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Abstract

This paper presents an analytical view of variance reduction by control variate technique for pricing
arithmetic Asian options as a financial derivatives. In this paper, the effect of correlation between
two random variables is shown. We propose an efficient method for choose suitable control in pricing
arithmetic Asian options based on the control variates (CV). The numerical experiment shows the
productivity of the proposed method.
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1 Introduction

F
or some simple derivatives there exists closed
form solution for pricing them and these

problems are not our problem. For example :
standard options and geometric Asian options.
Some payo structures cannot be evaluated using
closed analytical formulas. Monte Carlo simula-
tion (Kemna and Vorst [13], Boyle and Emanuel
[1], Boyle, Broadie, and Glasserman [2]) and nu-
merical finite-difference PDE methods (Vecer [19]
and [20], Rogers and Shi [17], Zvan, Forsyth
and Vetzal [23]) are between the numerical ap-
proaches to the pricing Asian options. Monte
Carlo method used widely to determine these
prices. However the Monte Carlo method is fi-
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nancially well to do, it consumes time to simulate
a price inside reasonable boundaries of accuracy
for sure contracts.for reduce computational time,
some variance reduction techniques have been
suggested. For example, control variates, anti-
thetic variates and importance sampling. Con-
trol variate method have been famously used for
calculative finance as a method of variance re-
duction. Kemna and Vorst [13] employed a dis-
counted geometric average Asian option payoff
less than its price as a control. This technique
is effective because the geometric Asian option
has a analytical solution form and the correlation
amonge the arithmetic and the geometric aver-
age is high. This study focus on the analysis of
control variates, that is one of the most popular
and eicient methods used. This method takes ad-
vantage of random variables with positively cor-
related with the variable under consideration and
known expected value.
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2 Option pricing and Asian op-
tions

Option is a contract between a seller and a
buyer that gives option buyer this right to buy
or sell the underlying asset in agreed price at a
later time.There are two types of options: the
call option and the put option. Call option gives
the buyer this right to buy the underlying asset,
while put option gives the buyer to sell that. The
agreed price in the option contract is known as
the strike price; the time in the contract is known
as the expiry date. The traditional of options are
European and American options. European op-
tions give to buyer or seller the right to buy or sell
on the expiry date, on which the option expires or
matures. American options give to buyer or seller
the right to buy or sell at any time prior to or at
expiry. There are many other types of options so-
called exotic (no standard) options such as bar-
rier options; Bermudan options; Asian options; or
look back options. Asian option is the option that
obtained from the average price over a time pe-
riod. For this reason, these options have a lower
volatility and hence those prices are cheaper rel-
ative to their European options. Asian options
are ussually traded on commodity and curren-
cies products which have lower trading volumes.
Banker’s Trust Tokyo office used them at first,
in 1987 for pricing average options on crude oil
contracts. hence known ”Asian” option. [16] Let
S(t) be the stock price at time [0, T]. Assume
that the initial stock price is S0 = S(0), the final
expiration date is T , and the strike price is K.
The BlackScholes model characterize the assess-
ment of the stock price by way of the stochastic
differential equation as follows

dSt = rStdt+ StdWt (2.1)

where Wt is a standard Brownian motion
and the parameters and r are the volatility of
the stock price and the mean rate of return,
relatively. Under the risk-neutral measure, the
mean rate of return to be the same as the interest
rate r [16]. the solution of Equation (2.1) is as
follows [8]:

S(T ) = S(0)exp((r − σ2/2)T +W (T )) (2.2)

In Asian options, the arithmetic mean of the
stock price indicated by

A(tm) =
1

m+ 1
Σm
i=0S(iT/m)

Under the risk-neutral measure Q, arithmetic
Asian call options at time 0 is

Ca = EQ[e−rT (A(tm)−K)+]

and the geometric mean of the stock price
indicated by [10]

G(tm) = (
∏m+1

i=0 S(iT/m))
1

m+1

and geometric Asian call options at time 0 is

Cg = EQ[e−rT (G(tm)−K)+]

The distribution of the sum of lognormal prices
has no explicit representation. Therefore, arith-
metic Asian options do not have a analitically
price formulas. Thus, solutions for the arithmetic
Asian options are more complex. In next section
we first discuss the role of variance reduction in
evolution the computational efficiency of Monte
Carlo simulation. Then we converse about con-
trol variate technique and demonstrate their ap-
plication to arithmetic Asian options.

