
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 7, No. 1, 2015 Article ID IJIM-00563, 7 pages

Research Article

Numerical solution of nonlinear fractional Volterra-Fredholm

integro-differential equations with mixed boundary conditions

D. Nazari Susahab ∗, M. Jahanshahi †‡

————————————————————————————————–

Abstract

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations
with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation
to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation
will be solved with Nyström and Newton-Kantorovitch method. Numerical tests for demonstrating
the accuracy of the method is included.
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1 Introduction

I
t is rare to find methods for solving the non-
linear fractional Volterra-Fredholm integro-

differential equations with mixed boundary con-
ditions. Motivated by this reason, the purpose
of this paper is to discuss the following fractional
Volterra-Fredholm integro-differential equation

(Dαy)(x) =g(x) +

∫ x

a
K1(x, t)H1(y(t))dt

+

∫ b

a
K2(x, t)H2(y(t))dt, (1.1)

subject to the mixed boundary conditions

m∑
j=1

[
γijy

(j−1)(a) + ηijy
(j−1)(b)

]
= ri,

i = 1, 2, ...,m (1.2)
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where y(x) is determined function, The deriva-
tive Dα is understood here in the Caputo sense,
and H1(.) and H2(.) are the continuous nonlinear
term.

For solving fractional differential and fractional
integro-differential equations different numerical
techniques have been proposed. For example,
in [1] fractional differential transform method
is extended to solve linear and nonlinear frac-
tional integro-differential equations of Volterra
type with initial and boundary conditions. Zhu,
considered solving nonlinear fractional Fredholm
integro-differential equations and nonlinear frac-
tional Volterra integro-differential equations in
separated work with initial conditions by using
second kind Chebyshev wavelet [12, 13]. In [5]
a Chebyshev cardinal operational matrix method
described for solving nonlinear Volterra and Fred-
holm integro-differential equations of fractional
order. In [3], the authors used the collocation
method to approximate solution of an integro-
differential equation by converting it to the cor-
responding nonlinear system of equations.

For considering existence and uniqueness of the
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solutions of fractional Volterra-Fredholm integro-
differential equations we refer the reader to see
[9, 14], also existence and uniqueness results
for fractional integro-differential equations with
boundary conditions considered in [6]. The rest
of this paper is organized as follows: In Section
??, we introduce preliminaries which are used
throughout the paper. In Section 3, numerical
approach for the fractional integral will be de-
rived. Application of Nyström method is recalled
in Section 4. In Section 5, some numerical re-
sults are provided to clarify the method. At last,
conclusion is given.

2 Preliminaries

Let us recall and prove the following lemmas
along with some definitions. For more details see
[7].

Definition 2.1 The Riemann-Liouville frac-
tional integral of order α > 0 of a function y, is
defined as

Iαy(t) =
1

Γ(α)

∫ t

0
(t− x)α−1y(x)dx, (2.3)

where Γ is Gamma function.

Definition 2.2 The Caputo derivative of frac-
tional order α > 0 for a function y(t) is defined
by

(CDαy)(t) =
1

Γ(n− α)

∫ t

0

y(n)(x)

(t− x)α−n+1
dx,

n− 1 < α ≤ n and n = [α] + 1,

where [α] denotes integral part of the real number
α.

Lemma 2.1 Let α > 0 and n = [α] + 1. Then

Iα(CDαy(t)) = y(t)−
n−1∑
k=0

y(k)(0)

k!
tk.

Lemma 2.2 Problem (1.1)-(1.2) with m = 2,
a = 0 and b = 1 is equivalent to the nonlinear
Fredholm integral equation

y(x) =f(x) +

∫ 1

0
N1(τ, x)H1(y(τ))dτ

+

∫ 1

0
N2(τ, x)H2(y(τ))dτ, (2.4)

where

f(x) =A1 +A2x

+ (B1 +B2x)

∫ 1

0
(1− t)α−1g(t) dt

+ (C1 + C2x)

∫ 1

0
(1− t)α−2g(t) dt

+
1

Γ(α)

∫ x

0
(x− t)α−1g(t) dt,

N1(τ, x) =[D1L1(τ, 1) + E1L1x(τ, 1)]

+ x[D2L1(τ, 1) + E2L1x(τ, 1)]

+H(τ − x)L1(τ, x),

N2(τ, x) =[F1L1(τ, 1) +G1L1x(τ, 1)]

+ x[F2L1(τ, 1) +G2L1x(τ, 1)]

+ L2(τ, x),

L1(τ, x) =
1

Γ(α)

∫ x

τ
(x− t)α−1K1(t, τ)dt,

L2(τ, x) =
1

Γ(α)

∫ x

0
(x− t)α−1K2(t, τ)dt,

provided∣∣∣∣γ11 + η11 γ12 + η11 + η12
γ21 + η21 γ22 + η21 + η22

∣∣∣∣ ̸= 0,

here H is Heviside function.

