
Available online at http://ijim.srbiau.ac.ir

Int. J. Industrial Mathematics Vol. 1, No. 1 (2009) 55-68

Usnig LR-Fuzzy Numbers Data to Measure the
E�ciency and the Malmquist Productivity Index

in Data Envelopment Analysis , and Its
Application in Insurance Organizations

F. Hosseinzadeh Lot� a, A. A. Noora b, H. Nikoomaram c,
M. Alimardani d�, M. Modi e

(a) Dept. of Math. Science and Research Branch, Islamic Azad University, Tehran,Iran.
(b) Dept. of Math. Sistan and Balochestan University, Iran,

(c) Dept. of Management. Science and Research Branch,Islamic Azad University, Tehran,Iran.
(d) Dept. of Math. Tehran -North Branch,Islamic Azad University, Tehran,Iran,

(e) Dept. of Math. Science and Research Branch,Islamic Azad University, Zahedan, Iran.

||||||||||||||||||||||||||||||||-
Abstract
In many real applications, the data of production processes can't be precisely measured.
We develop some fuzzy versions of the classical DEA models (in particular, the CCR
model) by using some ranking methods based on the comparison of cuts. Our approaches
can be seen as an extension of the DEA methodology. The provides users and practition-
ers with models which represent some real life processes more appropriately. DEA- based
Malmquist productivity index measures the productivity change over time. In this paper
we provide an extension to the DEA- based Malmquist productivity index for all DMUs
with fuzzy data.
Keywords : Data envelopment analysis (DEA), E�ciency, Malmquist productivity index, Fuzzy
data.
||||||||||||||||||||||||||||||||||

1 Introduction

DEA models provide e�ciency scores which assess the performance of the di�erent DMUs
in terms of either the use of several inputs or the production of certain outputs (or even sim-
ulation easily). Most of DEA e�ciency scores vary in (0,1], the unity value being reserved
�Corresponding author. Email address: Mahnaz@yahoo.com
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to e�cient units. In the particular case of the radial models, the CCR (Charnes, cooper
and Rhodes [3]) and the BCC (Banker Charnes and Cooper [1]) models yield e�ciency
scores both in input and output orientation, although no oriented DEA e�ciency scores
can also be de�ned (see [4] for hyperbolic measures and [2] for directional measures). We
can �nd several fuzzy approaches to the assessment of e�ciency in DEA literature.The
fuzzy DEA model by using Zimmermann's method [10]. Kao and Liu [7] developed a
method to �nd the membership functions of the fuzzy e�ciency scores when some obser-
vations are fuzzy numbers. The idea is based on the cuts and Zadeh's extension principle
[9]. Entraining propose in [5] a DEA model with an interval e�ciency consisting of e�-
ciencies obtained from the pessimistic and the optimistic viewpoints.Their model which
is able to deal with Fuzzy data, considers ine�ciency intervals. In the present, paper we
also use possibilities programming techniques to provide a new approach to the problem
of the measurement of e�ciency, but exploiting the use of the primal envelopment formu-
lation of the DEA models instead of the dual multiplier one. The paper unfolds as follows:
section 2 contains some results on fuzzy interval analysis that will be used in the paper.
In section 3, we develop some fuzzy DEA models. To be speci�c, we are dealing with the
input oriented CCR model, although the extension of the methodology developed here to
other radial DEA models is straight forward. Using linear programming techniques, data
envelopment analysis (DEA) (Charnes ) Provides a suitable way to estimate a multiple
inputs/ multiple outputs empirical e�cient function as described by Farrell (1957). Fare et
al (1992,1994 a ) developed a DEA- based Malmquist productivity index which measured
the productivity change over time. The Malmquist productivity index was �rst suggested
by Malmquist [12] as a quantity index for use in the analysis of consumption of inputs.
Fare et al combined ideas on the measurement of e�ciency from Farell and the measure-
ment of productivity from Cares, et al.(1982)to construct a Malmquist productivity index.
This Index has proven itself to be a good tool for measuring the productivity change of
DMUs. The original DEA-based Malmquist index assumes that inputs and outputs are
measured by exact values on a ratio scale. In Section 6 contains our �nal conclusions.

