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Abstract

In this paper we propose a method for computing approximations of solution of fractional
differential equations using Legendre polynomials and Adomian decomposition method.
Keywords : Fractional derivative, Adomian decomposition method, Legendre polynomials.

1 Introduction

Differential equations may involve Reimann-Liouville differential operators of fractional
order r > 0, which have the form

. 1 am [* u
Dayy(x) = L(m —r) dz™ /1,0 (x —32()7’)_’”4‘1 du, (1.1)

where m is the integer defined by m — 1 < r < m. In order to obtain a unique solution
for D"y(z) = f(x,y(x)), the exact m initial value is needed. When m = 1, we study the
following fractional initial value problem

Doy +y=f(x), ylxo)=yo (1.2)

And using Adomian decomposition method, we give a new method to find an approximate
solution of Eq. (1.2) when f(x) is expressed by Legendre polynomials. In recent years,
fractional differential equations have found applications in many problems in Physics and
engineering [4]. Also some numerical methods are used to find approximate analytical
solutions, for instance Adomian decomposition method, variational iteration method, ho-
motopy perturbation method and homotopy analysis method [1, 2, 3, 5, 6]. In this paper
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a modification of Adomian decomposition method is introduced to solve fractional initial
value problems.

The organization of the paper is as follows. In Section 2 we list some basic definitions
of fractional derivative and integral. In Section 3, an approximate solution for fractional
initial value problems is introduced. Finally, we conclude the paper in Section 4.

2 Preliminaries

In this work, we express f(x) in the Legendre series

o0

fl) =) ciPi(x)
i=0
Where P;(x) is the second kind of Legendre polynomial and can be found by the following
recursive relation

nP,(z) =2n—-1)P,—1(z) — (n — 1)P,_2(z), n>2.

Pg(l') = 1,
Pl(l') = X.
and the coefficient ¢; can be found by
o I f(@)Py(x)da
' fil Pf(x)dx '

When the domain of f(x) is different from [—1, 1], we must use suitable changing variables.

Definition 2.1. A function y(x),x > 0 is said to be in the space C,,, n € R, if there exist
a real number p > p such that y(x) = xPyi(x), where y1(x) € C(0,00), and is said to be
in the space Cy if and only if RS Cu,neN

Definition 2.2. Reimann-Liouville’s fractional derivative and fractional integral of order
0<r<1fory(x): R—R are defined as

1 d [*
()~ % _ )T
Y T =) do /0 (x —s) "u(s)ds (2.3)
and . .
I'y(x) = —/ x— ) "tu(s)ds. 2.4)
@) =77 [ o= (
For instance, when » > 0 and A > —1 we have
" A T+
AR v g (2:5)
and PO D)
_l’_
I AN S\ A 2.
)= i n” (2.6)

Lemma 2.1. Let y(z) € C",n € N, then D"y,0 < r < n is well defined and D" € C_;.
Lemma 2.2. Letn —1<r <n,n €N and y(xr) € Cj,p > —1, then

n—1 k
T T x
I'Dy(x) = y(x) = Yy (0%) 5
k=0
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3 Fractional initial value problem

To perform the Adomian decomposition method, the source term f(x) is usually ex-
pressed in the Taylor series with & terms, for some constant k. In this paper we use the

@)=Y cPia)
0

and the fractional differential equation can be modeled as Ly(x) + Ny(x)+ Ry(x) = f(x),

Legendre series

where L = D" therefore L~ = I". Since
L 'Ly=y—ca"!

then
y=ca" '+ I'(f(x)) = I'(Ry) — I"(Ny). (3.7)

The solution y is represented as an infinite sum
oo
Y=
n=0
and the nonlinear term Ny will be decomposed by the infinite series of Adomian polyno-

mials
oo
Ny = Z A,
n=0

(3.8)

where the A,s are obtained by writing

Z(/\) = Z )‘nyn
n=0

NG =Y a4,
n=0

therefore, for any n =0,1,...

1. d"
W= [N 0.
NGO
Then by substituting (3.8) in (3.7) we obtain the following relations
Y yi=ca T IN(f(x) = Y TT(Ry:) — > I7(A))
i=0 i=0 i=0

and we define y,y1,y2,--- in a recurrent manner in which Relations (2.4) and (2.6) are

applied.
Yo = x4 I"f(z)
Y1 = —ITRyO — IT.AO
yo = —I"Ry; — I" A4
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When the term I" f(x), is hard to calculate, in general we can express f(x) in Taylor series
— f (i)(%) i
fla) =3 F= = o),
i=0
Suppose that we can find the coefficient ¢; such that

fx) = Z cibi(x)

=0

Then the modified method for the fractional differential equation y(") +y = f(x) can be
shown as following

Y=+ I(Y aPi(@) =T () i)
=0 =0 =0

then
yo = cx" ' + oI Py

Y1 = Cllrpl — Iry() = CIITP1 — CIrxril — C()Izrpo
Yo =col" Py — "y = col" Py — 6112TP1 +el?r e 4 C[)IgTPU

therefore

y= Zyi
i=0

=cx" V4 ol"Py+ 1 I"P —cl"z" 7 — oI Py + o' Py — I Py 4+ eI 2" + g2 Py 4 - -

:c(l_Ir+I2r__”)xrfl_'_CU(Ir_I%_i_IBr__”)PU_'_CI(IT_‘[27'_'_137“_‘_‘)P1
to(I" =T+ — Py 4 ep(I" =T + 13 — . )Py + -

As an approximate solution we can use the following truncation

n
y=>_ v
0
=c(l1-1I" Y L (_1)n1nr)xr—1
+co(I" — I+ —+... + (_1)"I(n+1)r)p0
+ Cl(Ir _ I2r +I3r et (_1)n711nr)P1
+ C2(IT B IQT + I3T -t (_1)”I(n—l)r)P2 +--+ Cn(IT)Pn

where
n

f(x) =~ Z ciPi(x).

0
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Conclusion

Fractional differential equations have been studied using Legendre polynomials. Ado-
mian decomposition method has been applied to obtain approximate solution.
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