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hers Club, Central Tehran Bran
h , Islami
 Azad University, P.O.Box: 15655/461,Tehran, Iran.Re
eived 7 February 2011; revised 2 May 2011; a

epted 5 May 2011.|||||||||||||||||||||||||||||||-Abstra
tIn this paper, a Klein-Gordon equation is solved by using the Adomian's de
ompositionmethod, variational iteration method and modi�ed form of these methods. The approxi-mate solution of this equation is 
al
ulated in the form of series in whi
h its 
omponentsare 
omputed by applying a re
ursive relation. The existen
e and uniqueness of the so-lution and the 
onvergen
e of the proposed methods are proved. A numeri
al example isstudied to demonstrate the a

ura
y of the presented methods.Keywords : Klein-Gordon equation, Adomian de
omposition method (ADM) , Modi�ed Adomiande
omposition method (MADM), Variational iteration method (VIM), Modi�ed variational itera-tion method (MVIM).||||||||||||||||||||||||||||||||{1 Introdu
tionKlein-Gordon equation plays an important role in mathemati
al physi
s. The equation hasattra
ted mu
h attention in studying solitons and 
ondensed matter physi
s [6℄, in inves-tigating the intera
tion of solitons in a 
ollisionless plasma, the re
urren
e of initial states,and in examining the nonlinear wave equations [8℄. In re
ent years some works have beendone in order to �nd the numeri
al solution of this equation, for example, spline di�eren
emethod for solving Klein-Gordon equations [16℄, invariant-
onserving �nite di�eren
e al-gorithms for the nonlinear Klein-Gordon equation [21℄, a Legendre spe
tral method [5℄,Adomian de
omposition method [10, 17, 18℄, the variational iteration method [24℄, ap-pli
ation of homotopy perturbation method to Klein-Gordon equation [4℄. In this work,�Email address: Shadan Behzadi�yahoo.
om . 79
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ompare the ADM, VIM, MADM and MVIM to solve the Klein-Gordon equation asfollows: �2u�t2 � �2u�x2 = �F (u); (1.1)with the initial 
onditions given by:u(x; 0) = f(x); �u(x;t)�t jt=0= g(x):Where, F (u) is a linear or nonlinear fun
tion and u(x; t) is unknown. The paper isorganized as follows. In se
tion 2, the mentioned iterative methods are introdu
ed forsolving Eq. (1.1). Also, the existen
e and uniqueness of the solution and 
onvergen
e ofthe proposed method are proved in se
tion 3. Finally, the numeri
al example is presentedin se
tion 4 to illustrate the a

ura
y of these methods.To obtain the approximate solution of Eq. (1.1), by integrating 2 times from Eq. (1.1)with respe
t to t and using the initial 
onditions we obtain,u(x; t) = G(x; t) + Z t0 Z t0 �2u(x; �)�x2 d� d� � Z t0 Z t0 F (u(x; �)) d� d�; (1.2)where, G(x; t) = f(x) + tg(x):The double integrals in Eq. (1.2) 
an be written as [22℄:R t0 R t0 �2u(x;�)�x2 d� d� = R t0 (t� �) �2u(x;�)�x2 d�;R t0 R t0 F (u(x; �)) d� d� = R t0 (t� �) F (u(x; �)) d�:So, we 
an write Eq. (1.2) as follows:u(x; t) = G(x; t) + Z t0 (t� �) �2u(x; �)�x2 d� � Z t0 (t� �) F (u(x; �)) d�: (1.3)In Eq. (1.3), we assume G(x; t) is bounded for all �; t in J = [0; T ℄(T 2 R) andj t� � j�M 0 ; 8 0 � t; � � T;M 0 2 R:We assume the terms D2(u(x; �)) = d2dx2u(x; t) and F (u) are Lips
hitz 
ontinuous withj D2(u)�D2(u�) j� L1 j u� u� jj F (u)� F (u�) j� L2 j u� u� jand � := T (M 0L1 +M 0L2);� := 1� T 2(1� �);
 := 1� T 2�:
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ription of the MADM and ADMThe Adomian de
omposition method is applied to the following general nonlinear equationLu+Ru+Nu = g1(x); (2.4)where u is the unknown fun
tion, L is the highest order derivative operator whi
h isassumed to be easily invertible, R is a linear di�erential operator of order less than L;Nurepresents the nonlinear terms, and g is the sour
e term [4, 11℄. Applying the inverseoperator L�1 to both sides of Eq. (2.4), and using the given 
onditions we obtainu = f(x)� L�1(Ru)� L�1(Nu); (2.5)where the fun
tion f(x) represents the terms arising from integrating the sour
e termg1(x). The nonlinear operator Nu = G(u) is de
omposed asG(u) = 1Xn=0An; (2.6)where An; n � 0 are the Adomian polynomials determined formally as follows [9℄:An = 1n! [ dnd�n [N( 1Xi=0 �iui)℄℄�=0: (2.7)These polynomials 
an be obtained as [19, 20, 23℄:A0 = G(u0);A1 = u1G0(u0);A2 = u2G0(u0) + 12!u21G00(u0); (2.8)A3 = u3G0(u0) + u1u2G00(u0) + 13!u31G000(u0); :::2.1.1 Adomian de
omposition methodThe standard de
omposition te
hnique represents the solution of u in Eq. (2.4) as thefollowing series, u(x; t) = 1Xi=0 ui(x; t); (2.9)where, the 
omponents u0; u1; : : : are usually determined re
ursively byu0 = G(x; t)u1 = Z t0 (t� �) L0(x; �) d� � Z t0 (t� �) A0(x; �) d�;...un+1 = Z t0 (t� �) Ln(x; �) dtau� Z t0 (t� �) An(x; �) d�; n � 0: (2.10)



