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Abstract

Hybrid system is a dynamic system that exhibits both continuous and discrete dynamic behavior.
The hybrid differential equations have a wide range of applications in science and engineering. The
hybrid systems are devoted to modeling, design, and validation of interactive systems of computer
programs and continuous systems. Hybrid fuzzy differential equations (HFDEs) is considered by Kim
et al. [11]. In the present paper it is shown that the example presented by Kim et al. in the Case I is
not very accurate and in the Case II, is incorrect. Namely, the exact solution proposed by the authors
in the Case II are not solutions of the given HFDE. The correct exact solution is also presented here,
together with some results for characterizing solutions of FDEs under Hukuhara differentiability by
an equivalent system of ODEs. Then, the homotopy analysis method (HAM) is applied to obtained
the series solution of the HFDEs. Finally, we illustrate our approach by a numerical example.
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1 Introduction

T
he concept of fuzzy derivative was introduced
by Dubois and Prade [8] who used the ex-

tension principle in their approach. Other meth-
ods have been discussed by Puri and Ralescu [22]
and by Goetschel and Voxman [9]. Fuzzy differ-
ential equations were first formulated by Kaleva
[10] and Seikkala [23] in time dependent form.
Kaleva had formulated fuzzy differential equa-
tions, in terms of Hukuhara derivative [10]. Also,
the fuzzy initial value problem have been studied
by several authors [3, 4, 5, 7, 17, 18].

Hybrid system is a dynamic system that ex-
hibits both continuous and discrete dynamic be-
havior. The hybrid systems are devoted to mod-
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eling, design, and validation of interactive sys-
tems of computer programs and continuous sys-
tems. The differential equations containing fuzzy
value functions and interaction with a discrete
time controller are named as hybrid fuzzy dif-
ferential equations (HFDEs) [19]. In the recent
paper [11], Kim et al. proposed numerical solu-
tions of HFDEs based on Hukuhara or Seikkala
derivative, by using improved predictor corrector
method. The authors of [11] also present one ex-
ample to illustrate their methods.

In 1992, Liao [13] employed the basic ideas of
the homotopy in topology to propose a general
analytic method for nonlinear problems, namely
HAM, [14, 15, 16]. Abbasbandy and Allahvi-
ranloo [1, 2, 6] applied homotopy perturbation
method (HPM), which is a special case of HAM,
to solve Riccati differential equation. Also he
used HAM for solving quadratic Riccati differen-
tial equation [24] and nonlinear Fredholm integral
equations.
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2 Preliminaries

Definition 2.1 A fuzzy number u is a fuzzy
subset of the real line with a normal, convex
and upper semicontinuous membership function
of bounded support.

Definition 2.2 [10] A fuzzy number u is a pair
(u, u) of functions u(r), u(r); 0 ≤ r ≤ 1 which
satisfy the following requirements:

i. u(r) is a bounded monotonic increasing left
continuous function on (0, 1] and right continuous
at 0.

ii. u(r) is a bounded monotonic decreasing left
continuous function on (0, 1] and right continuous
at 0.

iii. u(r) ≤ u(r), 0 ≤ r ≤ 1.

This fuzzy number space can be embedded into
the Banach space where the metric is given by
the Hausdorff distance.

Definition 2.3 Let u, v ∈ E1. If there exists
w ∈ E1 such that u = v + w then w is called
the H-difference of u, v and it is denoted by u−v.

Definition 2.4 A function f : (a, b) −→ E1 is
called H-differentiable at x̂ ∈ (a, b) if, for h >
0 sufficiently small, there exist the H-differences
f(x̂+ h)− f(t̂), f(x̂)− f(x̂− h), and an element
f ′(x̂) ∈ E1 such that:

limh−→0+D(
f(x̂+ h)− f(x̂)

h
, f ′(x̂)) =

limh−→0+D(
f(x̂)− f(x̂− h)

h
, f ′(x̂)) = 0.

Then f ′(x̂) is called the fuzzy derivative of f at
x̂.

