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Abstract

In this paper, the fuzzy bivariate Chebyshev method is proposed for solving the fuzzy
Volterra-Fredholm integral equations(FVFIE). FVFTE is converted to a dual fuzzy linear
system that can be solved by the proposed method in [10] . And finally, the method is
explained with illustrative examples.
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1 Introduction

The fuzzy differential and integral equations are important parts of the fuzzy analysis
theory and they have the important value of theory and application in control theory.
The fuzzy mapping function was introduced by Cheng and Zadeh [4]. Later, Dubois
and Prade [6] presented an elementary fuzzy calculus based on the extension principle
[22]. Puri and Ralescu [21] suggested two definitions for fuzzy function. The concept of
integration of fuzzy functions was first introduced by Dubois and prade [6].
Park et al. [18] considered the existence of solution of fuzzy integral equation in Banach
space. Park and Jeong [19, 20] studied the existence of solution of fuzzy integral equations
of the form

t
z(t) = f(t) —i—/o f(t,s,z(s))ds, t>0

where f and z are fuzzy-valued functions (f,z : (a,b) — E where E is the set of all fuzzy
numbers) and k is a crisp function on real numbers. Alternative approaches were later
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suggested by Goetschel and Voxman [11], Kaleva [13], Matloka [16], Nanda [17] and others,
while Goetschel and Voxman [11] and later Matloka [16] preferred a Riemann integral type
approach, Kaleva [13] chose to define the integral of fuzzy function, using the Lebesgue
type concept for integration. A Numerical method is introduced by Allahviranloo and
Otadi [1] for solving fuzzy integrals.

The topics of fuzzy integral equations which attracted growing interest for some time,

in particular in relation to fuzzy control, have been rapidly developed in recent years.
This paper is organized as follows:
In Section 2, the basic concept of fuzzy number operation is brought. In Section 3, fuzzy
solution of fuzzy dual system is represented. In Section 4, the main section of the paper,
fuzzy Volterra-Fredholm integral equations are solved by using fuzzy bivariate Chebyshv
method. The proposed idea is illustrated by two examples in Section 5. Finally conclusion
is drawn in Section 6.

2 Preliminaries

We now recall some definitions needed through the paper. The basic definition of fuzzy
numbers is given in [6, 12].

By R, we denote the set of all real numbers. A fuzzy number is a mapping v : R — [0, 1]
with the following properties:

a) u is upper semi-continuous,

(a)
(b) w is fuzzy convex, i.e., u(Ax + (1 — N)y) > min{u(z),u(y)} for all z,y € R, X € [0, 1],
(c) w is normal, i.e.,3zp € R for which u(zy) = 1,

(d) supp u = {z € R | u(z) > 0} is the support of the u, and its closure cl(supp u) is
compact.

Let E be the set of all fuzzy number on R. The r-level set of a fuzzy number u € E, 0 <
r < 1, denoted by [u], , is defined as

[ {{xGR|u(m)Zr} if 0<r<l1

cl(supp u) if r=20

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [u(r), w(r)],
where u(r) denotes the left-hand endpoint of [u], and T(r) denotes the right-hand endpoint
of [u],. Since each y € R can be regarded as a fuzzy number y defined by

o1 af t=y
R can be embedded in E.

Remark 2.1. /23], Let X be Cartesian product of universes X = X1 x ... x X,,, and
Ay, ..., A, be n fuzzy numbers in Xq,...,X,, respectively. f is a mapping from X to a
unwerse Y, y = f(z1,...,2n). Then the extension principle allows us to define a fuzzy set
BinY by

B ={(y,u(y)) |y = f(z1, ..y zp), (1, ..., zp) € X}
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where

SUP(gy,...,z0)ef~ 1 (y) min{uAl (xl)a e UA, (In))}, if f_l(y) # 0,
up(y) =

0 if  otherwise.

where f~' is the inverse of f.
For n =1, the extension principle, of course, reduces to

B ={(y,up(y)) |y = f(z),z € X}
where

( ) { SUPgef-1(y) UA(I), if f_l(y) # 0,
uply) =
0 if  otherwise.