2 Preliminaries

Inuiguchi, et al [6] and Lai and Hwang [8] refered to the linear programming with imprecise
coe�cients restricted by possibilities distributions as possibilities programming. In this
section we are simply recalling how to perform the basic operation of Fuzzy intervals for
ranking purposes. To be more precise, we deal with LR-fuzzy numbers whose de�nition is
as follows.

De�nition 2.1. A fuzzy number ~m is said to be a LR-fuzzy number, ~m = (�L;mL;mR; �R)L;R
, if its membership function has the following form:

� ~m(r) =

8>><>>:
L(m

L�r
�L ) ; r � mL;

1 ; mL � r � mR;

R( r�mR�R ) ; r � mR

(1)

Where L and R are reference functions, i.e, L, R:[0;+1) �! [0; 1] are strictly Dereasing
in
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sup( ~m) = fr : � ~m(r) > 0gand upper semi-continuous functions such that L(0) = R(0) =
1.
If sup( ~m) is a bounded set, L and R are de�ned on [0,1] and satisfy L(1) = R(1) = 0.

In particular, for a given set of LR-fuzzy numbers ~aj = (�Lj ; aLj ; aRj ; �Rj )L;R; j = 1; :::; n
and some scalars xj � 0; j = 1; :::; n, we have that

nX
j=1

~ajxj = (
nX
j=1

�Lj xj ;
nX
j=1

aLj xj ;
nX
j=1

aRj xj ;
nX
j=1

�Rj xj)L;R; (2)

Where L and R are the common left and right reference functions, and
Pn

j=1 ~ajxj denote
the combination ~a1x1 � ~a2x2 � :::� ~anxn. Let us recall the de�nition of maximum of two
fuzzy numbers.

De�nition 2.2. Let ~m and ~n be two fuzzy numbers. Then, ~m
W

~n represents the fuzzy
number having the following membership function:

� ~m
W

~n(r) = sup
r=s

W
t

n
� ~m(s)

_
�~n(t)

o
(3)

De�nition 2.3. Let ~m and ~n be two fuzzy numbers. Then,

~m & ~n, ~m
_

~n = ~m (4)

Tanaka et al [13] have formulated FLP problems by using this order. In fact, Ramik
and Rimanek provided an operative characterization of (2.4) in terms of the �-level sets:

Lemma 2.4. Let ~m and ~n be two fuzzy numbers. Then ~m
W

~n = ~m if, and only if
8h 2 [0; 1] the two statements below hold:

inf fs : � ~m(s) � hg � inf ft : �~n(t) � hg,
sup fs : � ~m(s) � hg � sup ft : �~n(t) � hg, (5)

In particular, for two LR-fuzzy numbers, ~m = (mL;mR; �L; �R)L;R and ~n = (nL; nR; �L; �R)L0;R0
if

mL � L�(h)�L � nL � L0�(h)�L 8h 2 [0; 1],
mR +R�(h)�R � nR +R0�(h)�R 8h 2 [0; 1], (6)
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Where

L�(h) = sup fz : L(z) � hg; L0�(h) = sup fz : L0(z) � hg,
R�(h) = sup fz : R(z) � hg; R0�(h) = sup fz : R0(z) � hg, (7)

however, if ~m = (mL;mR; �L; �R)L;R and ~n = (nL; nR; �L; �R)L0;R0 have bounded
support and both L = L0 and R = R0, then (2.7) becomes

mL � nL; mL � �L � nL � �L,
mR � nR; mR + �R � nR + �R, (8)

De�nition 2.5. Let ~m and ~n be two fuzzy numbers and h a real number,
h 2 [0; 1]. Then ( ~m &h ~n) if, and only if, 8k 2 [h; 1] the following two statements hold:

inf fs : � ~m(s) � kg � inf ft : �~n(t) � kg,
sup fs : � ~m(s) � kg � sup ft : �~n(t) � kg, (9)

For LR-fuzzy numbers with bounded support, and using this ranking method for a
given h, expression (2.9) becomes

mL � L�(k)�L � nL � L0�(k)�L 8k 2 [h; 1],
mR +R�(k)�R � nR +R0�(k)�R 8k 2 [h; 1], (10)

Indeed when comparing ~m and ~n at a given possibility level h, it may happen that ( ~m &h ~n)
although ( ~m & ~n) does not hold.