82 Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89Substituting Eq. (2.8) into Eq. (2.10) leads to the determination of the 
omponents of u.Having determined the 
omponents u0; u1; : : : the solution u in a series form de�ned byEq. (2.9) follows immediately .2.1.2 The modi�ed Adomian de
omposition methodThe modi�ed de
omposition method was introdu
ed by Wazwaz [22℄. The modi�ed formswere established based on the assumption that the fun
tion G(x; t) 
an be divided intotwo parts, namely G1(x; t) and G2(x; t). Under this assumption we setG(x; t) = G1(x; t) +G2(x; t): (2.11)A

ordingly, a slight variation was proposed only on the 
omponents u0 and u1. Thesuggestion was that only the part G1 is assigned to the zeroth 
omponent u0, whereasthe remaining part G2 is 
ombined with the other terms given in Eq. (2.10) to de�ne u1.Consequently, the modi�ed re
ursive relationu0 = G1(x; t);u1 = G2(x; t)� L�1(Ru0)� L�1(A0); (2.12)...un+1 = �L�1(Run)� L�1(An); n � 1;was developed.To obtain the approximation solution of Eq. (1.1), a

ording to the MADM, we 
anwrite the iterative formula (2.12) as follows:u0(x; t) = G1(x; t);u1(x; t) = G2(x; t) + R t0 (t� �) L0(x; �) d� � R t0 (t� �) A0(x; �) d�;...un+1(x; t) = R t0 (t� �) Ln(x; �) d� � R t0 (t� �) An(x; �) d�: (2.13)
The operators D2(u(x; �)) = d2dx2u(x; t) and F (u(x; �)) are usually represented by thein�nite series of the Adomian polynomials as follows:F (u) = 1Xi=0 Ai; D2(u) = 1Xi=0 Li;where Ai and Li(i � 0) are the Adomian polynomials.Also, we 
an use the following formula for the Adomian polynomials [9℄:Ln = D2(sn)�Pn�1i=0 Li;An = F (sn)�Pn�1i=0 Ai: (2.14)where the partial sum is sn =Pni=0 ui(x; t).
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ription of the VIM and MVIMIn the VIM [12℄-[15℄, we 
onsider the following nonlinear di�erential equation:Lu+Nu = g; (2.15)where L is a linear operator, N is a nonlinear operator and g is a known analyti
al fun
tion.In this 
ase, a 
orre
tion fun
tional 
an be 
onstru
ted as follows:un+1(t) = un(t) + Z t0 �(�)fL(un(�)) +N(un(�))� g(�)gd�; n � 0; (2.16)where � is a general Lagrange multiplier whi
h 
an be identi�ed optimally via variationaltheory. Here the fun
tion un(�) is a restri
ted variation whi
h means Æun = 0. Therefore,we �rst determine the Lagrange multiplier � that will be identi�ed optimally via inte-gration by parts. The su

essive approximation un(t), n � 0 of the solution u(t) will bereadily obtained upon using the obtained Lagrange multiplier and by using any sele
tivefun
tion u0. The zeroth approximation u0 may sele
te any fun
tion that just satis�es atleast the initial and boundary 
onditions. With � determined, then several approximationun(t), n � 0 follow immediately. Consequently, the exa
t solution may be obtained byusing u(x; t) = limn!1un(x; t): (2.17)The VIM has been shown to solve e�e
tively, easily and a

urately a large 
lass ofnonlinear problems with approximations 
onverge rapidly to a

