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Numerical solution of nonlinear fractional Volterra-Fredholm
integro-differential equations with mixed boundary conditions
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Abstract

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations
with mixed boundary conditions. The basic idea is to convert fractional integro-differential equation
to a type of second kind Fredholm integral equation. Then the obtained Fredholm integral equation
will be solved with Nystrom and Newton-Kantorovitch method. Numerical tests for demonstrating

the accuracy of the method is included.
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1 Introduction

T is rare to find methods for solving the non-
I linear fractional Volterra-Fredholm integro-
differential equations with mixed boundary con-
ditions. Motivated by this reason, the purpose
of this paper is to discuss the following fractional
Volterra-Fredholm integro-differential equation

+/ Ko(x,t)Ha(y(t))dt, (1.1)
subject to the mixed boundary conditions
> [y (@) + migy @) =
J=1
i=12,...m (1.2)
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where y(z) is determined function, The deriva-
tive D? is understood here in the Caputo sense,
and H;(.) and Hy(.) are the continuous nonlinear
term.

For solving fractional differential and fractional
integro-differential equations different numerical
techniques have been proposed. For example,
in [1] fractional differential transform method
is extended to solve linear and nonlinear frac-
tional integro-differential equations of Volterra
type with initial and boundary conditions. Zhu,
considered solving nonlinear fractional Fredholm
integro-differential equations and nonlinear frac-
tional Volterra integro-differential equations in
separated work with initial conditions by using
second kind Chebyshev wavelet [12, 13]. In [5]
a Chebyshev cardinal operational matrix method
described for solving nonlinear Volterra and Fred-
holm integro-differential equations of fractional
order. In [3], the authors used the collocation
method to approximate solution of an integro-
differential equation by converting it to the cor-
responding nonlinear system of equations.

For considering existence and uniqueness of the
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solutions of fractional Volterra-Fredholm integro-
differential equations we refer the reader to see
[9, 14], also existence and uniqueness results
for fractional integro-differential equations with
boundary conditions considered in [6]. The rest
of this paper is organized as follows: In Section
7?7, we introduce preliminaries which are used
throughout the paper. In Section 3, numerical
approach for the fractional integral will be de-
rived. Application of Nystrom method is recalled
in Section 4. In Section 5, some numerical re-
sults are provided to clarify the method. At last,
conclusion is given.

2 Preliminaries

Let us recall and prove the following lemmas
along with some definitions. For more details see

[7].

Definition 2.1 The Riemann-Liouville frac-
tional integral of order o > 0 of a function y, is
defined as

1

I%y(t) = F(a)/o (t— x)o‘_ly(x)dx, (2.3)

where I' is Gamma function.

Definition 2.2 The Caputo derivative of frac-
tional order a > 0 for a function y(t) is defined

by

1 t () (g
OO = i | e

n—1l<a<nandn=a]+1,

where [a] denotes integral part of the real number
.

Lemma 2.1 Let o« >0 and n = [a] + 1. Then

I°(“Dy(t) =

Lemma 2.2 Problem (1.1)-(1.2) with m = 2,
a =0 and b = 1 is equivalent to the nonlinear
Fredholm integral equation

y() =f(z) + / Ny (7 2) Hi (y(r))dr

+/0 No(7,x)Ha(y(T))dT, (2.4)

where

f(:c) =A; + Asx

1
(By+ Bax) /0 (1 — 62t g(t) dt

1
() + Coa) /0 (1— 1) 2g(t) dt

IR A
+ G /0 (z — 1) Yg(t) dt,

Ni(r,z) =[D1L1(7,1) + E1 L1, (7,1)]
+ x[DoLyi(7,1) + EoLy, (7,1)]
+ H(1 —z)L1 (7, x),

No(7,x) =[F1Li(1,1) + G1L1,(7,1)]
+ x[FoLi(7,1) + Go L1, (T, 1)]
+ La(7, ),

_L Ii_ a—1 T

Lo(r,2) =—— /0 "o — 00 Kt 7,

Li(7,x)

[(a)
provided
Y11+ M1 Y12 + 0+ N1
Y21 + 121 Vo2 + M1 + 22 ’

here H is Heviside function.

Proof. Taking fractional integral of order a from
both sides of equation (1.1) and using lemma 2.1,
yields

+F(1a) i (x —t)*Lg(t)dt
+ Or F(la) /w(x—t)a YK (t,7)dt

1
+ /0 Lo(7,2)Ho(y(7))dr

!