2.1 Data envelopment analysis with fuzzy data

Consider that we are interested in evaluating the relative e�ciency of (n) DMUs which
use m inputs to produces outputs. Suppose that the data of inputs and outputs can not
be precisely measured and, also that they can be expressed as LR-fuzzy number with
bounded support:

~xi;j = (�Li;j ; xLi;j ; xRi;j ; �Ri;j)Li;j ;Ri;j , i = 1; :::m, j = 1; :::n,
~yr;j = (�Lr;j ; yLr;j ; yRr;j ; �Rr;j)L0r;j ;R0r;j , r = 1; :::s, j = 1; :::n. (11)
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Satisfying

Li1 = Li2 = ::: = Lin = Li; i = 1; ::;m,
L0r1 = L0r2 = ::: = L0rn = L0r; r = 1; ::; s,
Ri1 = Ri2 = ::: = Rin = Ri; i = 1; ::;m,
R0r1 = R0r2 = ::: = R0rn = R0r; r = 1; ::; s.

(12)

Let us also assume that the input oriented CCR model is used to evaluate the relative
e�ciency of this set of DMUs. Then, the extended CCR model can be expressed as the
following fuzzy Lp problem.

(FCCR)

Min �

s.t.
nX
j=1

�j ~xij . �~xio; i=1,...,m

nX
j=1

�j ~yrj & ~yro; r=1,...,s

�j � 0; j=1,...,n

(13)

Since inputs and outputs are LR numbers, if, in particular, & is interpreted as in (2.4)
and the linear combinations as in (2.2), then (2.13) can be transformed in

(q)
Min �

s.t.
nX
j=1

�jxLij � �xLio; i=1,...,m

nX
j=1

�jxRij � �xRio; i=1,...,m

nX
j=1

�jxLij �
nX
j=1

�j�Lij � �xLio � ��Lio; i=1,...,m

nX
j=1

�jxRij +
nX
j=1

�j�Rij � �xRio + ��Rio; i=1,...,m

nX
j=1

�jyLrj � yLro; r=1,...,s

nX
j=1

�jyRrj � yRro; r=1,...,s

nX
j=1

�jyLrj �
nX
j=1

�j�Lrj � yLro � �Lro; r=1,...,s

nX
j=1

�jyRrj +
nX
j=1

�j�Rrj � yRro + �Rro; r=1,...,s

�j � 0; j=1,...,n

(14)
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Hence, the optimal value of (2.14) provides an evaluation of the e�ciency of a DMU in
which all the possible values of the di�erent variables for all the DMUs at all the possibility
levels are considered. In this case we can use &h for ranking (see [6]), then model (2.13)
can be expressed as the following linear programming problem:

(q)h
Min �

s.t.
nX
j=1

�jxLij � �xLio; i=1,...,m

nX
j=1

�jxRij � �xRio; i=1,...,m

nX
j=1

�jxLij � L�i (h)
nX
j=1

�j�Lij � �xLio � L�i (h)��Lio; i=1,...,m

nX
j=1

�jxRij +R�i (h)
nX
j=1

�j�Rij � �xRio +R�i (h)��Rio; i=1,...,m

nX
j=1

�jyLrj � yLro; r=1,...,s

nX
j=1

�jyRrj � yRro; r=1,...,s

nX
j=1

�jyLrj � L0�r (h)
nX
j=1

�j�Lrj � yLro � L0�r (h)�Lro; r=1,...,s

nX
j=1

�jyRrj +R
0�
r (h)

nX
j=1

�j�Rrj � yRro +R
0�
r (h)�Rro; r=1,...,s

�j � 0; j=1,...,n

(15)

The optimal value of (2.15), ��(h), provides the e�ciency score of a DMU at the h possi-
bility level. As mentioned before, in practice we can solve this model for di�erent values
of h to observe how the e�ciency scores of the DMUs change when the possibility level h
varies. Notice that if h=0 then (2.15) coincides with (2.14).

3 Malmquist productivity index

Fare, et al. (1992) construeted the DEA-based Malmquist productivity index as the
geometric mean of two Malmquist productivity indexes of Caves, et al. (1982), which
are de�ned by a distance function D(.). Caves et al. assumed Dk(k) = 1 and their
distance function does not reveal ine�ciency. By allowing for ine�ciency and modeling
the technology frontier as piecewise linear, Fare, et al. decomposed their Malmquist
productivity index into two components, one measuring the change in the e�ciency and the
other measuring the change in the frontier technology. The frontier technology determined
by the e�cient frontier is estimated using DEA for a set of DMUs. However, the frontier
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technology for a particular DMU under evaluation is only represented by a section of the
DEA frontier or a facet.