3 Hybrid fuzzy differential
equations

In this paper, we will study the HFDE

y′(x) = f(x, y(x), λk(yk)),
x ∈ [xk, xk+1], k = 0, 1, 2, · · · ,
y(a) = y0,

(3.1)

where y is a fuzzy function of x, yk denotes y(xk),
f : [x0,∞) × E × E → E is continuous, each
λk : E → E is continuous and {tk}∞k=0 is strictly

increasing and unbounded. A solution to Eq.(3.1)
will be a fuzzy function y : [x0,∞) → E satisfying
Eq.(3.1). For k = 0, 1, 2, · · · , let fk : [xk, xk+1] ×
E → E, where fk(x, yk(x)) = f(x, yk(x), λk(yk)).
A solution of (3.1) can be expressed as

y(x) =



y0(x), x0 ≤ x ≤ x1,
y1(x), x1 ≤ x ≤ x2,
...
yk(x), xk ≤ x ≤ xk+1,
...

(3.2)

A solution y of (3.1) will be continuous and piece-
wise differentiable over [x0,∞) and differentiable
in each interval (xk, xk+1) for k = 0, 1, 2, · · · .

Theorem 3.1 [20] Consider the HFDE
(3.1) where for k = 0, 1, 2, · · · , each
fk : [xk, xk+1]× E → E is such that

(i) fk(x, y) = (fk(x, y(r), y(r)), fk(x, y(r), y(r))),

(ii) fk and fk are equicontinuous and uniformly
bounded on any bounded set,
(iii) There exists an Lk > 0 such that

|fk(x, y1, z1)− fk(x, y2, z2)|≤

Lkmax{|y2 − y1|, |z2 − z1|},

|fk(x, y1, z1)− fk(x, y2, z2)|≤

Lkmax{|y2 − y1|, |z2 − z1|}.

Then (3.1) and the hybrid system of ODEs

y′k(x) = fk(x, yk, yk),

y′k(x) = fk(x, yk, yk),

yk(xk) = yk−1(xk) if k > 0, y0(x0) = y0,

yk(xk) = yk−1(xk) if k > 0, y0(x0) = y0,

are equivalent.

4 The Homotopy analysis
method

Let us consider the following system of differ-
ential equation

Ni[u1(x; r), . . . , un(x; r)] = 0, i = 1, 2, . . . , n,
(4.3)
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subject to the following initial conditions:

ui(x0; r) = ui, i = 1, 2, . . . , n,

where Ni are nonlinear operators that represent
the whole equations, and x denote the indepen-
dent variable and ui(x; r) are unknowns func-
tion respectively. By means of generalizing the
traditional HAM, Liao [12] constructed the so-
called zero-order deformation equations for i =
1, 2, . . . , n,

(1− q)Li[ϕi(x; r; q)− ui0(x; r)] =

qhiHi(x; r)Ni[ϕ1(x; r; q), . . . , ϕn(x; r; q)],
(4.4)

where q ∈ [0, 1] is the embedding parameter, hi ̸=
0 are non-zero auxiliary parameters forHi(x; r) ̸=
0 are non-zero auxiliary functions, Li = Dαi

x (n−
1 < α < n) are auxiliary linear operator with the
following property for i = 1, 2, . . . , n,

Li[ϕi(x; r)] = 0 when ϕi(x; r) = 0.

ui0(x; r) are initial guess of ui(x; r), ui(x; r; q) are
unknown function, respectively. It is important,
that one has great freedom to choose auxiliary
things in HAM. Obviously, when q = 0 and q = 1,
it holds

ϕi(x; r; 0) = ui0(x; r)phii(x; r; 1) = ui(x; r),

i = 1, 2, . . . , n,

respectively. Thus, as q increases from 0 to
1, the solution ϕi(x; r; q) varies from the initial
guesses ui0(x; r) to the solution ui(x; r). Expand-
ing ϕi(x; r; q) in Taylor series with respect to q,
we have

ϕi(x; r; q) = ui0(x; r) +
∑∞

m=1 uim(x; r)qm,
i = 1, 2, . . . , n,

(4.5)
where

uim(x; r) =
1

m!

∂mϕi(x; r; q)

∂qm
|q=0,

i = 1, 2, . . . , n.

If the auxiliary linear operator, the initial guess,
the auxiliary parameter h, and the auxiliary func-
tion are so properly chosen, the series Eq. (4.5)
converges at q = 1, then we have

uim(x; r) = ui0(x; r) +
∑∞

m=1 uim(x; r),

i = 1, 2, . . . , n.
(4.6)

Define the vector

−→u in = {ui0(x; r), ui1(x; r), . . . , uin(x; r)},

i = 1, 2, . . . , n.