3 Evolution of efficiency by
variance reduction

The variance reduction appears so clearly
conversable that the exact argument for its profit
is sometimes connived. We shortly survey the
underlying explanation for reduction of variance
and look at it from the point of view to improve
calculative efficient. For example, Suppose that-
parameter is the price of a derivative security
and we want to compute . By Monte Carlo
simulation we can generate an i.i.d. sequence
{Yi, i = 1, 2, . . .}, where each Yi has expectation
and variance (µ, σ2). The sample mean shown
below is a natural and common estimator of µ
with n replications

1/n
n∑

i=1

Yi
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using the central limit theorem, for large n,
above sample mean has normal distribution,
with mean and variance (µ, σ2/n). For example,
confidence interval for options which underlying
asset has log-normal distribution is

µ− 1.96σ√
n

< OptionPrice < µ+ 1.96σ√
n

and show that the error in the estimator is
equivalent to σ√

n
. So, decrease of the variance

σ2 by a factor of n, when other parameters are
constant, is equivalent to increase the number of
samples by a factor of n2. Suppose that we can
estimate by two kind of unbiased Monte Carlo es-
timators {Y 1

i , i = 1, 2, . . .} and {Y 2
i , i = 1, 2, . . .},

then E[Y 1
i ] = E[Y 2

i ] = µ, but σ1 < σ2, where
σ2
j = V ar[Y j ], j = 1, 2. considering earlier ob-

servations it becomes that for estimating sample
mean Y 1 gives a more exact estimate than sample
mean Y 2 (both of n replications). this analysis
is very simplifies to comparison of the two esti-
mators, because it fails to capture possible dif-
ferences in the computational accurancy of them.
However variance of Y 1 is less that the Y 2 but
it may be generate Y 1 consume more time than
generate Y 2. smaller variance is not enough cri-
terion for preferenc first estimator over another.
To compare estimators with different computa-
tional requirements as well as different variances,
Boyle, Broadie, and Glasserman [2] claim as fol-
lows. Suppose required to generate one replica-
tion of Y j is a constant {bj , j = 1, 2, . . .}. With
computing time t, the number of replications of
Y j that can be generated is⌊ t

bj
⌋.for simplicity, we

fall the ⌊.⌋ and deal with the ratios t/bj as though
they were integers. The two estimators available
with computing time t are, therefore,

b1
t

t/b1∑
i=1

Y 1
i and

b2
t

t/b2∑
i=2

Y 2
i

For large t, these are approximately normally
distributed with mean µ and with standard devi-
ations

σ1
√

b1/t and σ2
√

b2/t

Thus, for large t, the initial estimator should
be favored over the other if

σ2
1b1 < σ2

2b2 (3.3)

Eq. (3.3) supply a base for computational re-
quirements and estimator variance. If we con-
sider efficiency as a base for comparison of esti-
mators, the lower variance estimator should be
favored only if the variance ratio σ2

1/σ
2
2 is smaller

than the work ratio b2/b1. By the same argu-
ment, a higher variance estimator may in fact be
more desirable if it takes much less time to gen-
erate. In its simplest form, the principle declared
in Eq. (3.3) dates at least to Hammersley and
Handscomb [10]. Glynn and Whitt [9] extended
this idea. They consider efficiency in the behav-
ior of bias and also allow the work per run to be
random.

4 Control variates

Control variates method is one of the most
widely applicable, effective and easiest to use of
the variance reduction techniques. the funda-
mental of this method discribed in section (3).
The most simple execution of control variates
replaces unknown expectation value with the
difference between the unknown value and known
value that is expectation value. Kemna and
Vorst [13] and Boyle and Emanuel [1] analyze a
specific explanation of Asian options. Suppose
Ca be the arithmetic Asian option price and
Cg be the geometric Asian option price. Ca is
of much greater practical value becuase Most
options based on averages use arithmetic aver-
aging, but whereas Ca is not solvable in close
form, Cg can be often evaluated in analytical
form. We can compute a better approximation
of Ca by knowledge Cg value. Control variate
method help us for implement this work. Let
Ca = E[Ĉa] and Cg = E[Ĉg], where Ĉa and
Ĉg are the discounted option payoffs for a one
simulated path of the underlying asset. Then