The Malmquist productivity index calculation requires two single period and two mixed
period measures. The two single period measures can be obtained by using the DCCR
model (Charnes et al., 1978)

Dp
o(k) = Min �

s.t.
nX
j=1

�jxpij � �xkio; i=1,...,m

nX
j=1

�jyprj � ykro; r=1,...,s

�j � 0; j=1,...,n

(16)

where xkio is the i � th input and ykro is the r � th output for DMUo in time k and
xpij is the i � th input and yprj is the r � th output for DMUj in time p. The e�ciency
(Dt

o(t)) determines the amount by which observed inputs can be proportionally reduced,
while still producing the given output level. Using t+ 1 instead of t for the above method,
we get Dt+1

o (t+ 1), the technical e�ciency score for DMUo in time period t+ 1.
The �rst of the mixed period measures, which is de�ned as Dt

o(t+ 1) for each DMUo,
is computed as the optimal value to the (3.16) linear programming problem, where p = t
and k = t+ 1. Similarly, the other mixed period measure, Dt+1

o (t), which is needed in the
computation of the Malmquist productivity index, is the optimal value to the (3.16) linear
problem, where p = t + 1 and k = t. Fare et al.'s input-oriented Malmquist productivity
index, which measures the productivity change of a particular DMUo; o 2 J = f1; :::; ng,
in time t+ 1 and t is given as:

Mo = [D
t
o(t+1)
Dto(t)

� Dt+1
o (t+1)
Dt+1
o (t)

]1=2 (17)

It can be seen that the above measure actually is the geometric mean of two Caves
et al.'s Malmquist productivity indexes. Thus, following Caves, et al.'s suit, Fare, et al.
de�ned that Mo > 1 indicates the productivity gain; Mo < 1 indicates the productivity
loss; and Mo = 1 means no change in the productivity from time t to t+ 1.

4 Malmquist productivity index with fuzzy data

In recent years, the fuzzy set theory has been proposed as a way to quantify imprecise and
vague data in DEA models. fuzzy DEA models take the form of fuzzy linear programming
model. The fuzzy CCR models cannot be solved by a standard LP solver like a crisp
CCR model because coe�cients in the fuzzy CCR model are fuzzy sets. With the fuzzy
inputs and fuzzy outputs, the optimality conditions for the crisp DEA model need to be
clari�ed and generalized. In this section, we are in purpose of evaluating the Malmquist
productivity index for DMUs with fuzzy data. Therefore, assume that fuzzy numbers,

~xti;j = (�tLi;j ; xtLi;j ; xtRi;j ; �tRi;j )Lti;j ;Rti;j , i = 1; :::m, j = 1; :::n,
~yti;j = (�tLi;j ; ytLi;j ; ytRi;j ; �tRi;j )L0ti;j ;R

0t
i;j

, i = 1; :::m, j = 1; :::n. (18)
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are the i� th input and the r � th output for DMUj in time t.
The two single period measures can be obtained by using the FCCR DEA model (we use
&h for ranking ) :

Dp
o(k)h = Min �

s.t.
nX
j=1

�j ~xpij .h �~xkio; i=1,...,m

nX
j=1

�j ~yprj &h ~ykro; r=1,...,s

�j � 0; j=1,...,n

(19)

The e�ciency (Dt
o(t)h) determines the amount by which observed inputs can be propor-

tionally reduced, while still producing the given output level. Using (t+ 1) instead of (t)
for the above method, we get Dt+1

o (t+ 1)h, the technical e�ciency score for DMUo in
time period (t+1). The �rst of the mixed period measures, which is de�ned as Dt

o(t+ 1)h
for each DMUo, is computed as the optimal value to the(4.19) fuzzy linear programming
problem, where p = t and k = t+ 1. Similarly, the other mixed period measure, Dt+1

o (t)h,
which is needed in the computation of the Malmquist productivity index, is the optimal
value to the (4.19) fuzzy linear problem, where p = t+ 1 and k = t.

