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Abstract

A long time ago, since the launch of the first artificial satellite in 1957, controling attitude of satellites
has been considered by the designers and engineers of aerospace industry. Considering the importance
of this issue various methods of control in response to this need have been presented and analyzed
until now. In this paper, we propose and analyze a three-axis optimal control on the six-dimensional
system which describes the kinetic and kinematic equations of a satellite subjected to deterministic
external perturbations which induce chaotic motion. At first, the chaotic behavior of system using
Lyapunov exponents (LE) and numerical simulations is investigated when no control is affected. Then,
a three-axis optimal control is presented by the Pontryagin maximum principle (PMP). This optimal
control stabilizes the satellite attitude around the equilibrium point of origin. Finally, we give some
simulation results to visualize the effectiveness and feasibility of the proposed method.
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1 Introduction

A
rtificial satellites are purposely placed into or-
bit around the Earth, other planets, or the

Sun. Since the launching of the first artificial
satellite in 1957, thousands of these man-made
moons have been rocketed into Earth’s orbit. To-
day, artificial satellites play key roles in the com-
munications industry, military intelligence, and
the scientific study of the Earth and the outer
space [14].

A satellite has to keep the solar panels pointed
toward the Sun. It has to keep its antennas’ and
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sensors’ point toward Earth or toward the object
the satellite is observing.

Because the orientation of satellites in station-
ary orbits gradually is changed with time, atti-
tude control is needed to maintain a satellite at-
titude in the desired direction. Many control de-
sign methods have been investigated to solve this
problem until now. In general, these methods are
classified as active or passive. Passive method has
been utilized in [11]. Some of the active methods
include generalized predictive control method [8],
sliding-mode approach [3], control method based
on Lyapunov [5], nonlinear control based on lin-
ear matrix inequality [15], linear time-delay feed-
back control [6], nonlinear H∞ control [16], and
Robust and optimal attitude control of spacecraft
with disturbances [13].

Optimal control applications can be found in
the minimizing issues such as energy consump-
tion and fuel in systems [14], dose of drugs in the
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treatment of diseases [7], time in processes and
etc. In connection with the satellites the optimal
control problem can be applied to solve a variety
of problems e.g. attitude control in the desired
direction, lunar soft landing, orbital transfer, etc.

The main purpose of this paper is to introduce
a control function on each of the three satellite’s
kinetic equations. These control functions are
within the framework of an optimal control prob-
lem via PMP. Also, we show that these controls
are able to return back the six satellite’s attitude
variables ( including three variables of angular
velocities and three variables of Euler angles ) to
equilibrium point origin, when satellite attitude
is tilted of this point.

This paper is organized as follows: Section 2,
expresses the governing equations of satellite at-
titude. Section 3, describes chaotic behavior of
system using LEs and numerical simulations. Ac-
cess to an attitude optimal control is investigated
in Section 4 via PMP, and simulation results are
shown at the end of this section. Finally, our
concluding remarks are given.

2 Coordinate frame and gov-
erning equations

2.1 Coordinate frame

The frames that are used to describe the prob-
lem of satellite’s attitude control are illustrated
in Figure 1, which we discribe each of them [1].

• Earth centered inertial frame

This frame has its origin in the center of
the Earth. It is defined by the unit vec-
tors X⃗i ,Y⃗i and Z⃗i. The Z⃗i axis points at
a 90-angle relative to the Earth’s equatorial
plane where it coincides with the Earth’s ro-
tational axis and continues through the ce-
lestial North Pole. The X⃗i axis points in the
vernal equinox vector direction, which is the
vector pointing from the center of the Sun to
the center of the Earth at the vernal equinox.
The vernal equinox is a time of the year when
the Earth’s orbital plane as it rotates around
the Sun coincides with the equatorial plane,
i.e. the center of the Sun lies in the same
plane as the Earth’s equator. Finally, the
Y⃗i axis completes the three axis orthonormal
frame according to the right-hand rule.

Figure 1: coordinates systems.

• Orbit fixed frame

The orbit fixed frame follows the orbit trajec-
tory and has its origin at the satellite’s center
of mass. It is defined by the unit vectors X⃗o,
Y⃗o and Z⃗o. The Z⃗o axis points toward the
center of the Earth, and the X⃗o axis points
in the orbit normal direction, which is paral-
lel to the orbital angular momentum vector.
Again, the Y⃗o axis completes the right-hand
orthonormal frame.

• Body Frame

The attitude coordinates are chosen to be
the (3-2-1) Euler angles: roll angle ϕ about
X⃗b axis, pitch angle θ about Y⃗b axis, and
yaw angle ψ about Z⃗b axis. The X⃗b, Y⃗b, and
Z⃗b axes align with the principal body axes,
and the body frame coincides with the orbit
frame when the Euler angles are zeros.

2.2 Governing equations

The governing equations of satellite attitude are
expressed by kinetic and kinematic equations.