Ca = Cg + E[Ĉa − Ĉg]

in the other hand, Ca can be declare as the known
price Cg and the expected difference between Ĉa

and Ĉg. Therefore, an unbiased estimator of Ĉa

is given by

Ĉa
CV = Ĉa + (Cg − Ĉg) (4.4)

This representation proposed a partly different
explanation. Ĉa

CV adjusts the straightforward
estimator Ĉa according to the difference between
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the known value Cg and the observed valueĈg.
The known error (Cg − Ĉg) is used as a control
in the estimation of Ca [1]. Because

V ar(Ĉa
CV ) = V ar(Ĉa) + V ar(Ĉg)

− 2Cov(Ĉa, Ĉg)

The control variates method is effecient if the
covariance between Ĉa and Ĉg be high. Other
control variates for Asian options investigated by
Fu, Madan, and Wang [7] that based on Laplace
transform values. These seem to be lessstrongly
correlated with the option price. A closer expe-
rience show that this estimator does not make
optimal solurtion for option prices. regard the
family of unbiased estimators

Ĉa
β = Ĉa + β(Cg − Ĉg) (4.5)

parameterized by the scalar . We have

V ar(Ĉa
β) = V ar(Ĉa) + β2V ar(Ĉg) (4.6)

− 2βCov(Ĉa, Ĉg)

Therefore, the variance minimizing β is

β∗ =
Cov(Ĉa, Ĉg)

V ar(Ĉg)

According to the request, β∗ might be or mighty
not be close to 1. If we use an estimator of the
form Eq. (4.4), our chance for variance reduction
be less. In fact, whereas Eq. (4.4) might decrease
or increase variance, an estimator based on β∗ is
assuranced not to increase variance, and outcome
in a strict decrease in variance until Ĉa and Ĉg

are not uncorrelated.

Substituting β∗ in Eq. (4.6) and simplifying,
we find that the ratio of the variance of the esti-
mator having optimal control to that of the un-
controlled estimator is

V ar(Ĉa
β)

V ar(Ĉa)
=

V ar[Ĉa + β(Cg − Ĉg)]

V ar(Ĉa)
(4.7)

= 1− ρ2
Ĉa,Ĉg

Where

ρĈa,Ĉg =
Cov(Ĉa, Ĉg)√

V ar(Ĉa)V ar(Ĉg)
= Corr(Ĉa, Ĉg)

A few observations follow from this expression:
With the optimal coefficient β∗, the efficiency

of a control variate, as measured by the variance
reduction ratio Eq. (4.7), is determined by the
strength of the correlation between the Quantity
of Ĉa, Ĉg The variance reduction factor (VRF)
1/(1 − ρ2

Ĉa,Ĉg
) increases sharply as |ρĈa,Ĉg | ap-

proaches 1 and, accordingly, it drop off quickly
as |ρĈa,Ĉg | decreases away from 1.
In practice, we infrequently know β∗ because we
infrequently know Cov(Ĉa, Ĉg). However, given
n independent replications (Cai, Cgi), i = 1, n of
the pairs (Ĉa, Ĉg) we can estimate β∗ via sample
estimators as follow:

SCgCg =
1

n− 1

n∑
i=1

(Cgi − C̄g)2

SCaCg =
1

n− 1

n∑
i=1

(Cgi − C̄g)(Cai − C̄a)

Where

C̄a = 1
n

∑n
i=1C

ai , C̄g = 1
n

∑n
i=1C

gi

Gives theβ∗ estimator as

β̂ = SXY S
−1
XX (II)

The strong law of large numbers assure that β̂
converges to β̂∗ with probability 1.

Using all n replications to compute an estimate
β̂ of β̂∗ shows a bias in the estimator

1

n

n∑
i=1

Cai + β̂(Cg − 1

n

n∑
i=1

Cgi)

and its estimated standard error because of the
dependence between β̂ and the Cgi.