In this paper, we use (q)h this method to based Malmquist productivity index for
analysis fuzzy data. However, we determine the Dt

o(t)h , Dt+1
o (t+ 1)h, Dt

o(t+ 1)h and
Dt+1
o (t)h by solving corresponding linear programing problem as:
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(qp(k))h

Dp
o(k)h = Min �

s.t.
nX
j=1

�jxpLij � �xkLio ; i=1,...,m

nX
j=1

�jxpRij � �xkRio ; i=1,...,m

nX
j=1

�jxpLij � Lp�i (h)
nX
j=1

�j�Lij � �xkLio � Lk�i (h)��kLio ; i=1,...,m

nX
j=1

�jxpRij +Rp�i (h)
nX
j=1

�j�Rij � �xkRio +Rk�i (h)��kRio ; i=1,...,m

nX
j=1

�jypLrj � ykLro ; r=1,...,s

nX
j=1

�jypRrj � ykRro ; r=1,...,s

nX
j=1

�jypLrj � L0p�r (h)
nX
j=1

�j�pLrj � ykLro � L0k�r (h)�kLro ; r=1,...,s

nX
j=1

�jypRrj +R
0p�
r (h)

nX
j=1

�j�pRrj � ykRro +R
0k�
r (h)�kRro ; r=1,...,s

�j � 0; j=1,...,n

(20)

Let the below de�nition represent the Malmquist productivity index, which measures the
productivity change of a particular DMUo; o 2 J = f1; :::; ng, in time t + 1 and t, at the
(h) possibility level is given as

Mh
o = [

Dt
o(t+ 1)h

Dt
o(t)h

� Dt+1
o (t+ 1)h

Dt+1
o (t)h

]
1
2 (21)

Now, we have several numbers Mh
o for DMUo, from the several (h) possibility levels.It

can be seen that the above measure actually is the geometric mean of two Caves, et al.'s
Malmquist productivity indexes at each (h) possibility levels. Thus, following Caves et
al.'s suit, Fare, et al. de�ne that Mh

o > 1 indicates the productivity gain at (h) possibility
level ; Mh

o < 1 indicates the productivity loss at (h) possibility level; and Mh
o = 1 means

no change in the productivity from time t to t+ 1 in (h) possibility level. On the basis of
what mentioned above, the productivity can be classi�ed in three subsets as follows:

M++ = fj 2 J jMh
j > 1;8h 2 [0; 1]g;

M+ = fj 2 J j (9h 2 [0; 1];Mh
j � 1)

V
(9h 2 [0; 1];Mh

j � 1)g;
M�� = fj 2 J jMh

j < 1;8h 2 [0; 1]g
(22)

De�nition 4.1. A fuzzy set ~P is said to be a Progressive DMUs Fuzzy Set ,

~P = f(DMUj ; � ~P (DMUj))jj = 1; 2; :::; ng
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, if its membership function has the following form:

� ~P (DMUj) = supfhjMk
j > 1;8k 2 [0; h]g (23)

5 Methodology and examples
In this section, we employ the Malmquist index for evaluating 19 branches of Tehran Social
Secarity Insurance Organization for two period times by using the methodology developed
above.Each branch uses two inputs in order to produce two outputs. The lables of inputs
and outputs are presented at table (1).

Input Output
1 The number of personals The total number of insured persons
2 The total number of computers The number of insured persons'agreements

Table1.The lables of inputs and outputs.

The total data is related to two chronological sections of 2003 and 2004(A-D). This
section describes the data and results. Table 2, 3, 4 and 5 show inputs and outputs of
those Insurance Organizations with L-R fuzzy data, ~m = (�L;mL;mR; �R)L;R , at time
periods 1 and 2.we cosider that :

~xi;j = (�Li;j ; xLi;j ; xRi;j ; �Ri;j), i = 1; 2, j = 1; :::19,
~yr;j = (�Lr;j ; yLr;j ; yRr;j ; �Rr;j) , r = 1; 2, j = 1; :::19. (24)

L1j(h) = L2j(h) = 1� h; j = 1; ::; 19,
L01j(h) = L02j(h) = 1� h; j = 1; ::; 19,
R1j(h) = R2j(h) = 1� h; j = 1; ::; 19,
R01j(h) = R02j(h) = 1� h; j = 1; ::; 19.