Proof. Taking fractional integral of order α from
both sides of equation (1.1) and using lemma 2.1,
yields

y(x) =y(0) + y
′
(0)x

+
1

Γ(α)

∫ x

0
(x− t)α−1g(t)dt

+

∫ x

0

[
1

Γ(α)

∫ x

τ
(x− t)α−1K1(t, τ)dt

]
×H1(y(τ))dτ

+

∫ 1

0

[
1

Γ(α)

∫ x

0
(x− t)α−1K2(t, τ)dt

]
×H2(y(τ))dτ

=y(0) + y
′
(0)x

+
1

Γ(α)

∫ x

0
(x− t)α−1g(t)dt

+

∫ x

0
L1(τ, x)H1(y(τ))dτ

+

∫ 1

0
L2(τ, x)H2(y(τ))dτ (2.5)

to obtain y(0), y
′
(0) and in the sequel y(x), we

substitute Eq. (2.5) into the boundary condition
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(1.2), then by solving resulted system of equa-
tions, y(0), y

′
(0) will be obtained. At the end,

by substitution y(0), y
′
(0) into Eq. (2.5) we will

reach to the Fredholm integral equation (2.4).

Lemma 2.3 Let s = x(t−τ)
x−τ . Then

L1(τ, x) =
(x− τ)α

xαΓ(α)

∫ x

0
(x− s)α−1

×K

(
(x− τ)s

x
+ τ, τ

)
ds

=
(x− τ)α

xα
IαK

(
(x− τ)s

x
+ τ, τ

)
.

Proof. The proof is straightforward.

3 Numerical approach for the
fractional integral

In this section we describe a numerical approach
for the fractional integral (2.3) which will be used
for computing L1(τ, x), L2(τ, x) and f(x) in the
next section. To this end, we interpolate the func-
tion y(t) at the nodes t3i, t3i+1, t3i+2 and t3i+3

and integrate over [t3i, t3i+3]. Thus

Iα0,tny(t) =
1

Γ(α)

∫ tn

0
(t− x)α−1y(x) dx

≈ 1

Γ(α)

n−1∑
i=0

∫ t3i+3

t3i

(tn − x)α−1

×
(
y3i + s∆y3i +

s(s− 1)

2
∆2y3i

+
s(s− 1)(s− 2)

6
∆3y3i

)
dx,

=
h

Γ(α)

n−1∑
i=0

∫ 3

0
(3n− s− 3i)α−1

(
y3i + s∆y3i

+
s(s− 1)

2
∆2y3i +

s(s− 1)(s− 2)

6
∆3y3i

)
ds

=
hα

Γ(α+ 4)

n−1∑
i=0

(
W0iy(t3i) +W1iy(t3i+1)

+W2iy(t3i+2) +W3iy(t3i+3)

)
,

where s = (x− t3i)/h, h = tn/3n,

W0i =

{
Z(i)[F −G1(i) +R1(i)−Q1(i)]

− Z(i+ 1)[F −G1(i+ 1)

+R2(i)−Q2(i)]

}
(3.6)

W1i =

{
Z(i)[G1(i)− 2R1(i) + 3Q1(i)]

− Z(i+ 1)[G1(i+ 1)

− 2R2(i) + 3Q2(i)]

}
(3.7)

W2i =

{
Z(i)[R1(i)− 3Q1(i)]

− Z(i+ 1)[R2(i)− 3Q2(i)]

}
(3.8)

W3i =

{
Z(i)[Q1(i)]− Z(i+ 1)[Q2(i)]

}
, (3.9)

F =(α+ 1)(α+ 2)(α+ 3)