According to Zadeh’s extension principle, operation of addition on FE is defined by

(u @ v)(x) = supyermin{u(y),v(z —y)}, z€R
and scalar multiplication of a fuzzy number is given by

u(z/k), k>0,

(ko u)(z) = { _
0, k=0,

where 0 € E.
It is well known that the following properties are true for all levels

[u ®v], = [ul, + [v], [k © u], = k[ul,

From this characteristic of fuzzy numbers, we see that a fuzzy number is determined by
the endpoints of the intervals [u],. This leads to the following characteristic representation
of a fuzzy number in terms of the two ”endpoint” functions u(r) and u(r). An equivalent
parametric definition is also given in ([9, 14]) as:

Definition 2.1. A fuzzy number u in parametric form is a pair (u,u) of functions u(r),
u(r), 0 <r <1, which satisfy the following requirements:

1. u(r) is a bounded non-decreasing left continuous function in (0, 1], and right contin-
uwous at 0,

2. u(r) is a bounded non-increasing left continuous function in (0, 1], and right contin-
uwous at 0,

3. u(r) <u(r), 0 <r<1.

A crisp number « is simply represented by wu(r) = u(r) = «, 0 <r < 1. We recall that
for a < b < ¢ which a,b,c € R, the triangular fuzzy number u = (a,b, ) determined by
a,b, c is given such that u(r) = a + (b —a)r and u(r) = ¢ — (¢ — b)r are the endpoints of
the r-level sets, for all r € [0, 1].

For arbitrary u = (u(r),u(r)), v = (v(r),v(r)) and k£ > 0 we define addition u & v , sub-
traction u © v and scaler multiplication by % as (See [9, 14])



70 M. Barkhordari Ahmadi, M. Khezerloo | IJIM Vol. 3, No. 2 (2011) 67-77

(a) Addition:
(b) Subtraction:

(¢) Multiplication:

uwOV = (min{u(r)o(r), u(r)v(r),a(r)v(r),a(r)v(r)}, maz{u(r)o(r), u(r)v(r),a(r)o(r),a(r)v(r) })

(d) Scaler multiplication:

3 Fuzzy Solution of Dual Fuzzy Linear System
Definition 3.1. [10], The fuzzy linear system
BX = AX +Y (3.1)

is called a dual fuzzy linear system, where A = (a;;),B = (bij),1 < 4,5 < n are crisp
coefficient matriz and Y a fuzzy number vector.

Theorem 3.1. [10], Let A = (a;j), B = (b;j),1 < 4,5 < n be nonnegative matrices the
dual fuzzy linear system (3.1) has a unique fuzzy solution if and only if the inverse matriz
of B — A exists and has only nonnegative entries.

system (3.1) cannot be equivalently replaced by the fuzzy linear equation system (B —
A)X =Y. The dual fuzzy linear system (3.1) is transformed to
Y, ‘iz + - Ftinz, F g (—T1) o o (—Tn)

=snz;+ -+ S, + i1 (—T1) + -+ 51,20 (—Fn)

gn +in1zy + - +lunk, + tn,n—l—l(_fl) +--+ tn,?n(_fn)
= Sp1Zy + -+ SpnZ, + Sn,n-l—l(_fl) +--+ 3n,2n(_fn) (3 2)
—U +tn+1,1£1 4+ tn+1,n£n + tn—l—l,n-l—l(_fl) 4+ tn—l—l,?n(_fn)

= Sp+1,1Z1 + - + Spr1pZy, + Sn-l—l,n—l—l(_fl) +- + 3n+1,2n(_fn)

—Yn tlopa1zy+ - +iloppx, + t2n,n+1(_fl) + -+ t2n,2n(_fn)

= Sop,1Z; + - + Sop Xy, + 32n,n+1(_fl) +- 4 32n,2n(_fn)
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where s;; and #;; are determined as follows:

bij >0, sij = by, Sitn,j+n = bij
bij <0, Sijin = —bij, Sitnj = —by
(3.3)
aij 2 0, tij = agj, tivn,j+n = Gij
aij <0, lijin = —0ij, liynj = —a4

while all the remaining s;; and ?;; are taken zero.
The following theorem guarantees the existence of a fuzzy solution for a general case.

Theorem 3.2. [10], The dual fuzzy linear equation system (3.1) has a unique fuzzy solu-
tion if and only if the inverse matriz of S — T exists and nonnegative.

4 Solution of Fuzzy Volterra-Fredholm Integral Equation

In this section, by using fuzzy bivariate Chebyshv method, we obtain solution of fuzzy
Volterra-Fredholm integral equation.

Definition 4.1. Consider the following linear fuzzy Volterra-Fredholm integral equation

_ 1
w(z,y) = f(z,y) + /_yl /_1 k(z,y,s,t)u(s,t)dsdt (4.4)

where k(z,y,s,t) is a known function and u(z,y), f(z,y) are unknown and known fuzzy
valued functions, respectively.