Differentiating Eq. (4.4) m times with respect
to the embedding parameter q and then setting
q = 0 and finally dividing them by m!, we ob-
tain the mth-order deformation equation for i =
1, 2, . . . , n,

Li[uim(x; r)− χmuim−1(x; r)] =

hiHiRim(−→u 1m−1, . . . ,
−→u nm−1, x; r),

where

Rim(−→u 1m−1, . . . ,
−→u nm−1, x; r) =

1

(m− 1)!

∂m−1Ni[ϕ1(x; r; q), . . . , ϕn(x; r; q)]

∂qm−1
|q=0

and

χm =

{
0, m ≤ 1,
1, m ≥ 2.

5 Examples

In this Section, we apply HAM to one example.

Example 5.1 Kim and Sakthivel [11] numeri-
cally solved the example below by using the im-
proved predictor-corrector method in the setting
of Hukuhara or Seikkala differentiability. A sim-
ilar example was considered in [21] for fuzzy hy-
brid systems using Adams-Bashforth method and
Adams-Moulton method. In case I:, the method
implemented in this paper gives better approxima-
tion and in case II: we give the exact solution,
then, we solve by HAM. For this example, we
choose H(x) = I and for each fuzzy numbers, we
use r = 0, 0.2, . . . , 1.

Consider the following hybrid fuzzy initial
value problem

y′(x) = −y(x) +m(x)λk(y(xk)),
x ∈ [xk, xk+1], xk = k, k = 0, 1, 2, · · · ,

y(0) = (0.75 + 0.25r, 1.125− 0.125r),
0 ≤ r ≤ 1,

(5.7)

where m(x) = |sin(πx)|, k = 0, 1, . . . , and
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λk(µ) =

{
0 if k = 0,

µ if k ∈ {1, 2, · · ·}.

Case I: When k = 0, the solution of problem
(5.7) in the interval [0, 1] :

When k = 0, the hybrid fuzzy initial value
problem (5.7) becomes

y′(x) = −y(x), x ∈ [0, 1],

y(0) = (0.75 + 0.25r, 1.125− 0.125r),
0 ≤ r ≤ 1.

(5.8)
The authors in [11], assert that the exact solution
at x = 0.1 is given by

y(0.1) = (y(0.1; r), y(0.1; r)) = ((−0.1875+

0.1875r)e0.1 + (0.9375 + 0.0625r)e−0.1,−

(−0.1875 + 0.1875r)e0.1 + (0.9375+

0.0625r)e−0.1).
(5.9)

This value is obtained by assuming that the so-
lution takes the form This value is obtained by
assuming that the solution takes the form

y(x) = (y(x; r), y(x; r)) = ((−0.1875+

0.1875r)ex + (0.9375 + 0.0625r)e−x,−

(−0.1875 + 0.1875r)ex + (0.9375+

0.0625r)e−x).

(5.10)

it in convenient to choose y0(x; r) = (0.75 +
0.25r, 1.125 − 0.125r) as the initial approximate
of Eq. (5.15). The h-curves of 4th-order are
drawn in Fig. 1. Since −0.99 is a valid value
of h, thus, for HAM solution, we obtain approxi-
mate solution with h = −0.99. Comparison be-
tween the exact solution and the approximate
solution given by HAM are drawn in Figs. 2
and 3. Also, Comparison between the improved
predictor-corrector method [11] and the approx-
imate solution given by HAM are given in Ta-
ble 1 and Table 2. Addition for HAM,we have
D(y(0.1), yapprox[4](0.1)) = 7.13315986e− 7e−8.
Tables 1, 2, 3, 4 shows the errors in estimating
for these two methods.
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Figure 1: The h-curves of 4th-order of approxi-
mation solution.
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Figure 2: Comparison between the exact solution
and approximate solution at x = 0.1.

Case II: When k = 1, the solution of problem
(5.7) in the interval [1, 2] : The authors in [11], the
above fuzzy problem (5.7) for k = 1 considered
as: 

y′(x) = −y(x) + sin(πx)λ1(y(x)),
x ∈ [1, 2],

y(0) = (0.75 + 0.25r, 1.125− 0.125r),
0 ≤ r ≤ 1,

(5.11)
and assert that the exact solution is:

(y(x; r), y(x; r)) = (e−0.31830988cos(πx)

((−1.54665250 + 0.17185027r)sinh(x)+
(1.03110167 + 0.34370055r)cosh(x)),

−e−0.31830988cos(πx)((−1.54665250+
0.17185027r)cosh(x) + (1.03110167+
0.34370055r)sinh(x))).