G1(i) =(α+ 2)(α+ 3)(n− 3i),

Z(i) =(n− 3i)α

R1(i) =(α+ 3)(18n2 + (−3α− 6)n

+ 3αi− 30i+ 18i2)

R2(i) =(α+ 3)(18n2 + (15α− 36i− 6)n

+ 6α2 − 15αi+ 3α+ 18i2 + 6i)

Q1(i) =162n3 + (−54α− 486i− 54)n2

+ (30α+ 6α2 + 486i2

+ i(108α+ 324) + 36)n

− 162i3 + (−54α− 162)i2

+ (−6α2 − 30α− 36)i

Q2(i) =162n3 + (108α− 486i− 162)n2

+ (33α2 − 216αi− 51α+ 486i2

+ 324i+ 36)n+ 6α3 − 33α2i

+ 3α2 + 108αi2 + 51αi+ 9α

− 162i3 − 162i2 − 36i.

Let y(t) ∈ C4[0, b]. Then∣∣∣∣∣Iα0,tny(t)− hα

Γ(α+ 4)

n−1∑
i=0

(
W0iy(t3i)

+W1iy(t3i+1) +W2iy(t3i+2) +W3iy(t3i+3)

)∣∣∣∣
= O(h4) (3.10)
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where Wj,i, j = 0, 1, 2, 3 are defined by (3.6)-
(3.9). Proof. By using interpolation error for-
mula, we have

E(ts) =
s(s− 1)(s− 2)(s− 3)

4!
h4y(4)(c(ts)),

s =
t− t3i

h
, ts ∈ (t3i, t3i+3).

Thus

|Iα0,tnyn(t)− Iα0,tny(t)|= |Iα0,tn(yn(t)− y(t))|

≤ |yn(t)− y(t)| 1

Γ(α)

∫ tn

0
(tn − τ)α−1dτ

≤ bα

Γ(α+ 1)
|yn(t)− y(t)|= O(h4).

For numerical verification of theorem 3, see table
1.

4 Numerical method

The philosophy of Nyström method is to approx-
imate the integral operator by an operator that
is derived by numerical integration formula (see
[4] for a thorough knowledge of the subject). So,
application of this method to the nonlinear oper-
ator of Eq. (2.4) leads to a nonlinear system of
n equations for the n unknowns functions values
yn(tn,j). To solve it, we will use the Newton-
Kantorovitch method which is undoubtedly the
most popular method for solving nonlinear equa-
tions [8]. Now, the Nyström method for solving
Eq. (2.4) leads to finding yn such that

yn(x) =f(x)

+

n∑
j=1

ωn,j

(
N1(tn,j , x)H1(yn(tn,j))

+N2(tn,j , x)H2(yn(tn,j))

)
, (4.11)

where ωn,j are weights of numerical quadrature.
Writing Eq. (4.11) at the nodes tn,i, we obtain a
nonlinear system of equations in Rn+1 defined by

yn(tn,i) =f(tn,i) +
n∑

j=1

ωn,j

(
N1(tn,j , tn,i)

×H1(yn(tn,j)) +N2(tn,j , tn,i)

H2(yn(tn,j))

)
, 1 ≤ i ≤ n. (4.12)

Eq. (4.12) can be solved by Newton-Kantorovitch

method. Let y
(k)
n be the iterate number k. The

iterate y
(k+1)
n solves

(
In − C

(k)
n

)
y
(k+1)
n = d

(k)
n ,

where

C(k)
n (i, j) =ωn,j

(
N1(tn,j , tn,i)

× ∂

∂y
H1(y

(k)
n (tn,j))

+N2(tn,j , tn,i)
∂

∂y
H2(y

(k)
n (tn,j))

)
,

d(k)n := f(tn,i) +

n∑
j=1

ωn,jN1(tn,j , tn,i)

×
(
H1(y

(k)
n (tn,j))−

∂

∂y
H1(y

(k)
n (tn,j))y

(k)
n (j)

)
+

n∑
j=1

ωn,jN2(tn,j , tn,i)

(
H2(y

(k)
n (tn,j))

− ∂

∂y
H2(y

(k)
n (tn,j))y

(k)
n (j)

)
.

We recover the approximation y
(k+1)
n with the

natural interpolation formula

y(k+1)
n (x) =f(x) +

n∑
j=1

ωn,j

(
N1(tn,j , x)

×H1(y
(k+1)
n (tn,j))

+N2(tn,j , x)H2(y
(k+1)
n (tn,j))

)
.