We try to solve Eq. (4.4) by using double Chebyshev series:

N N

where N is a positive integer and
W(z,y) = gaooToo(z,y) + 3a01To1(z,y) + 3ao2To2(z, y) + - .. + saonTon (2, y)
+3a10Ti0(7,y) + anTii(z,y) + ar2Tio(z,y) + ... + anTin (2, y)

+3a20T20(7,y) + a1 To1 (7, y) + a2aToo (2, y) + ... + aonTon (2, y)

+3anoTno(z,y) + an1Tni(z,y) + anoTno(z,y) + ... + annTnn (2, y)

3" denotes a sum whose first term is halved, and Ty, (z,y) = T (2)Ta(y), where Ty, ()
denote the Chebyshv polynomial of the first kind degree m, and a;; are the Chebyshv
fuzzy coefficients to be determined. The matrix form of (4.5) can be written as follows:

[u(z,y)] = T(z,y).4, (4.6)
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where
T(z,y)=[Too Tor --- Tov Two Ti1 ... Tno Tn1 ... Tnn |
and
A= Lap ia LGon Saw @ a lano @ anvn |7
=] 7400 3G01 --- 3GON 3@10 @11 ... GIN --- 3GNO QN1 --.- GNN

where T and A are 1 x (N + 1)? and (N + 1)? x 1 matrices, respectively. %(z,y) can be
computed by using a double Chebyshv series in the following steps:

We substitute the selected points of Chebyshv polynomial into Eq.(4.4):

W(zi ;) = flziy) + L@iyg), (6,5 =0,..., N) (4.7)

where z; = cos(Z) and y; = cos(ﬂw) i,7 =0,...,N that

- yi 1
T(iy;) = / / a5 s, s, (7 = 0,0 ), (48)

Similarly, k(z;,y;,s,t) for each (i,5 = 0,..., N) can by expanded to the turncated double
Chebyshv series in the form

N N
k(zi,y;,s,t) = Z'Z'k Tlpst

=0 7=0
and the Chebyshv coefficients are determined as follows:

N N

(i) _ 4 _
kl,p m;qzo k xzayjasra )ﬂp(sra )7 (pal_oaaN)

and
sy =cos((2r+1)7/2(N +1)), r=0,..,N

ty =cos((2¢+1)7/2(N +1)), ¢=0,...,N

So, the matrix representation of k(z;,y;, s,t) can be given by

[k(zi, 5,5, 8)] = KOD).TT (5,1), (4.9)
where
T(s,t)=[Too Tor -.- Ton Two Ti1 -.. Tno Tni ... Twn ]
and
KOD = Ry Shor ... Show Yk Fu .. kv bhwo Evio. Fw |

Substituting the expressions (4.6) and (4.9) into (4.8), we have

[I(zi,y;)] = K"9).Q(y;). A, (4.10)
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where
L= TT(S, t).T(S, t) = [Lm,n](N+1)2><(N+1)2

and

73

yi 1
Qly;) = [/1 /1Ld8dt] = [gmnl(Ni1)2x (v man =1, (N +1)* j=0,.,N

Hence, we obtain the matrix [u(z;,y;)] by:

[ﬂ(xi,yj)] = T(xi,yj).A, (Z,j = 0, ,N)

Then, substituting the expressions (4.10) and (4.11) into (4.7), we have:

Now, we suppose that for each ¢ =0,1,...,N and j =0,1,..., N

[Wz’(N—I—l)-i-j-i-l] = K(i’j)-Q(yj), [fz'(N+1)+j+1] = [f(afi,yj)]

(4.11)

(4.12)

(4.13)

So, from (4.13), Eq. (4.12) is transformed to dual fuzzy linear system and we try to obtain

the solution of the dual fuzzy linear system:

AX =BX+Y
where A =T(z;,y;), B=[W1 Wz ... Wyyqy]are (N +1)2 x (N +1)2 crisp matrices
and X = A, Y = [fi fo o fovgr)2] are (N + 1)2 x 1 fuzzy matrices. By solving the

above-mentioned dual fuzzy linear system, the unknown coefficients a;; can be computed
and thereby we find the solution of fuzzy Volterra-Fredholm integral equation in truncated

bivariate Chebyshev series.