(5.12)
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Table 1: Improved Predictor-corrector method and error.

r Estimation y(0.1; r)
————————–
Impro.Pre-Cor Error

0 0.64532301 0.42574e-2
0.2 0.69722586 0.34059e-2
0.4 0.74912871 0.25544e-2
0.6 0.80103156 0.17029e-2
0.8 0.85293441 0.85137e-3
1 0.90483726 0.15340e-6

Table 2: HAM method and error.

r Estimation y(0.1; r)
————————–
HAM Error

0 0.64106559 0.668361282e-7
0.2 0.69381996 0.529893859e-7
0.4 0.74657432 0.391426433e-7
0.6 0.79932868 0.252959007e-7
0.8 0.85208305 0.114491578e-7
1 0.90483741 0.239758413e-8

Table 3: Improved Predictor-corrector method and error.

r Estimation y(0.1; r)
————————–
Impro.Pre-Cor Error

0 1.04954471 0.59599e-2
0.2 1.02060322 0.47679e-2
0.4 0.99166173 0.35760e-2
0.6 0.96272024 0.23840e-2
0.8 0.93377875 0.11921e-3
1 0.90483726 0.15340e-6

Table 4: HAM method and error.

r Estimation y(0.1; r)
————————–
HAM Error

0 1.055504555 0.713315986e-7
0.2 1.025371127 0.575447960e-7
0.4 0.995237699 0.4375799322e-7
0.6 0.965104271 0.2997119008e-7
0.8 0.934970843 0.1618438805e-7
1 0.90483741 0.23975843532e-8

This solution is not satisfy in Eq. (5.7).
Indeed by using of [20] and (5.7), when k = 1, the

hybrid fuzzy initial value problem (5.7) becomes

y′(x) = −y(x)− sin(πx)y(x1), x ∈ [1, 2],

y(1) = ((−0.1875 + 0.1875r)e1 + (0.9375
+0.0625r)e−1,
−(−0.1875 + 0.1875r)e1 + (0.9375+
0.0625r)e−1), 0 ≤ r ≤ 1.

(5.13)
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Figure 3: Comparison between the exact solution
and approximate solution, left: The exact solution
and right: The approximate solution.

By using the results of the Section 3 we can solve
the above FDE. Indeed, by Theorem 3.1, we have

y′(x; r) = −y(x; r)− sin(πx)y(x1; r),

x ∈ [1, 2],

y′(x; r) = −y(x; r)− sin(πx)y(x1; r),

y(1; r) = (−0.1875 + 0.1875r)e1+

(0.9375 + 0.0625r)e−1,
y(1; r) = −(−0.1875 + 0.1875r)e1+
(0.9375 + 0.0625r)e−1, 0 ≤ r ≤ 1.

(5.14)
Therefore, the exact solution in x ∈ [1, 2] becomes

(y(x; r), y(x; r)) = ((0.9375 + 0.0625r)A−
(0.1875− 0.1875r)B, (0.9375 + 0.0625r)A
+(0.1875− 0.1875r)B),

(5.15)
where

A = e−x − 1

1 + π2
(e−1(sin(πx)− πcos(πx))

−πe−x),

B = ex +
1

1 + π2
(e(sin(πx) + πcos(πx)) + πex).

Results are shown in Figs. 4-5 and in Tables 5
and 6.

6 Conclusion

In this paper, we presented one theorem for the
solutions of hybrid fuzzy differential equations
which allow us to translate a hybrid fuzzy dif-
ferential equations into a system of ODEs. The
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Figure 4: Comparison between the correct exact
solution and approximate solution by HAM at x =
1.1.
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Figure 5: Comparison between the correct exact
solution and approximate solution by HAM, left:
The correct exact solution and right: The approx-
imate solution.

main advantage of HAM is compute the series
pattern solution of hybrid fuzzy differential equa-
tions. The results show that the proposed method
is a promising tool for this type of hybrid fuzzy
differential equations. The HAM is more suit-
able than another analytic methods, because this
method provided us with a convenient way to con-
trol the convergence of an approximating series.
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