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Abstract

In this paper, we present an efficient method for determining the solution of the stochastic second kind
Volterra integral equations (SVIE) by using the Taylor expansion method. This method transforms the
SVIE to a linear stochastic ordinary differential equation which needs specified boundary conditions.

For determining boundary conditions, we use the integration technique.

This technique gives an

approximate simple and closed form solution for the SVIE. Expectation of the approximating process
is computed. Some numerical examples are used to illustrate the accuracy of the method.
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1 Introduction

He stochastic Volterra integral equations arise
T in many applications such as mathemati-
cal finance, biology, medical, social sciences, etc.
There is an increasing demand for studying the
behavior of a number of sophisticated dynamical
systems in physical, medical and social sciences,
as well as in engineering and finance. These sys-
tems are often dependent on a noise source, Gaus-
sian white noise, for example, governed by cer-
tain probability laws, so that modeling such phe-
nomena naturally requires the use of various the
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stochastic differential equations and the stochas-
tic optimization problem [1, 2, 4, 5, 6, 10] or, in
more complicated cases, the stochastic Volterra
integral equations and the stochastic integro-
differential equations [3, 7, 12, 13, 15, 16, 17].
Since in many problems, such equations, can not
be solved explicitly, it is important to find their
approximate solutions by using some numerical
methods. The methods for the computational so-
lution of stochastic integral equations are based
on similar techniques for deterministic integral
equations, but generalized to provide support for
stochastic dynamics [4, 5, 8, 9, 10, 11].

In this paper, a novel, simple, and an effi-
cient approach is proposed to determine the ap-
proximate solutions of the stochastic second kind
Volterra integral equations. We use the Taylor
series expansion of the unknown function for ob-
taining the solution. Then for determining spec-
ified boundary conditions, for transformed linear


http://ijim.srbiau.ac.ir/

42

ordinary differential equation, we employ the in-
tegration method. This method is simple and
effective, and can provide an accurate approxi-
mate solution to the stochastic integral equations.
The efficiently and the accuracy of the method
are shown by some numerical examples from [11].
This paper is organized as follows: Section 2, de-
scribes the elementary concepts from stochastic
calculus. In Section 3, we introduce the Taylor
expansion method and exhibit the convergence of
the proposed scheme in Section 4. The accuracy
of the presented method is illustrated by some ex-
amples in Section 5. Finally, Section 6 gives some
brief conclusions.

2 Stochastic Volterra integral
equations

We will begin with a quick survey of the most fun-
damental concepts from stochastic calculus that
are needed. For full details, the reader may
consult Klebaner (1998), Oksendal (1998), Steele
(2001).

A set of random wvariables X; indexed by
real numbers ¢ > 0 is called a continuous-time
stochastic process. Each instance, or realization
of the stochastic process is a choice from the
random variable X; for each ¢, and is therefore
a function of ¢. Any (deterministic) function
f(t) can be trivially considered as a stochastic
process, with variance V(f(¢)) = 0. An archety-
pal example that is ubiquitous in models from
physics, chemistry, and finance is the Wiener
process W3, a continuous-time stochastic process
with the following three properties:

Property 1. For each t, the random variable
W, is normally distributed with mean 0 and
variance t.

Property 2. For each t; < tg, the normal
random variable Wy,-W;, is independent of the
random variable Wy, , and in fact independent
of all Wi, 0 <t <t.

Property 3. The Wiener process W; can be
represented by continuous paths where is not
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differentiable.

The Wiener process, named after Norbert
Wiener, is a mathematical construct that for-
malizes random behavior characterized by the
botanist Robert Brown in 1827, commonly called
Brownian motion. It can be rigorously defined
as the scaling limit of random walks as the step
size and time interval between steps both go to
zero. Brownian motion is crucial in the model-
ing of stochastic processes since it represents the
integral of idealized noise that is independent of
frequency, called white noise. Often, the Wiener
process is called upon to represent random, exter-
nal influences on an otherwise deterministic sys-
tem, or more generally, dynamics that for a va-
riety of reasons cannot be deterministically mod-
eled.