urate solutions.To obtain the approximation solution of Eq. (1.1), a

ording to the VIM, we 
an writeiteration formula (2.16) as follows:un+1(x; t) = un(x; t) + L�1t �� hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �) F (un(x; �)) d�i� ; (2.18)where, L�1t (:) = Z t0 Z t0 (:) d� d�:To �nd the optimal �, we pro
eed asÆun+1(x; t) = Æun(x; t) + ÆL�1t �� hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �) F (un(x; �)) d�i�= Æun(x; t) + �Æun(x; t) � L�1t [Æun(x; t)�0 ℄: (2.19)From Eq. (2.19), the stationary 
onditions 
an be obtained as follows:�0 = 0; 1 + � = 0
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an be identi�ed as � = �1 and by substituting inEq. (2.18), the following iteration formula is obtained:u0(x; t) = G(x; t);un+1(x; t) = un(x; t)� L�1t �hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �)F (un(x; �)) d�i� ; n � 0: (2.20)To obtain the approximation solution of Eq. (1.1), based on the MVIM [1, 2, 3℄, we 
anwrite the following iteration formula:u0(x; t) = G(x; t);un+1(x; t) = un(x; t)� L�1t �h� R t0 (t� �) D2(un(x; �) � un�1(x; �)) d�+ R t0 (t� �) F (un(x; �) � un�1(x; �)) d�i� ; n � 0:(2.21)Relations (2.20) and (2.21) will enable us to determine the 
omponents un(x; t) re
ursivelyfor n � 0.3 Existen
e and 
onvergen
y of iterative methodsTheorem 3.1. Let 0 < � < 1, then Klein-Gordon equation (1), has a unique solution.Proof: Let u and u� be two di�erent solutions of (1.3) thenju� u�j = ���R t0 (t� �) �D2(u(x; �)) �D2(u�(x; �))� d�� R t0 (t� �)[F (u(x; �)) � F (u�(x; �))℄ d� ���� R t0 j(t� �)j � jD2(u(x; �)) �D2(u�(x; �))j d�+ R t0 j(t� �)j � jF (u(x; �)) � F (u�(x; �))j d�� T (M 0L1 +M 0L2)ju� u�j= �ju� u�jFrom whi
h we get (1 � �) j u � u� j� 0. Sin
e 0 < � < 1. then j u � u� j= 0. Impliesu = u� and 
ompletes the proof.Theorem 3.2. The series solution u(x; t) =P1i=0 ui(x; t) of problem (1.1) using MADMand ADM 
onvergen
e when 0 < � < 1; ju1(x; t)j <1Proof: We denote (C[J ℄; k : k) as the Bana
h spa
e of all 
ontinuous fun
tions onJ with the norm k f(t) k= max j f(t) j, for all t in J and de�ne the sn and sm as the



Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89 85arbitrary partial sums with n � m. We are going to prove that sn is a Cau
hy sequen
ein this Bana
h spa
e:ksn � smk = max8t2J j sn � sm j= max8t2J ��Pni=m+1 ui(x; t)��= max8t2J ���Pni=m+1 R t0 (t� �) Li d� �Pni=m+1 R t0 (t� �) Ai d� ���= max8t2J ���R t0 (t� �) (Pn�1i=m Li) d� + R t0 (t� �) (Pn�1i=mAi) d� ��� :From Eq. (2.14), we have Pn�1i=m Li = D2(sn�1 � sm�1);Pn�1i=mAi = F (sn�1 � sm�1):So,ksn � smk = max8t2J ���R t0 (t� �) [D2(sn�1 � sm�1)℄ d� � R t0 (t� �)[F (sn�1 � sm�1)℄ d�)���� R t0 j(t� �)j � jD2(sn�1 � sm�1)jd� + R t0 j(t� �)j � jF (sn�1 � sm�1)jd�� �ksn�1 � sm�1k:Let n = m+ 1, then ksn � smk � �ksm � sm�1k� �2ksm�1 � sm�2k...� �mks1 � s0kFrom the triangle inequality we haveksn � smk � ksm+1 � smk+ ksm+2 � sm+1k+ � � �+ ksn � sn�1k� [�m + �m+1 + � � � + �n�1℄ks1 � s0k� �m[1 + �+ �2 + � � �+ �n�m�1℄ks1 � s0k� �m[1��n�m1�� ℄ku1(x; t)kSin
e 0 < � < 1, we have (1� �n�m) < 1, thenk sn � sm k� �m1� � max8t2J j u1(x; t) j :But j u1(x; t) j<1 ( sin
e G(x; t) is bounded), so, as m!1, then k sn � sm k! 0. We
on
lude that sn is a Cau
hy sequen
e in C[J ℄, therefore the series is 
onvergen
e and theproof is 
omplete.Theorem 3.3. The solution un(x; t) obtained from the relation (2.20) using VIM 
on-verges to the exa
t solution of the problem (1.1) when 0 < � < 1 and 0 < � < 1.