(25)

AS mentioned before,

L�(h) = sup fz : 1� z � hg = 1� h; L0�(h) = sup fz : 1� z � hg = 1� h,
R�(h) = sup fz : 1� z � hg = 1� h; R0�(h) = sup fz : 1� z � hg = 1� h, (26)
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~x1;j ~x2;j
1 (1.41, 97.41, 99.41, 0.58) (0.25,86.25,86.75,0.25)
2 (1.83,76.83,79.83,1.16) (0.416,88.416,89.416, 0.58)
3 (0.75, 77.75, 79.25, 0.75) ( 1, 86, 88, 1)
4 (0.66, 91.66, 93.16, 0.83) ( 0.75, 93.75, 95.25, 0.75)
5 (0.83, 89.83, 91.33, 0.66) ( 0, 83, 83, 0)
6 (0.5, 102.5, 104, 1) ( 0, 97, 97, 0)
7 (0.66, 96.66, 98.66, 1.33 ) ( 0.5, 90.5, 91.5, 0.5)
8 (1, 86, 88.5, 1.5) ( 0, 92, 92, 0)
9 (1.25, 107.25, 110.25, 1.75) ( 2.16, 86.16, 90.16, 1.83 )
10 (0.91, 107.91, 109.91, 1.08) ( 0, 95, 95, 0)
11 ( 1.58, 95.58, 99.08, 1.91) ( 0, 78, 78, 0)
12 ( 0.41, 78.41, 78.91, 0.08 ) ( 0, 89, 89, 0)
13 ( 0, 102, 102, 0) ( 0.33 , 107.33, 109.33, 1.66)
14 ( 1.5, 83.5, 86.5, 1.5) ( 0.58, 92.58, 93.58, 0.41 )
15 ( 0.25, 89.25, 90.25, 0.75) ( 0, 85, 85, 0)
16 ( 2.25, 86.25, 89.25, 0.75) ( 0, 104, 104, 0)
17 ( 3.91, 97.91, 104.91, 3.08 ) ( 0.33, 91.33, 91.83, 0.16 )
18 ( 2, 99, 102, 1) ( 0.08, 95.08, 95.58, 0.41 )
19 ( 1, 83, 85.5, 1.5) ( 0.083, 100.08,100.58,0.41)

Table 2. The LR- fuzzy Inputs 19 branches of Insurance Organization at time period (1)

~y1;j ~y2;j
1 (370.33,56200.33,56944.33,373.66) (3.4166,33.416,40.91, 4.08)
2 ( 30.25,36770.25,36826.25, 25.75) (7.83, 7.83, 18.83, 3.16)
3 (221.08, 38225.08, 38614.58, 168.41) ( 3.33, 14.33, 22.33, 4.66)
4 ( 108.08, 35577.08, 35851.08, 165.91) (10.16, 20.16, 42.66, 12.33)
5 ( 471, 53398, 54343, 474) ( 9.08, 18.08, 35.08, 7.91)
6 ( 1096.16, 71350.16, 75510.16, 3063.83) ( 2.66, 9.66, 15.66, 3.33 )
7 ( 1635.66, 34220.66, 36649.66, 793.33 ) ( 23.08, 70.08, 111.08, 17.91 )
8 (1063.83, 43963.83, 46148.83, 1121.16) ( 3.16, 14.16, 22.16, 4.83)
9 ( 411.25, 85810.25, 86720.75, 499.25) ( 7.58, 50.58, 77.58, 19.41)
10 ( 109.25, 47033.25, 47229.25, 86.75) ( 8.66, 17.66, 31.16, 4.83)
11 ( 1915.16, 38567.16, 42390.16, 1907.83 ) ( 48.75 ,129.75 ,210.25, 31.75)
12 ( 6.25, 39588.25, 39607.25, 12.75) ( 4.66, 15.66, 25.66, 5.33 )
13 ( 670.41, 56814.41, 58150.41, 665.58 ) ( 6, 36, 49.5, 7.5)
14 ( 591.25, 88307.25, 89574.25, 675.75) ( 3.83, 31.83, 39.33, 3.66)
15 ( 425.41, 48152.41, 49033.41, 455.58 ) ( 3.66, 18.66, 26.16, 3.83 )
16 ( 88.25, 53011.25, 53174.25, 74.75) ( 2.5, 17.5, 24, 4)
17 ( 2342.75, 80892.75, 86173.25, 2937.75 ) ( 3.83, 16.83, 22.83, 2.16 )
18 ( 171.41, 46325.41, 46643.91, 147.08 ) ( 1.58, 14.58, 18.58, 2.41 )
19 ( 497.91, 28475.91, 30958.41, 1984.58 ) ( 27.41, 56.41, 204.41, 120.58)