Consider the stochastic second kind Volterra
integral equation of the form

)+ [ k(o ()t + / ko, Oy ()W,

= f(z),0 <z <1 (2.1)

In Eq. (2.1), the functions kj(x,t), ko(zx,t), and
f(z), for ,t € [0, 1], are the stochastic processes
defined on the same probability space (€2, F, P),
and y(t) is the unknown function. Also W; is a
Brownian process and [ ka(x, t)y(t)dWy is called
an It6 integral. The necessary and sufficient con-
ditions for existence and uniqueness of the solu-
tion of the Eq. (2.1) could be found in [10]. So, we
assume that Eq. (2.1) has a unique solution and
the kernels ki(x,t), ko(x,t) and f(z) € C™[0,1].
Under these conditions, we have y(t) € C"[0,1].
The second integral is not defined by the rules of
classical calculus. This problem was overcome in
the early 1950s when Ito formulated his definition
of the Ito integral, for which the second integral
is defined. Ito stochastic calculus exhibits many
peculiarities and does not conform to the rules
of classical calculus, so care must be taken when
constructing methods to solve stochastic prob-
lems.
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Llet 0=t)y<t1 < ...<th_1 <t, =1bea
grid of points on the interval [0,1]. The Riemann
integral is defined as a limit

/0 ' fa)

where Ati = ti — ti—l and ti—l S t,z S ti.
Similarly, the Ito integral is the limit

n

dr = lim Y f(f;)At;,

At—0 4
i=1

1 n
/O F(@)dW, Al;gl();m_lmwz

where AW; = Wy, — W,, |, a step of Brownian
motion across the interval. Note a major differ-
ence: while the £; in the Riemann integral may
be chosen at any point in the interval (¢;—1,t;),
the corresponding point for the Ito integral is re-
quired to be the left endpoint of that interval. To
solve stochastic equations analytically, we need
to introduce the chain rule for stochastic differ-
entials, called the Ito formula:

Theorem 2.1 (The 1-dimensional Ito formula).
Let X(t) be an Ité6 process and ¢(t,x) €
C?([0,00) x R), then

Y(t) = g(t, X(1)),
1 again an Ité process, and
av (1) = 29 x @)yt + 224, x (0)ax 1)+
ot Ox "’

1 9%g
§ﬁ(t X(1)(dX(t))?,

where (dX(t))? = (dX(t))(dX(t)) is computed
according to the rules

dt.dt = dt.dW; = dWi.dt = 0, dW.dW; = dt.

Proof. see ([14],p.44).

Theorem 2.2 (The Ité isometry).
v(S,T), then

Let f €

/ fA(t,w)dt].

/ F(t, w)dWy(w

Proof. see ([14],p.29)
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The Ito formula is the stochastic analogue to
the chain rule of conventional calculus. Although
it is expressed in differential form for easy under-
standing, its meaning is precisely the equality of
the Ito integral of both sides of the equation. It is
proved under rather weak hypotheses by referring
the equation back to the definition of Ito integral
(Oksendal, 1998).

Definition 2.1 (The Ito integral), ([14],p.29).
Let f € v(S,T), then the Ité integral of f (from
S to T) is defined by

T T
/S F(t.)aBH) @) = lim [ on(t.w)dWi(w),

n—oo
(limit in LZ(P))

where ¢, is a sequence of elementary functions
such that

as m — oQ.

T
B / (F(t,w) — dn(t.0))2dt] 5 0,

S

3 Determination of approxi-
mate solution the SVIE

Consider the Eq. (2.1). The Taylor’s expansion
of the unknown function y(t) at x, is given by

V@)t —)"

(3.2)

y(t) = y(x)+y'(z)(t —x)+-- +

+ Ry(t, x),

where, R, (t,z) denotes Lagrange remainder and
is defined as

y(n—H)(C) (t o x)n—i—l,

Bn(t @) = (n+1)!

(3.3)

for some point ¢ between z and . In genral, the
Lagrange remainder R, (¢, x) becomes sufficiently
small when n is large enough. In particular, if
the desired solution y(t) is a polynomial of the
degree equal to or less than n, then R, (t,z) = 0.
Substituting Eq. (3.2) into Eq. (2.1) leads to

y(z) + jzo (_jl!)]ym 7) / ot () — Dt

0
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(-1

+ |
J:

49 () /0 o, ) — )W,

J=0

= f(x).

