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Abstract

In this paper we give a counter example for one of the lemmas of the paper” Frame of
subspace in Wavelets, frames and operator theory” by P.G. Casazza and G. Kutyniok .
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1 Introduction

Frames were first introduced by Duffin and Schaeffer[4] in the context of nonharmonic
Fourier series, and today frames play important roles in many applications in mathematics,
science, and engineering, including time-frequency analysis [5], internet coding [6], speech
and music processing[11], communication [9], multiple antenna coding [8], medicine [10],
quantum computing [7], and many other areas.

For the discussion of the following section, we state here some definitions, notations
and known results. For convenience of readers, we suggest that one refer to [1, 2, 3] for
details.

Let H be a separable Hilbert space and let I be a countable (or finite) index set. If W
is a closed subspace of H , we denote the orthogonal projection of H onto W by my .

A sequence F' = {f;}icr in H is a frame for H if there exist constants 0 < A < B < o0
such that A[|f|? < . | (f,fi)* < B | f||* for all f € H . The numbers A, B are
called lower and upper frame bounds, respectively. The family F' is called a tight frame if
A = B, it is a Parseval frame if A = B = 1, it is a x-uniform frame if || f; ||=[| f; [|= «
for all 7,5 € I and an exact frame if it ceases to be a frame when any one of its elements
is removed. If the right-handed of mentioned inequality holds, then we say that F' is a
Bessel sequence and call B the Bessel bound. The operator Sp : H — H is called frame
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operator and defined by Sp(f) = >_,c;(f, fi) fi which leads us to reconstruction formula
f=icr{f f)Sptfi = Sici (£, Sp' fid fi for all f € H and also we have Ald < Sp <
BID for frame operator.

Let {W;} be a family of closed subspaces of H and let {v;} be a family of weights, i.e.
v; > 0foralli € I. Then W = {(W;,v;) }ier is a fusion frame for H if there exist constants
0 < C <D < oo such that C < |[f|I* < X c; vZ||mw, (f)|? < D||f||? for all f € H . The
numbers C, D are called lower and upper fusion frames bounds, respectively. The family
W is called a tight fusion frame if C' = D, it is a Parseval fusion frame if C' = D =1 , it is
a v-uniform fusion frame if v; = v; = v for all 4, j € I and an orthonormal fusion basis for
H if H = ®;c;W,. If the right-handed of mentioned inequality holds, then we say that W
is a fusion Bessel sequence and call B the fusion Bessel bound.The operator Sp: H — H
defined by Sp(f) = > ;cr(f, fi)fi is called the fusion frame operator which leads us to
reconstruction formula f =3, ; VIS rw(f) = Y ier vimw, Syt (f) for all f € H. Also
we have CId < Sy < DId for frame operator.

2 Main Results

In the following Lemma [1] Casazza and Kutyniok have proved if W = {(W;, v;) }icr is a
fusion frame for H, then the intersection of a closed subspace V of H with the family of
subspaces {W;}icr of H which have the same weights, i.e. W, = {(W; NV, v;)}ier ,is a
fusion frame .

Lemma 2.1. Let V' be a subspace of H and W = {W;,v;}icr be a fusion frame forH with
bounds C,D then Wy = {(W; NV, v;) }ier is a fusion frame for V' with bounds C, D

Remark 2.1. The authors have used the following equation in proof of the above Lemma

Sl (N2 = S Flmwev (2 (for all f € H) (2.1)
el el
But this equation is not correct in general. Actually, the right-hand side of Eq. (2.1) could
be equal to zero. In fact, if W; NV = {o}, (Vi € I) then mw, ., (f) =0 for all f € H.
Therefore > ,c; vilaw, (f)? = Xier vilmw,av ()| = 0. Thus C||f||* < o which is in
contradiction with o < C < D < >

Now, we state a counter example as follow.

Example 2.1. Let n € N and n > 2, set N = {1,2,....n} C N. Then E = {e;}ien
is a canonical orthonormal basis for I*(N), where e; = {6;j}ien,(Vj € N). Let Wy =
span{e; + ez} and for every i € N,i # 1, W; = span{e;}. Then {W;}licn is a family
of subspaces of I*(N). Put V = span{ei}, we show that there exists a family of weights
{vitier such that W = {(W;,v;) }ier.

Let {fi}icr be an orthonormal basis for a subspace W of H then

mwf = (awf fi)fi=Y (foawf)fi=>_f.fidfi (Y € H)
el el el
SO

_ f e1+82>61+62

V2 VR
(f,e1+ea)(er +e2)
(

frevyer + 5(f.en)ea + 5(f, eader + 3(f, e2)ez

—~

Ty f

N


IJIM JOURNAL
Text Box


H. R. Rahimi, H. Yousefi Nejad / IJIM Vol. 2, No. 1 (2010) 43-46 45

we note mw,f = (f,e)ei, (Vi € Nyi # 1, Vf € H), so ||7w.flI*> = |(f,e)|*> . On the other

hand
7w £ |2 <1(f,€1>61+ (f,€1>62+ (f,62>61+ (f,e2)ea,
<f,€1>€1+ <f,€1>€2+ <f,€2>€1+ <f7€2>e2>

sI(foe)® + I(f,62>|2+|<f,61>||<f,62>|

let v = V/2,v; = 1 where,i # 1,i € N we show that W = {(W;,v;) }i=1 is a fusion frame
of subspaces for I?(N). We have

S v llmw (O = 2[51(f, e P + 5 1(fre2)” + [(Fren)| | f, e2)]] + 300, [ e)
=i [ e + [y ea) P 4 2(f, en)] [(f, e2)]
= IFI7 +1{fs e2)* + 2[(f, e1)] [(f e2)]
If|<f7 61>| > |<f7 62>|, then

20(f. e2)” < 2(f, exn)| [{£, e2)| < 20(f, en)]”

D=

Thus

AP < 1P 431 ea) < D0 of T mwa (F) IPSIF NP+ | (Fre) P +20(fren)P < 3171

If[ (fren] <[ {f,e)l, then
2/(f,en)” <2/(f,en) [, e2)| < 2/(f,e2)]?

S0
LFIIZ < I+ 1CFs e2) | + K fsen)|? < Z v lmw (OIF <UL FIP +3 1 (frea)® <4 F I

Then W = {W;,v;}ier is a fusion frame for I*(N) with bounds C =1 and D = 4. On the
other hand, W; NV = {0}. Thus Wy = {(W; NV, v;)}i=r could not be fusion frames for
I2(N).
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