z,t) |< oo ( since G(z,t) is bounded), so, as m — oo, then || s, — sy, || = 0. We
conclude that s, is a Cauchy sequence in C[J], therefore the series is convergence and the
proof is complete.

Theorem 3.3. The solution un(z,t) obtained from the relation (2.20) using VIM con-
verges to the exact solution of the problem (1.1) when 0 < a <1 and 0 < f < 1.
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Proof:

tns1(2,8) = wn(2,8) = L7 ([un(e,8) = G(a,) = [y(t = 7) D*(un(w,7)) dr
(3.22)
+ fg(t — T)F(up(z, 1)) dTD

and
u(w,t) =ulz,t) = L ([u(z ) = Gla,t) = [yt = 1)D(u, 7)) dr -
+ [yt = 7) Flu(z,7)) dr|)
By subtracting Eq. (3.22) from Eq. (3.23),
Uit (@,1) —u(@, 1) = un(e,t) — ulz,b)
L7 (un(e,t) = u(@, 1) = [yt = 7)[D*(un(w, 7)) = D*(u(w, 7))] dr
+ o (= )[F(un(, 7)) = Flu(z,7))] dr),
if we set, i1 =t (2, 8) = (2,1), en = un (2, £) — ulz,t), then
et = en— L (e = Jy(t =)D (unla, 7)) — D*(ula,7))] dr
+ [yt = T)F(un(, 7)) = Flulz,7))] dr)
< en = T?(en — len|(M Ly + M’ Ly))
If e, > 0 then |en| = €, S0 we have
en+1 = en(1 = T*(1 — a)) = enfs

Therefore,

lenstll Zma$VteJ|€n+1|
< /Bma'XVtGJ |en|
= Bllen|l

Since 0 < 8 < 1, then ||e,|| = 0. So, the series converges and the proof is complete.

Theorem 3.4. The solution up(x,t) obtained from the relation (2.21) using MVIM for
the problem (1.1) converges when 0 < a <1 ,0<~vy<1.

Proof: The Proof is similar to the previous theorem.

Remark 3.1. Proving of convergence the ADM is similar toproving of convergence MADM.
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4 Numerical example

In this section, we compute a numerical example which is solved by the MADM, VIM,
ADM and MVIM. The program has been provided with Mathematica 6 according to the
following algorithm where ¢ is a given positive value.

Algorithm (ADM and MADM)
Step 1. Set n < 0.
Step 2. Calculate the recursive relation (10) for ADM and (13) for MADM.
Step 3. If | up+1 — uy |< € then go to step 4,
else n <~ n+ 1 and go to step 2.
Step 4. Print u(z,t) =Y. ,ui(z,t) as the approximate of the exact solution.

Algorithm (VIM and MVIM)
Step 1. Set n < 0.
Step 2. Calculate the recursive relation (20) for VIM and (21) for MVIM.
Step 3. If | up+1 — up |< € then go to step 4,
else n < n + 1 and go to step 2.
Step 4. Print u,(z,t) as the approximate of the exact solution.

Example 4.1. [7, 2], Consider the nonlinear Klein-Gordon equation
Uty — Ugy = —’U,2,

with the initial conditions

u(z,0) =1+ sinz, u(z,0)=0.

Table 1

Numerical results for Example ({.1)
z =0.3 1=0.7

MADM(n=11) VIM(n=7) ADM(n=13) MVIM(n=3) MADM(n=12) _ VIM(n=7) __ADM(n=14) MVIM(n=4)

0.0 0.9849999861 0.992000024 0.98133425 0.99833421 0.986699116 0.99234421 0.981234262 0.9979833
0.1 1.092291132 1.0931672174 1.09179866 1.09383508 1.072423730 1.073226319 1.07189354 1.0738826
0.2 1.189702983 1.190103087 1.18885990 1.19085859 1.169634875 1.170138050 1.16869202 1.17078255
0.3 1.277668610 1.282668848 1.26899334 1.28858484 1.247326130 1.252361032 1.23779468 1.25878909
0.4 1.367844211 1.371844710 1.36019967 1.37860068 1.337423788 1.34042104 1.32739734 1.34798688

Table 1 shows that, approximate solution of the nonlinear Klein-Gordon equation is
convergence with 3 iterations in £ = 0.3 and with 4 iterations in ¢ = 0.4. by using the
MVIM. Comparing the results of table 1 , we can observe that the MVIM is more rapid
convergence than the MADM, VIM and ADM.

5 Conclusion

The MVIM has been shown to solve effectively, easily and accurately a large class of
nonlinear problems with the approximations which are rapidly convergent to exact solu-
tions. In this work, the MVIM has been successfully employed to obtain the approximate
analytical solution of the Klein-Gordon equation.
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