In the above derivation, the Lagrange remainder
has been dropped due to sufficiently small trun-
cated error. Moreover, a notation y0(z) = y(z)
is adopted. In Eq. (3.4), y9)(z) for j =0,...,n
are unknown functions. In order to obtain these
unknown functions, we consider the above equa-
tion as a linear equation for y(x) and its deriva-
tives up to n. Consequently, other n independent
linear equations for y(z) and its derivatives up to
n are required. These equations can be obtained
by the integration of both sides of Eq. (2.1) n
times as follows

(3.4)

/ " (@ — )y () dit

0
/Ox /t (= 5 (s, ()
+ 095 /tx (g; - s)i—lk‘z(s, t)y(t)dWsdt

:/ (=) f(0)dt, i=1,---.m, (3.5)

0

Now, inserting Eq. (3.2) for y(t) into Eq. (3.5),
we can get

(z — t)/dsdt + /01 /tz(a: —8) 7 ko (s, 1) Z (_;)J

J=0

o) (2)( — t) AW dt — / (x — )L f(B)t,
" (3.6)
Hence, Eqgs. (3.4) and (3.6) form a linear system
of n+1 algebraic equation for n+1 unknowns y(z)
and its derivatives up to n which can be solved
easily. Specifically, we solve the following system
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of linear equations for y(z),y (z),...,y"(x). The
system can be rewritten as
A(z)Y (z) = F(z), (3.7)
where
[ coo(z)  cor() con ()
Al = cro(z) c1(x) cin(T) (3.8)
Cnoi(ff) Cnl.(l‘) Cnn(T)
[ {1()$) yl(ﬂf)
R I I <> |
| f D () y™ (@)
(3.9)

where in (3.8), the first row refers to coefficients
of yU)(z) in Eq. (3.4) for j = 0,...,n and the
other rows refer to coefficients of yU)(z) in Eq.
(3.6) for j = 0,...,n. Application of Cramers
rule to the resulting system yields an approxi-
mate solution of Eq. ((3.4)). It is also noted that
not only y(z) but also y9)(z) for j = 1,...,n are
determined via solving the resulting system.

4 FError analysis

In this Section, we give an error analysis for
this method. For convenience, we suppose f(z),
ki(x,.) and ko(z,.) € C°°(I) where I is the in-
terval of interest. Moreover, it is assumed that
the solution to be determined is infinitely differ-
ential in the interval I. Furthermore, we assume
that k1 (z,.) and ko(x,.) are uniformly bounded,
i.e. there are two positive constants K; and K>
independent of n such that | k1(z,t) |< K; and
| ka(z,t) |< Ko for x € I. For determining the
approximate solution of Eq. (2.1), we consider n
terms of the Taylor series y(t) at x, that satisfies
in Eq. (2.1) as follows

yn(z) + /Ox ki (z, t)yn(t)dt + /033 ko(x, t)yn (t)dWy

= f(a). (4.10)
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Table 1: Mean, standard deviation and mean confidence interval for error in Example 5.1 withn =1 .

m Vg Sk % 95 Confidence Interval for error mean
Lowerbound Upperbound
30 0.00201909 0.00271682 0.00104689 0.00299129
50 0.00261748 0.00377173 0.00157201 0.00366295
100 0.00381430 0.00603494 0.00263145 0.00499714
150 0.00324601 0.00544121 0.00237523 0.00411678
200 0.00245754 0.00330552 0.00199942 0.00291566

Table 2: Mean, standard deviation and mean confidence interval for error in Example 5.1 with n =2 .

m Ug Sk % 95 Confidence Interval for error mean
Lowerbound Upperbound
30 0.00191827 0.0024717 0.00103378 0.00280276
50 0.00696840 0.00172683 0.00121819 0.00217550
100 0.00219951 0.00276663 0.00165725 0.00274177
150 0.00221501 0.00297590 0.00173876 0.00269125
200 0.00193067 0.00240522 0.00159732 0.00226402

Table 3: Mean, standard deviation and mean confidence interval for error in Example 5.2 with n =1 .

m Ug Sk % 95 Confidence Interval for error mean
Lowerbound Upperbound
30 0.00265150 0.00200914 0.00193254 0.00337046
50 0.00235167 0.00171831 0.00187538 0.00282796
100 0.00229577 0.00173910 0.00195490 0.00263663
150 0.00226720 0.00171843 0.00199219 0.00254220
200 0.00232418 0.00173169 0.00208418 0.00256418