2.2.1 Kinetic equations

Relation between angular velocity and torque in
body frame is investigated by kinetic equations.
By regarding the satellite as an ideal rigid body,
the dynamic equations can be derived from a
Newton-Euler formulation [4]

ẇx = 1
Ix

[(Iy − Iz)wywz + cx]

ẇy =
1
Iy

[(Iz − Ix)wxwz + cy]

ẇz =
1
Iz

[(Ix − Iy)wxwy + cz] ,

(2.1)
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where Ix, Iy, Iz are the inertial moments of the
satellite about its principal axes, respectively, wx,
wy, wz are angular velocities about the same axes
fixed in the rigid body, and cx, cy, cz are torques
applied about these axes at time t.

2.2.2 Kinematic equations

Kinematic equations of the satellite attitude
based on Euler’s angles are represented with

ϕ̇ = wx + wy sinϕ tan θ + wz cosϕ tan θ

θ̇ = wy cosϕ− wz sinϕ

ψ̇ = wy sinϕ sec θ + wz cosϕ sec θ,
(2.2)

where ϕ is the rotation about the Xb axis and
θ is the rotation about the Yb axis and ψ is the
rotation about the Zb axis in body frame [12].

The kinematic equations explain relationship
between attitude and angular velocity in inertial
frame.

In pursuit of our work, to refer to equations
(2.1) and (2.2), we use the notation SA for satel-
lite attitude.

3 Analysis of chaos in the SA
system

In this section, chaotic behavior of the SA system,
is investigated using simulation results and LEs.
Early numerical simulation of system is done by
using of the Maple under the perturbing torques
[10, 17]

cx = −1200wx + 500
√
6wz

cy = 350wy

cz = −1000
√
6wx − 400wz.

(3.3)

Assuming the conditions given in Table 1,
chaotic behavior of the SA system is observed
in attractors of Figure 2. The attractors are
bounded but not fixed points and limit cycles
which is a property of chaotic systems [2]. The
LEs are quantities that characterize the rate of
separation of infinitesimally close trajectories of
a dynamical system. Figure 3 illustrates the LEs
of the SA system. Furthermore the value of each
of exponents are depicted in Table 2, and existing

Table 1: Initial conditions and constant values of the
SA system.

Attitudes Values Constants Values

ϕ0(rad) 0.5 Ix(kgm
2) 3000

θ0(rad) 0.5 Iy(kgm
2) 2000

ψ0(rad) 0.7 Iz(kgm
2) 1000

wx0(r/s) 10
wy0(r/s) 20
wz0(r/s) 15

Figure 2: Phase portrait of the angular velocities of
system (2.1), (2.2), whit perturbing torques (3.3).

positive LEs, indicate that the system is chaotic.

4 Optimal control of satellite
attitude

In this Section, we acquire optimal control of
satellite attitude about its equilibrium point of
origin, using the PMP [9].

Table 2: LEs Values of the SA system.

LEs Values LEs Values

λϕ +0.76107 λwx -0.56619
λθ +0.11558 λwy -1.3035
λψ +0.065799 λwz -5.186
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Figure 3: LEs of the SA system.

4.1 Theoretical results

Consider dynamical system

ẋi(t) = fi(x1(t), x2(t), ..., xn(t)), i = 1, ..., n.
(4.4)

where, x1, x2, ..., xn are the state variables, fi :
Rn −→ Rn, (i = 1, ..., n) are continuous nonlinear
functions. The controlled system with initial and
final conditions is

ẋi(t) = fi(x1(t), x2(t), ..., xn(t)) + ui(t),
i = 1, ..., n.

(4.5)

xi(0) = xi,0, xi(tf ) = x̄i, (4.6)

where, x̄i, (i = 1, ..., n) are components equilib-
rium point X̄, tf is a constant final time and
ui(t), (i = 1, ..., n) are control functions which
minimize the cost function

J =
1

2

∫ tf

0

n∑
i=1

(αi(xi(t)−x̄i)2+βiu2i (t))dt, (4.7)

where, αi, βi, (i = 1, ..., n) are positive constants
and J as a function of variables xi and ui. Opti-
mal control functions are designed to achieve the
equilibrium point in time tf .

The corresponding Hamiltonian is

H = −1

2

∑n
i=1(αi(xi − x̄i)

2 + βiui
2)

+
∑n

i=1 λi(fi + ui),

(4.8)

where, λi, (i = 1, ..., n) are costate variables. Ac-
cording to PMP, the costate equations and the
necessary optimality conditions can be written as

follows



ẋi =
∂H
∂λi

,

λ̇i = − ∂H
∂xi
,

∂H
∂ui

= 0.