(2.5)

to obtain y(0), y
2

(0) and in the sequel y(z), we
substitute Eq. (2.5

.5) into the boundary condition
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(1.2), then by solving resulted system of equa-  where s = (z —t3;)/h, h=1,/3n,
tions, y(0), ¥ (0) will be obtained. At the end,
by substitution y(0), y(O) into Eq. ('2.5) we will Wo; :{Z( NE — G1(i) + Ri(i) — Q1(i)]
reach to the Fredholm integral equation (2.4).
—Z@G+ 1)[F-Gi(i+1)

Lemma 2.3 Let s = x;t__:). Then + Ra(i) - Q2(2)]} (3.6)
e Wi ={ Z0)G1() — 2819 + Q. 1)
B =y ) oo 2G4+ 1[G+ 1)
X K(W;)S +, T) ds — 2Ry (i) + 3Q2(i)]} (3.7)
:("5;;)& 1@K<(x_xT>‘9 b T>. Wi _{Z(z’)[Rl (i) — 3Q1(1)]

-2 DIRG) 30} 38
Proof. The proof is straightforward.

W&—{ZUK&(H u+¢n@<n},<am

3 Numerical approach for the F—(a+1)(a+2)(a+3)
fractional integral G1(6) =(a + 2)(a + 3)(n — 30),
Z(1) =(n — 3i)*
In this section we describe a numerical approach Ri(i) =(a + 3)(18n2 4 (—3a—6)n

for the fractional integral (2.3) which will be used ' o
for computing Ly (7,z), Lo(7,2) and f(z) in the + 3ai — 30i + 18i°)
next section. To this end, we interpolate the func- Ro(i) =(a + 3)(18n* + (15a — 36i — 6)n
tio(ril y(t) at the nodes ts;, tgirﬁl, t3iro and t3;13 + 602 — 150 + 3a + 18i + 6i)
and integrate over [ts;,t3;23|. Thus

grate over [fgi, i3] Q1(i) =162n3 + (—5da — 4867 — 54)n>

+ (30 4 602 4 486>

tn
154, y(t) = (o) /0 (t — )" y(z) do +i(108a + 324) + 36)n
a1 g — 1623 + (=54 — 162)7>
1 3i4+3 a1
~ I(a) & Z 5 (tn — ) + (—60a* — 30 — 36)i
) s(s—1) Q(i) =162n° + (1080 — 4867 — 162)n>
(ysz +slysi+—— Ays; + (33a% — 216 — 51a + 486i*
(s — 1)(3 —2) 3 >d + 324i + 36)n + 6a° — 33a%i
S T2 A3y ) dar,
v + 302 + 108ai* + 51ai + 9a
h 3 — 1624% — 162i* — 364.
F( Z/ —s5—31)” (y?n' + sAys; ’ ! !
(6%
o i= 01)0 o 1s o) Let y(t) € C4[0,b]. Then
o n-l 15, y(t) — T(at4) Z <W0@'y(t3¢)
— h . . . . =0
“Tlatd) Z <W01y(7531) + Whiiy(tsit1)
=0

+Whiiy(tsiv1) + Woiy(tsive) + WSiy(t3i+3)> ’
+ Waiy(tsive) + WSiy(t3i+3)>7 — O(hY) (3.10)
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where Wj;, j = 0,1,2,3 are defined by (3.6)-
(3.9). Proof. By using interpolation error for-
mula, we have

s(s—=1)(s—2)(s—3)
4!

ts € (34, t3i43)-

E(tS) -

_t—tsi
=

h4y(4) (C(ts))a

s
Thus

16,6, yn(t) = 15,4, y(D)|= 115s,, (yn(t) — y(1))|

< lyn(t) = y(?) r(la)/o “(tn — ) Ndr
= F(;il)!yn(t) —y(t)|= O(h").

For numerical verification of theorem 3, see table
1.

4 Numerical method

The philosophy of Nystrém method is to approx-
imate the integral operator by an operator that
is derived by numerical integration formula (see
[4] for a thorough knowledge of the subject). So,
application of this method to the nonlinear oper-
ator of Eq. (2.4) leads to a nonlinear system of
n equations for the n unknowns functions values
Yn(tn,j). To solve it, we will use the Newton-
Kantorovitch method which is undoubtedly the
most popular method for solving nonlinear equa-
tions [8]. Now, the Nystréom method for solving
Eq. (2.4) leads to finding y,, such that

+ Z W, j <N1 (tn,j, x)Hy (yn(tn,j))

j=1
# Nl D)ol g)) ) (411
where wy, ; are weights of numerical quadrature.