5 Numerical example

Example 5.1. Consider the linear fuzzy Volterra-Fredholm integral equation as

1
u(r,y) = (a+ 1,3 —a)(zr+y) + /Oy /1(:1: + s)u(s,t)dsdt

The approzimated solution u(z,y) by fuzzy bivariate Chebyshv method as follows:

firstly, we compute collocation points for N = 2 as:
zo=yo=1, =z =y1=0, x2=ys=-1

and

S[):t():

V3 _ V3
2’ 2
We are going to obtain the unknown matriz

1~ 1~ 1~ 1 O P NP
A= 1a00 3Go1 3ho2 G0 G111 Q12 Ao G21 G2 |

T
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We have

T(z,y) =[Too Tor Too Two Tiw Tiz Too Tor Tio |
:[1 2y 4y? —1 4o 4dxy Sxy®? —22 42? —1 Syz® -2y

(422 — 1)(4y? ~ 1) |

and
KOO =kgO)=Kg02=[1 0110410 4]
K0 =KD K12 =[0 0010400 0]
K=K =g =]-1 0 -1 104 -1 0 —4]
and also,
(4 0 -3 0 0 0 -3 0 5 ]
o 32 0 0 0 0 0 -3 0
-3 0 ® 0 0 0 § o -2
o 0 0 3 0 -3 0 0 0
Q)= 0 0 0 0 5 0 0 0 0
o 0 0 —-30 2 0 0 0
-3 0 3 0 0 0 2 o0 -2
o -3 0o 0 0 0 0o 2 90
L5 0~ 0 0 0 - 0 g5 |
(2 -1 -2 0 0 o0 -2 & 27
-1 2 0 0 0 0 3§ -2 0
-2 0 # 0 o o 2 o -4
o 0 o0 2 -+ -2 0 0 0
Qu)={ 0 0 0 -3 5 0 0 0 0
o 0 o0 -2 0 H# 0o o0 o0
-2 0 0 0 0 —-% H o0
L5 0 -5 0 0 0 -5 0 g
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and
0O 0 00 0 0 0 0 017
00 0 0 O0O0O0OTO0OT O
0000 O0OOTU OTU OTO
00 0 0 O0O0O0OTO0OT O
Qp2)=1]10 000 0000 O
00 0 0 O0O0O0OTO0OTO
0000 O0OOTUOTU OTO
00 0 0 O0O0O0OTO0OTO
L0 O 0 0 0 0 0 0 0
So,
1 2 3 4 4 6 3 6 9 ]
1 0 -1 4 0o -2 3 0o -3
1 -2 3 4 —4 6 3 -6 9
1 2 3 0 0 o -1 -2 -3
A=11 0 -1 0 0 0O -1 0 1
1 -2 3 0 0 o -1 2 =3
1 2 3 -4 -4 —6 3 6 9
1 0 -1 —4 0 2 3 0 -3
|1 -2 3 -4 4 -6 3 -6 9 |
and
[ 0.111 0 —1756 —0.444 0 2044 —1.756 0
0.056  0.083 —0.256 —0.222 —0.333 3.511 —0.256 —0.383
0 0 0 0 0 0 0 0
0 0 0 —0.444 0 2.044 0 0
B = 0 0 0 —0.222 —-0.333 3.511 0 0
0 0 0 0 0 0 0 0
—0.111 0 1.756  —0.444 0 2.044 1.756 0
—0.056 —0.083 0.256 —0.222 —-0.333 3.511 0.256 0.383
i 0 0 0 0 0 0 0 0
and

vi=[2 1010 -1 0 -1 -2]x(1+a3-aq)

2.573
1.176

—2.573
—1.176

75
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Then, i
(7.617cc — 7.617, —7.617cx + 7.617)
(31.2150 — 31.215, —31.215a + 31.215)
(43cc — 43, —43cx + 43)
(22.1600 — 22.16, —22.160x + 22.16)
AT = | (14.550 — 14.55, —14.550 + 14.55)
(4.813cx — 4.813, —4.813cx + 4.813)
(42.53c0 — 42.53, —42.53cx + 42.53)
(8.2250x — 8.225, —8.225cx + 8.225)
| (38.58a — 38.85, —38.58c + 38.85) |
6 Conclusion

In this work, we tried to obtain the solution of fuzzy Volterra-Fredholm integral equations
by using fuzzy bivariate Chebyshv method. FVFIE was converted to a dual fuzzy linear
system that can be approximated by the method that was proposed in [10]. The efficiency
of method was illustrated by one numerical example.
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