With this strategy, whatever we hope is the con-
vergence of the iterates towards the solution yn
of the approximate Equation (2.4) .

Remark 4.1 Convergence of proposed method
have been considered by many authors, we refer
the reader to see [2, 8, 10, 11].

5 Numerical experiments

Example 5.1 Consider the linear fractional
Volterra integro-differential equation

(D
√
3y)(x) =

2

Γ(3−
√
3)
x2−

√
3 + 2 sinx− 2x

+

∫ x

0
cos(x− t)y(t)dt, (5.13)
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Table 1: The approximated solutions with error analysis obtained from the steepest descent method forThe
absolute error of Iα0,1t

4 for verifying Theorem 3.

N α = .8 α = 1 α = 1.6

2 2.58×10−4 2.31×10−4 1.58×10−4

4 1.58×10−5 1.44×10−5 1.00×10−5

8 9.84×10−7 9.04×10−7 6.30×10−7

16 6.11×10−8 5.65×10−8 3.94×10−8

32 3.80×10−9 3.53×10−9 2.46×10−9

Table 2: Numerical results of Example 5.1.

x n = 40 n = 80 n = 160

.2 2.94×10−7 4.62×10−8 7.31×10−9

.4 2.82×10−7 4.42×10−8 7.00×10−9

.6 2.71×10−7 4.25×10−8 6.74×10−9

.8 2.63×10−7 4.14×10−8 6.55×10−9

1 2.60×10−7 4.09×10−8 6.49×10−9

Table 3: Numerical results of Example 5.2.

x n = 160 n = 320 n = 640

.1 7.81×10−6 1.92×10−6 4.65×10−7

.3 1.55×10−5 3.84×10−6 9.31×10−7

.5 1.65×10−5 4.10×10−6 9.92×10−7

.7 1.27×10−5 3.15×10−6 7.65×10−7

.9 5.07×10−6 1.25×10−6 3.04×10−7

Table 4: Numerical results of Example 5.3.

ff = 7/6, k = 5
x n = 20 n = 40

.1 7.454×10−8 5.110×10−10

.3 8.099×10−7 5.946×10−9

.5 2.461×10−6 1.911×10−8

.7 5.123×10−6 4.181×10−8

.9 8.868×10−6 7.566×10−8

ff = 19/6, k = 3
x n = 20 n = 40

.1 4.890×10−12 3.061×10−13

.3 4.756×10−10 2.978×10−11

.5 3.996×10−9 2.502×10−10

.7 1.623×10−8 1.016×10−9

.9 4.627×10−8 2.897×10−9

with the mixed boundary conditions

y(0) + y(1)− y
′
(0)− y

′
(1) = −1,

3y(0) + 4y(1) + y
′
(0)− 3y

′
(1) = −2. (5.14)

The exact solution is y(x) = x2. Table 2 shows the
numerical results including absolute errors of the

approximated solution by using composite trape-
zoidal rule.

Example 5.2 Let us consider the nonlinear
fractional Volterra-Fredholm integro-differential
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equation

(D
√
7

2 y)(x) = g(x) +

∫ x

0

1 + 2t

1 + y(t)
dt

+

∫ 1

0
(1 + 2t)ey(t) dt, (5.15)

with the boundary conditions y(0) = 0, y(1) = 2.
g(x) is chosen such that the exact solution to
be y(x) = x2 + x. Table 3 shows the numerical
results including absolute errors of the approxi-
mated solution by using composite trapezoidal rule
and number of iterations k = 3.

Example 5.3 Consider the nonlinear fractional
Fredholm integro-differential equation

(Dαy)(x) = g(x) +

∫ 1

0
xety2(t)dt, (5.16)

g(x) is chosen such that the exact solution to be
y(x) = x−x3. Table 4 shows the numerical results
including absolute errors of the approximated so-
lution by using composite trapezoidal rule.

6 Conclusion

In this study, the approximate solution of the
equation (1.1) is obtained by converting it to
the equivalent nonlinear Fredholm integral equa-
tion and then by numerical approaching the frac-
tional integral the approximate solution of this
equation was obtained by Nyström and Newton-
Kantorovitch method. Finally we presented
three test problems to show the efficiency of the
method.
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