86 Sh.Sadigh Behzadi = IJIM Vol. 3, No. 2 (2011) 79-89Proof:un+1(x; t) = un(x; t)� L�1t �hun(x; t)�G(x; t)� R t0 (t� �) D2(un(x; �)) d�+ R t0 (t� �)F (un(x; �)) d�i� (3.22)and u(x; t) = u(x; t)� L�1t �hu(x; t)�G(x; t)� R t0 (t� �)D2(u(x; �)) d�+ R t0 (t� �) F (u(x; �)) d�i� (3.23)By subtra
ting Eq. (3.22) from Eq. (3.23),un+1(x; t)� u(x; t) = un(x; t)� u(x; t)�L�1t �un(x; t)� u(x; t)� R t0 (t� �)[D2(un(x; �))�D2(u(x; �))℄ d�+ R t0 (t� �)[F (un(x; �)) � F (u(x; �))℄ d�� ;if we set, en+1 = un+1(x; t)� un(x; t), en = un(x; t)� u(x; t), thenen+1 = en � L�1t �en � R t0 (t� �)[D2(un(x; �)) �D2(u(x; �))℄ d�+ R t0 (t� �)[F (un(x; �)) � F (u(x; �))℄ d��� en � T 2(en � jenj(M 0L1 +M 0L2))If en > 0 then jenj = en so we haveen+1 = en(1� T 2(1� �)) = en�Therefore, ken+1k = max8t2J jen+1j� �max8t2J jenj= �kenkSin
e 0 < � < 1, then kenk ! 0. So, the series 
onverges and the proof is 
omplete.Theorem 3.4. The solution un(x; t) obtained from the relation (2.21) using MVIM forthe problem (1.1) 
onverges when 0 < � < 1 , 0 < 
 < 1.Proof: The Proof is similar to the previous theorem.Remark 3.1. Proving of 
onvergen
e the ADM is similar toproving of 
onvergen
e MADM.
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al exampleIn this se
tion, we 
ompute a numeri
al example whi
h is solved by the MADM, VIM,ADM and MVIM. The program has been provided with Mathemati
a 6 a

ording to thefollowing algorithm where " is a given positive value.Algorithm (ADM and MADM)Step 1. Set n 0.Step 2. Cal
ulate the re
ursive relation (10) for ADM and (13) for MADM.Step 3. If j un+1 � un j< " then go to step 4,else n n+ 1 and go to step 2.Step 4. Print u(x; t) =Pni=0 ui(x; t) as the approximate of the exa
t solution.Algorithm (VIM and MVIM)Step 1. Set n 0.Step 2. Cal
ulate the re
ursive relation (20) for VIM and (21) for MVIM.Step 3. If j un+1 � un j< " then go to step 4,else n n+ 1 and go to step 2.Step 4. Print un(x; t) as the approximate of the exa
t solution.Example 4.1. [7, 24℄, Consider the nonlinear Klein-Gordon equationutt � uxx = �u2;with the initial 
onditions u(x; 0) = 1 + sinx; ut(x; 0) = 0:Table 1Numeri
al results for Example (4.1)x t=0.3 t=0.4MADM(n=11) VIM(n=7) ADM(n=13) MVIM(n=3) MADM(n=12) VIM(n=7) ADM(n=14) MVIM(n=4)0.0 0:9849999861 0:992000024 0:98133425 0:99833421 0:986699116 0:99234421 0:981234262 0:99798330.1 1:092291132 1:0931672174 1:09179866 1:09383508 1:072423730 1:073226319 1:07189354 1:07388260.2 1:189702983 1:190103087 1:18885990 1:19085859 1:169634875 1:170138050 1:16869202 1:170782550.3 1:277668610 1:282668848 1:26899334 1:28858484 1:247326130 1:252361032 1:23779468 1:258789090.4 1:367844211 1:371844710 1:36019967 1:37860068 1:337423788 1:34042104 1:32739734 1:34798688Table 1 shows that, approximate solution of the nonlinear Klein-Gordon equation is
onvergen
e with 3 iterations in t = 0:3 and with 4 iterations in t = 0:4. by using theMVIM. Comparing the results of table 1 , we 
an observe that the MVIM is more rapid
onvergen
e than the MADM, VIM and ADM.5 Con
lusionThe MVIM has been shown to solve e�e
tively, easily and a

urately a large 
lass ofnonlinear problems with the approximations whi
h are rapidly 
onvergent to exa
t solu-tions. In this work, the MVIM has been su

essfully employed to obtain the approximateanalyti
al solution of the Klein-Gordon equation.
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