Table 3. The LR- fuzzy Out puts for 19 branches of Insurance Organization at time
period (1)
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~x1;j ~x2;j
1 (0.91, 93.916, 95.91, 1.08) ( 0.25, 84.25, 85.75, 1.25)
2 (1, 76, 78, 1) ( 1, 92, 94, 1)
3 (0.75 ,75.75, 77.25, 0.75) ( 0, 87, 87, 0)
4 (0.41, 92.416, 93.41 , 0.58 ) ( 0, 93, 93, 0)
5 (1.16, 89.16, 91.16, 0.83 ) ( 1.33, 84.33, 86.33, 0.66 )
6 (0.66, 101.66, 103.66, 1.33) ( 0, 97, 97, 0)
7 (0.25, 94.25, 94.75, 0.25) ( 0.25, 90.25, 90.75, 0.25)
8 (1.66, 84.66, 87.66, 1.33 ) ( 0.16, 92.16, 92.66, 0.33 )
9 (0.41, 102.41, 104.41, 1.58 ) ( 0, 92, 92, 0)
10 (0.25, 102.25, 102.75, 0.25) ( 0.66, 95.66, 96.66, 0.33 )
11 (1.25, 94.25, 95.75, 0.25) ( 0, 79, 79, 0)
12 (1.08, 77.08, 78.58, 0.41) ( 0, 91, 91, 0)
13 (0.83, 103.83, 105.83, 1.16 ) ( 0.66, 103.66, 104.66, 0.33 )
14 (1.25, 87.25, 89.25, 0.75) ( 0, 95, 95, 0)
15 (1, 88, 90, 1) ( 0.16, 85.16, 85.66, 0.33 )
16 (0.75, 90.75, 92.25, 0.75) ( 0, 104, 104, 0)
17 (1.66, 112.66, 115.66, 1.33 ) ( 1.16, 93.16, 94.66, 0.33 )
18 (1.16, 95.16, 97.66, 1.33 ) ( 0, 98, 98 ,0)
19 (0.83, 85.83, 87.33, 0.66 ) ( 0, 101, 101, 0)

Table 4. The LR- fuzzy Inputs for 19 branches of Insurance Organization at time period
(2)

~y1;j ~y2;j
1 ( 390.66, 58058.66, 58516.41, 576.83) ( 8.58, 40.58, 60.08, 10.91)
2 ( 61.41, 36983.41, 39550.16, 67.08) ( 3.91, 17.91, 28.41, 6.58 )
3 ( 4539.16, 29899.16, 34623.91, 2505.33 ) ( 5.83, 25.83, 39.33, 7.66 )
4 ( 202.41, 36449.41, 41498.16, 185.58 ) ( 10, 31, 50, 9)
5 ( 5009.16, 41380.16, 46987.5, 4846.33 ) ( 6.25, 34.25, 44.75, 4.25)
6 ( 1368.83, 70439.83, 72244.33, 598.16 ) ( 7.916 , 7.91, 24.41, 8.58 )
7 ( 595.83, 38071.83, 39645.08, 435.66 ) ( 15.91, 88.91, 115.41, 10.58 )
8 ( 1047.58, 49141.58, 52412.41, 977.41 ) ( 4, 16, 25.5, 5.5)
9 ( 1889.25, 86420.25, 90433.5, 2223.25) ( 34.08, 34.08, 89.58, 21.41 )
10 ( 1176, 48133, 50993.5 ,2124) ( 5.58, 24.58, 35.08, 4.91 )
11 ( 2209, 33763, 40131.91, 1684.5) ( 21.33, 191.33, 240.33, 27.66 )
12 ( 2139.58, 29151.58, 32064.91, 4159.91 ) ( 2.5, 23.5, 29, 3)
13 ( 911.75, 60492.75, 63215.16, 773.75) ( 8 ,39, 62, 15)
14 ( 4947.83, 85372.83, 91481.25, 1810.66 ) ( 4.91, 40.91, 55.91, 10.08 )
15 ( 1972.25, 41769.25, 46409.66, 3056.75) ( 2.75 ,28.75, 34.25, 2.75)
16 ( 11993.83, 65592.83, 80853.83, 2668.16 ) ( 5, 19, 31, 7)
17 ( 3368.83, 75921.83, 86140.66, 3267.16 ) ( 4.66, 23.66, 35.16, 6.83 )
18 ( 13383, 60280, 74386.91, 6850) ( 5.16, 18.16, 28.66, 5.33 )
19 ( 1667.08, 30522.08, 32389.25, 723.91 ) ( 18.33, 41.33, 87.83, 28.16 )