Writing Eq. (4.11) at the nodes ¢, ;, we obtain a
nonlinear system of equations in R"*! defined by

Yn (tn,i) :f(tn,i) + Z wn,j (Nl (tn,ja tn,i)

j=1
X Hl(yn(tn,j)) + N2(tn,j’ tn,i)

Hg(yn(tn,j))) 1<i<n. (412

Eq. (4.12) can be solved by Newton-Kantorovitch
method. Let yr(Lk) be the iterate number k. The
iterate ygﬂﬂ) solves (In — Cr(bk)> ygﬁl) = d,(f),

where

CW® (i, 7) =wn (Nl(tw-, ti)

X @Hl (?/gk) (tn,J))
0
Nl ) o4 <tw~>>) |

dif) = f(tng) + D wn i Ni(tn g tni)
7=1

‘ <H1<y£f> (tn)) - ;Z/Hmyﬁﬁ) (b)) <j>>

2 i Valtng o) (Halol 1)
j=1

- o Ha ) 1) (j)) |

We recover the approximation y,(lkﬂ) with the

natural interpolation formula

gD (@) =f @)+ 3wy (zvl(tn,j, 2)

j=1
x Hi(yF ™ (4, 5))

n

N N2<tw,x>H2<y,sk+1><tn,j>>).

With this strategy, whatever we hope is the con-
vergence of the iterates towards the solution y,,
of the approximate Equation (2.4) .

Remark 4.1 Convergence of proposed method
have been considered by many authors, we refer
the reader to see [2, 8, 10, 11].

5 Numerical experiments

Example 5.1 Consider the linear fractional
Volterra integro-differential equation

(D‘/gy)(x) = 22 V3 4 2sinz — 22

['(3—-+/3)

+ /01 cos(z — t)y(t)dt, (5.13)
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Table 1: The approximated solutions with error analysis obtained from the steepest descent method forThe

absolute error of I 1t* for verifying Theorem 3.

N a=.8 a=1 a=1.6
2 2.58x10~* 2.31x10* 1.58x10~*
4 1.58x1075 1.44x107° 1.00x1075
8 9.84x10~7 9.04x10~7 6.30x10~7
16 6.11x10~8 5.65x108 3.94x10~8
32 3.80x107° 3.53x107° 2.46x10~°
Table 2: Numerical results of Example 5.1.
x n = 40 n = &0 n = 160
2 2.94x1077 4.62x1078 7.31x1079
4 2.82x10~7 4.42x10~8 7.00x107°
.6 2.71x1077 4.25%10~8 6.74x10~°
8 2.63x10~7 4.14x10~8 6.55x1079
1 2.60x10~7 4.09x10~8 6.49x1079
Table 3: Numerical results of Example 5.2.
€T n = 160 n = 320 n = 640
1 7.81x106 1.92x10°6 4.65x1077
3 1.55%x10~5 3.84x10~¢ 9.31x10~7
5 1.65%x107° 4.10x10~6 9.92x10~7
7 1.27x1075 3.15%x10~6 7.65x10~7
9 5.07x10~6 1.25%x10°6 3.04x10~7
Table 4: Numerical results of Example 5.3.
ff=7/6, k=5
x n =20 n = 40
1 7.454x10~8 5.110x10~10
3 8.099x10-7 5.946x10°
5 2.461x1076 1.911x10~8
7 5.123x1076 4.181x1078
9 8.868x10~6 7.566x108
ff=19/6, k=3
X n =20 n =40
1 4.890x 10712 3.061x10~13
.3 4.756x10~10 2.978x 1011
5 3.996x107? 2.502x10~10
7 1.623%x10~8 1.016x10~?
9 4.627x1078 2.897x109

with the mized boundary conditions
y(0) +y(1) =y (0) —y (1) = —1,
3y(0) +4y(1) +y (0) — 3y’ (1) = —2.  (5.14)

The exact solution is y(z) = z2. Table 2 shows the
numerical results including absolute errors of the

approzimated solution by using composite trape-

zoidal rule.

Example 5.2 Let wus consider the nonlinear

fractional Volterra-Fredholm integro-differential
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equation

i T1+2
(DF ) = 9e)+ | 13

1
+/ (142t)e¥® dt,  (5.15)
0
with the boundary conditions y(0) =0, y(1) = 2.
g(x) is chosen such that the exact solution to
be y(x) = 2% 4+ x. Table 3 shows the numerical
results including absolute errors of the approxi-
mated solution by using composite trapezoidal Tule
and number of iterations k = 3.

Example 5.3 Consider the nonlinear fractional
Fredholm integro-differential equation

1
(D)) = gla)+ [ aciOar. (510

g(x) is chosen such that the exact solution to be
y(z) = x—23. Table 4 shows the numerical results
including absolute errors of the approximated so-
lution by using composite trapezoidal rule.

6 Conclusion

In this study, the approximate solution of the
equation (1.1) is obtained by converting it to
the equivalent nonlinear Fredholm integral equa-
tion and then by numerical approaching the frac-
tional integral the approximate solution of this
equation was obtained by Nystrom and Newton-
Kantorovitch method. Finally we presented
three test problems to show the efficiency of the
method.
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