Table 4: Mean, standard deviation and mean confidence interval for error in Example 5.2 with n =2 .

m Ug Sk % 95 Confidence Interval for error mean
Lowerbound Upperbound
30 0.00248681 0.00165598 0.00189423 0.00307940
50 0.00266417 0.00192375 0.00213093 0.00319740
100 0.00279153 0.00252379 0.00229686 0.00328619
150 0.00253247 0.00221575 0.00217787 0.00288706
200 0.00252617 0.00198018 0.00225173 0.00280061

Thus, y,(z) is referred to the nth-order approxi-  Since (a + b)? < 2a? + 2b% | we have
mation of the exact solution y(x). By subtracting )
Eq. (2.1) from Eq. (4.10), we get E(| yn(z) —y(2) ) <

yn () — y(x) = /0 ") (E) — ya(D)di+ 25| /0 "k () — yn(0)dt 2)

/Ox ko (2, 6)(y(t) — yn(t))dW. (4.11) + 2E(| /Ox ka (2, 8)(y(t) — ya(8))dWe [°). (4.12)
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Table 5: Error between exact solution and approximate solution for Examples 5.1 and 5.2 with n = 1,2

T Example 5.1 Example 5.2

n=1 n=>2 n=1 n=2
0.1 0.0000242909 0.0000142588 0.00036698 0.000631032
0.2 0.0001103250 0.0000693169 0.00004345 0.000444685
0.3 0.0004296230 0.0006350250 0.00126760 0.000039601
0.4 0.0006215360 0.0025920900 0.00434630 0.000880022
0.5 0.0000786668 0.0067937100 0.00989890 0.002060460

By using the Cauchy-Schwartz inequality, we ob-
tain

E(] /0 k() () — i (6)dt ?) <

B([ | k() — ga(t)) |2 di)
2 v ) — T 2
SKIE/O | yn(z) — y(z) | dt

<xi [ CB(lunle) — (@) [t (413)

Furthermore, from Theorem 2.1, we can write

E( /O " a(, £) (y(8) — g (£) AW, 2) <

B /0 | (e ) (E) — ya(t)) |2 di)
2 ‘ 2) — () 2
ngE/O | 4n(z) — y() | dt

<K} [ B () - o) Pt (414

Therefore, for some appropriate constant K we
get

E(| gn(x) - y(@) ) < K /O "B

| (y(t) = ya(1)) [*)dt. (4.15)

Thus, by using Granwall’s Lemma, we have E(|
yn(r) —y(x) |?) = 0 as n — co.

5 Numerical examples

In this Section, we present numerical results
for some examples from [11] to show the effi-
ciency and the accuracy of the presented method.

Example 5.1 Consider the following linear
stochastic Volterra integral equation,

y(z) =

1+/ to(t)dt—i—/ ty(t)dWy, z,t € ]0,0.5),
0 0
(5.16)

with the exact solution y(x) = e%J’fOz LWe - for
0 < z < 0.5. The numerical results are shown
in Tables 1 and 2. In the Tables, m 1is the
number of iterations, yg is the error mean , and
sg 18 the standard deviation of error. Table 5
shows the error between the exact solution and
the approximate solution for 0 < x < 0.5 with
n=1,2.

Example 5.2 Consider the following linear
stochastic Volterra integral equation,

y@%:% Aim@wma+42mwmmm@)

z,t € [0,0.5), (5.17)

with ~ the  exact  solution  y(x) =
1—126*%+5i”(99)+%(2m Jo sin®dB®)  for 0 < 3 < 0.5.
The numerical results are shown in Tables 3, /
and 5.
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6 Conclusion

Because for some SDEs that can be written as
Volterra integral equations, it is impossible to find
the exact solution of Eq. (2.1). It would be con-
venient to determine its numerical solution based
on stochastic numerical analysis. This method
is very simple and effective in comparison with
other methods. Also, this method has least com-
putations and cost comparing with other meth-
ods. In this paper, the applicability and the ac-
curacy of this method were shown by two exam-
ples. The results of the numerical solution were
compared with the analytical solution.
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