(4.9)

Substituting Hamiltonian function (4.8) into
(4.9)results


ẋi(t) = fi(x1(t), x2(t), ..., xn(t)) + ui(t),

λ̇i = αi(xi − x̄i)−
∂(

∑n
i=1 λi(fi+ui))

∂xi
,

(4.10)
and the optimal control functions

u∗i =
λi
βi
, i = 1, ..., n. (4.11)

From (4.6), (4.10) and (4.11) we obtain



ẋi(t) = fi(x1(t), x2(t), ..., xn(t)) +
λi
βi
,

λ̇i = αi(xi − x̄i)−
∂(

∑n
i=1 λi(fi+ui))

∂xi
,

xi(0) = xi,0, xi(tf ) = x̄i.
(4.12)

System (4.12) is a set of first order nonlinear
ODEs with boundary conditions. Now, we apply
system (4.12) on SA equations, so that the sys-
tem corresponding to optimal control of satellite
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attitude is obtained

ϕ̇ = wx + wy sinϕ tan θ + wz cosϕ tan θ,

θ̇ = wy cosϕ− wz sinϕ,

ψ̇ = wy sinϕ sec θ + wz cosϕ sec θ,
ẇx = 1

Ix
[(Iy − Iz)wywz − 1200wx

+1225wz +
λ4
β4
],

ẇy =
1
Iy
[(Iz − Ix)wxwz + 350wy +

λ5
β5
],

ẇz =
1
Iz
[(Ix − Iy)wxwy − 2450wx

−400wz − λ6
β6
],

λ̇1 = α1(ϕ̄− ϕ)− λ1(wy cosϕ tan θ)
−λ1(wz sinϕ tan θ) + λ2(wy sinϕ)
+λ2(wz cosϕ)− λ3(wy cosϕ sec θ)
−λ3(wz sinϕ sec θ),

λ̇2 = α2(θ̄ − θ)− λ1(wy sinϕsec
2 θ)

+λ1(wz cosϕsec
2 θ)

−λ3 sec θ tan θ(wy sinϕ+ wz cosϕ),

λ̇3 = α3(ψ̄ − ψ),

λ̇4 = α4(w̄x − wx)− λ1 + 1200λ4
−λ5( 1

Iy
(Iz − Ix)wz)

−λ6( 1
Iz
(Ix − Iy)wy − 1000

√
6),

λ̇5 = α5(w̄y − wy)− λ1 sinϕ tan θ
−λ2 cosϕ− λ3 sinϕ sec θ − 350λ5
−λ4 1

Ix
(Iy − Iz)wz − λ6

1
Iz
(Ix − Iy)wx,

λ̇6 = α6(w̄z − wz)− λ1 cosϕ tan θ
+λ2 sinϕ− λ3 cosϕ sec θ − 1225λ4
−λ4 1

Ix
(Iy − Iz)wy − λ5

1
Iy
(Iz − Ix)wx

+400λ6,
X(O) = Xo, X(tf ) = X̄,

(4.13)
where, X and X̄ are satellite’s attitude vector
(ϕ, θ, ψ, wx, wy, wz) and equilibrium point of SA
system respectively, and tf is a given time. Note
that in (4.13) the control functions is only con-
sidered for kinematic equations. Next, by solving
the nonlinear system (4.13) with given boundary
conditions (4.6), we obtain the optimal control
functions and the optimal state trajectory of the
SA system.

4.2 Numerical simulation of optimal
control

In this section, to predicate and verify the effec-
tiveness of the theoretical results, we solve the
system (4.13) with tf = 200s, equilibrium point
X̄ = (0, 0, 0, 0, 0, 0) and the initial conditions and
the hypothetical constant values are given in Ta-
ble 3 and Table 4. Numerical simulations are
obtained using the Matlab’s bvp4c solver. Figure

Table 3: Initial conditions and constant values of the
SA system.

Attitudes Values Constants Values

ϕ0(rad) 0.7 Ix(kgm
2) 3000

θ0(rad) 0.5 Iy(kgm
2) 2000

ψ0(rad) 0.3 Iz(kgm
2) 1000

wx0(r/s) 0.2

wy0(r/s) 0.1

wz0(r/s) 0.2

Table 4: Constant values of the SA system.

Constants Values Constants Values

α1 15 β4 0.2
α2 15 β5 0.4
α3 15 β6 0.2
α4 10
α5 10
α6 10

4 and Figure 5 illustrate the simulation results
of the SA system based on the control functions
(4.11). In these figures, time series responses cor-
responding to Euler angles and angular velocities
demonstrates the appropriate performance of the
optimal controllers with regard to the stabiliza-
tion and suppression of chaos. Also time series
responses for optimal controllers are depicted in
Figure 6.

5 Conclusion

In this paper, the problem of three-axis optimal
control of the chaotic satellite attitude has been
developed. Optimal control functions were pro-
posed based on the Pontryagin maximum prin-
ciple. These control functions were powerful
in order to align the body axes with the orbit
axes when satellite attitude was confused to a
disturbed torque. Moreover, angular velocities
were diminished to zero by them. In the other
words, satellite was stabilized around the equilib-
rium point of origin. Finally, numerical simula-
tions were given to show the effectiveness of our
method.
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Figure 4: Time series responses corresponding to
Euler angles in system (4.13) via optimal control.
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