Table 5. The LR- fuzzy Out puts for 19 branches of Insurance Organization at time
period (2)
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M0 M0:1 M0:2 M0:3 M0:4 M0:5 M0:6 M0:7 M0:8 M0:9 M1

1 1.12 1.11 1.1 1.07 1.06 1.07 1.07 1.06 1.05 1.03 1.03
2 2.43 1.9 1.6 1.53 1.44 1.37 1.31 1.25 1.18 1.14 1.12
3 0.88 0.9 0.9 0.96 0.99 1.01 1.02 1.03 1.04 1.02 1.02
4 1.14 1.12 1.11 1.1 1.09 1.09 1.08 1.07 1.06 1.08 1.11
5 2.04 2.57 2.12 1.7 1.5 1.38 1.3 1.19 1.08 0.97 0.84
6 0.92 0.91 0.89 0.88 0.86 0.84 0.82 0.8 0.81 0.85 0.92
7 1.55 1.51 1.44 1.39 1.34 1.3 1.25 1.2 1.15 1.1 1.06
8 1.28 1.19 1.29 4 2.41 1.93 1.56 1.33 1.2 1.13 1.1
9 0.52 0.31 0.23 0.56 0.68 0.78 0.83 0.86 0.87 0.88 0.92
10 1.17 1.18 1.17 1.15 1.13 1.11 1.09 1.06 1.04 1.01 1
11 2.51 2.26 2 1.72 1.48 1.33 1.22 1.14 1.08 1.03 0.98
12 1.17 1.06 1.01 0.97 0.97 0.98 0.98 0.97 0.95 0.9 0.85
13 1.06 1.05 1.03 1.01 1.01 1.03 1.05 1.06 1.07 1.07 1.05
14 1.79 1.6 1.43 1.27 1.17 1.11 1.07 1.03 1 0.98 0.98
15 1.03 1.01 0.99 0.96 0.93 0.91 0.9 0.89 0.88 0.88 0.87
16 0.95 0.97 1 1.05 1.09 1.13 1.16 1.19 1.21 1.23 1.27
17 10.02 1.57 1.21 1.07 1.01 0.97 0.94 0.92 0.92 0.92 0.91
18 1.49 1.55 1.59 1.63 1.66 1.69 1.72 1.73 1.67 1.57 1.46
19 0.97 0.93 0.89 0.84 0.8 0.76 0.73 0.69 0.66 0.61 0.57

Table 6. The Malmquist Productivity Indexs at the (h) possibility levels.

As it is apparent in the above table, we see that 9 branches are in M++ and 3 branches are
in M�� 7 remaied branches are in M+. It is viewed the most progress in the branch 17
at (0) possibility level and the most regress is in the branch 9 at (0.2)possibility level.The
Progressive DMUs Fuzzy Set on approximation (0.1) of this example de�ned as follows:

~P = f(DMU1; 1); (DMU2; 1); (DMU3; 0); (DMU4; 1); (DMU5; 0:8); (DMU6; 0);

(DMU7; 1); (DMU8; 1); (DMU9; 0); (DMU10; 1); (DMU11; 0:9); (DMU12; 0:2); (DMU13; 1);

(DMU14; 0:8); (DMU15; 0:1); (DMU16; 0); (DMU17; 0:4); (DMU18; 0); (DMU19; 0)g

6 Conclusion

In this paper, we have developed use of the fuzzy linear programming to provide a new
approach to the problem of assessing e�ciency with DEA models. This may be especially
appealing in real life. The purpose of this study was to develop the Malmquist productivity
index for DMUs with fuzzy data. Since the level of inputs and outputs for DMUo are
not known exactly, we tried by using the concept of (q)h to develop a new approach of
Malmquist productivity index and applied it to a numerical example.
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