The benefit of working with Eq. (4.5) instead
Eq. (4.4) becomes even more significant when
the introduced controls are farther. For exam-
ple, when the asset price is simulated under risk-
neutral probability measure, the present value
e−rTE[ST ] of the terminal price must equal the
current price S0. We can, thus, form the estima-
tor

Ĉa + β1(C
g − Ĉg) + β2(S0 − e−rTST )

The variance minimizing coefficients (β∗
1 , β

∗
2)

are easily found by multiple regression. This
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Table 1: Get good speed-ups only if ρ is very close to 1

ρ 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

V RF 1.3 1.6 2 2.8 5.3 10.3 50.3 500

optimization step appears especially critical in
this case; for whereas one may guess that β∗

1

is close to 1, it appears unlikely that β∗
2 would

be. The expression in (II) is the slop of the
lest-squares regression line through the points
{(Cgi, Cai), i = 1, . . . , n}. Figure 1 shows a scat-
ter plot of simulation outputs (Cgi, Cai) and the
estimated regression line for these points, which
passes through the point (C̄g, C̄a). In the figure,
C̄g < E[Cg], indicating that the n replications
have underestimated E[Cg]. If the (Cgi, Cai) are
positively correlated, this suggests that the sim-
ulation estimateC̄a likely underestimates E[Cg].
This further suggests that we should adjust the
estimator upward. The regression line determines
the magnitude of the adjustment; in particular,
µ(β̂) is the value fitted by the regression line at
the point E[Ca].

Figure 1: Regression interpretation of control
variate method. The regression line through the
points (Cgi, Cai) has slope and passes through

(C̄g, C̄a). The control variate estimatorµ(β̂) is the
value fitted by the line at E[Ca]. In the figure, the
sample mean C̄g underestimates E[Cg] and C̄a is
adjusted upward accordingly

5 Numerical simulation

In this section we will show that when correlation
between Ĉa and control variable is high, this con-
trol is suitable for reducing the variance of Ĉa. In

the following we will consider an arithmetic Asian
options with S0 = 100, r = 0.05, σ = 0.2, T =
1(year),K = 90,m = 10, and NRepl is the num-
ber of independent replications. From the results
in Table 1, we can see that the effect of correla-
tion between Ĉa and control variables. Also we
see that the simulation error reduced very well
when correlation is very close to 1.
Figure 2, shows the correlation between control
variates presented in Table 2 and simulated quan-
tity of arithmetic Asian option pricing. In this
figure we can see that, with assumptions S0 =
100, r = 0.05, σ = 0.2, T = 1(year),K = 90,m =
10, in condition of higher correlation intensity the
simulated points fit on the regression line with
slope β∗.
For example, if we consider geometric average

Figure 2: Shows the correlation between con-
trol variates presented in Table 2 and simulated
quatity of arithmetic Asian option pricing.

Asian option as control variate, then ρ = 0.9997.
according to the Figure 2, we see the ratio of
simulated points approximately fit on the regres-
sion line passes through the points (C̄g, C̄a) and
(E[Ca], µ(β∗)) , where , µ(β∗) = Ĉa + β∗(Cg −
Ĉg).
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Table 2: The simulation results with parameters:S0 = 100,K = 90, r = 0.05, T = 1(year), σ = 0.2, NRepl =
10000

Row Control option value ρ Error β∗

1 (Ĉa)NMC 12.4507 - 0.1012 -
2 Eruopean call 12.5543 0.8740 0.0495 0.5169
3 Underlying asset 12.5365 0.8774 0.0488 0.4467
4 Geometric asian call 12.5394 0.9997 0.0026 1.0250
5 Combination of 2,4 12.5470 0.9493 0.0320 0.3674
6 Combination of 3,4 12.5346 0.9447 0.0334 0.3308

Figure 3: With simulating consecutive for each
presented control variate in condition of higher
correlation intensity, the regression lines with slope
β∗, become closer together.

6 Conclusion

In this paper, using control variate technique we
find out, to obtain a suitable control variate, first
one can exploit the correlation intensity between
this control variate and essential estimator, if the
correlation intensity be very close to 1, this con-
trol will be suitable. in other word, obtaining
correlation is the necessary condition to choose a
control variate.
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