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Abstract

In this paper, the weakly singular nonlinear integro-differential equation is solved by using
the homotopy perturbation and homotopy analysis methods . The approximation solution
of this equation is calculated in the form of a series which its components are computed
easily . The existence and uniqueness of the solution and the convergence of the proposed
method are proved. A numerical example is studied to demonstrate the accuracy of the
presented method.
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1 Introduction

Since many physical problems are modeled by integro-differential equations, the numerical
solutions of such integro-differential equations have been highly studied by many authors.
In recent years some works have been done in order to find the numerical solution of
singular integral and integro-differential equations, for example [2, 5, 6, 8, 9, 10, 12, 16,
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22,23, 24]. In this study, we develop HPM and HAM to solve the weakly singular nonlinear
Volterra integro-differential equations as follows:

r 1
y®) (z) = f(x) +u/a o1 Gy(t)) dt, k>1l,a<t<axz<b, (1.1)
with initial conditions
y"a)=b,, r=0,1,2,... k-1, (1.2)

where a, b, 11, b, are constant values, f(z), G(y(t)) are functions which have suitable deriva-
tives on an interval a <t < x <b.

The paper is organized as follows. In section 2, the HPM and HAM are briefly pre-
sented. In section 3, these methods are presented for solving Eq.(1.1). Also, the existence
and uniqueness of the solution and convergence of the proposed methods are proved. Fi-
nally, the numerical examples and computational complexity of the proposed methods are
shown in section 4.

To obtain the approximate solution of Eq.(1.1), by integrating k times from Eq.(1.1)
with respect to x and using the initial conditions we obtain,

yla) = Fla)+ 17| L Gy ar), (1.3)

x—t

where L1 is the multiple integration operator as follows:

-t ):/;/;.../:(.)dxdx...dx, (k times).

+Z (x —a)"

The following relations have been mentloned in [25]:

U =G =g [0t = cm & ()

rx—1 x—t

and,

SO, we can write,

() = F(o) + 1 /:(a: - t)k\/% Gly(®)) dt. (1.5)

In Eq.(1.5), we assume that F(z) is bounded for all z in C' = [a, b] and
—(x — k2 < M
Also, we suppose the nonlinear term G(y(t)) is Lipschitz continuous with
Gly) = Gy < L'y -y

We set,
a=LM(b-a).
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2 Introducing homotopy

2.1 Description of the HAM

Let
Nly] =0,

where N is a nonlinear operator, y(z) is an unknown function and z is an independent
variable. If yo(z) denotes an initial guess of the exact solution y(x), h # 0 an auxiliary
parameter, H(x) # 0 an auxiliary function, and L an auxiliary linear operator with the
property L[r(z)] = 0 when r(z) = 0, then by consideringg € [0,1] as an embedding
parameter, we construct a homotopy as follows:

~

(1 —q)Li¢(w;q) — yo(x)] — ghH (x)N[p(x; q)] = Hlp(w; q); yo(x), H(z),h,q].  (2.6)

It should be emphasized that we have great freedom to choose the initial guess yo(z), the
auxiliary linear operator L, the non-zero auxiliary parameter h, and the auxiliary function
Enforcing the homotopy Eq.(2.6) to be zero, i.e.,

A~

H[¢(£?Q);y0($)7H($)7h>Q] =0, (27)

we get the zero-order deformation equation as follows:
(1= q)L[¢(z; ) — yo(z)] = ¢hH (z) N (x; q)]. (2.8)

When ¢ = 0, the zero-order deformation Eq.(2.8) becomes

¢(x;0) = yo(x), (2.9)
and when g = 1, since h # 0 and H(z) # 0, the Eq.(2.8) is equivalent to
B(z;1) = y(a). (2.10)

Thus, according to Eq.(2.9) and Eq.(2.10), as the embedding parameter ¢ increases from 0
to 1, ¢(x; q) varies continuously from the initial approximation yo(x) to the exact solution
y(z). Such a kind of continuous variation is called deformation in homotopy [1, 2, 11, 17,
18, 19, 20, 21].

Due to Taylor’s theorem, ¢(x;q) can be expanded in a power series of ¢ as follows

¢(x;9) = yo(@) + Y ym(@)q"™, (2.11)
m=1

where,
1 9mp(x59)
m! O™

Ym(x) =

lq=0 -
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Let the initial guess yo(z), the auxiliary linear parameter L, the nonzero auxiliary pa-
rameter h and the auxiliary function H(z) be properly chosen so that the power series
Eq.(2.11) of ¢(x;q) converges at ¢ = 1, then, we under these assumptions the solution
series is obtained:

y(@) = d(;1) = yo(x) + Y _ ym(x). (2.12)
m=1
From Eq.(2.11) and Eq.(2.8) can be written as follows
LY ym(@) ¢™ = ¢ LI ym(2)q™] = q h H(z)N[(x,q)]. (2.13)
m=1 m=1

By differentiating Eq.(2.13) m times with respect to ¢, we obtain

m! Llym () — ym_1(2)] = h H(z) m T Nelwal |

Ogqm—1
Therefore,
Llym(z) = Xmym—1(2)] = hH (2) R (ym—1(2)),
Y (0) = 0, (2.14)
where, B
Pontn1(0)) = o e o (215)
and

0 m<1,
Xm =31 m>1.

Note that the high-order deformation Eq.(2.14) is governing the linear operator L, and
the term R, (ym—1(x)) can be expressed simply by Eq.(2.15) for any nonlinear operator
N.

To obtain the approximation solution of Eq.(1.1) based on the HAM let

Nly] = y(2) — L (f(@)) = 420 & —a)'b, — pL ([ A Glu(t)) db) = 0.

We obtain the term S ¥~} L(z — a)"b, from the initial conditions.

We have, o
Ron(yn-1(2)) = ymor(@) = 1L ([7 A Glyma (1)) ) -
~(1=x) (L7 (@) + XI5 A —a)b ), m> 1.
Substituting Eq.(2.16) into Eq.(2.14),
Llyn(@) = X1 ()] = hH(@) [ym-1(@) = nL7" ([7 725 Gymr (1)) dt) -
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We take an initial guess yo(z) = F(z) = L~Y(f(x)) + SF2) L(z — a)"b,, an auxiliary

r=0 r!
linear operator Ly = y, a nonzero auxiliary parameter h = —1, and an auxiliary function

H(x) = 1. This is substituted into Eq.(2.17) to give the recurrence relation

yo(x) = L7 (f(2) + S02) Lz — a)'by,
(2.18)

ym(z) = fax iz — t) 2G(ym_1(t)) dt), m > 1.

Relation Eq.(2.18) will enable us to determine the components y,, (z) recursively for m > 0.

2.2 Description of the HPM

To explain HPM [3, 4, 7, 13, 14, 15], we consider the following general nonlinear differential
equation:

Ly + Ny = f(y), (2.19)

with initial conditions

According to HPM, we construct a homotopy which satisfies the following relation
H(y,p) = Ly — Lvo +p Lvo +p [Ny — f(y)] =0, (2.20)
where p € [0,1] is an embedding parameter and vy is an arbitrary initial approximation

satisfying the given initial conditions.
In HPM, the solution of Eq.(2.20) is expressed as

y(x) = yo(x) + p yi(x) + p* ya(z) + - (2.21)

Hence the approximate solution of Eq.(2.19) can be expressed as a series of the power of
p, i.e.
y=lmy=y+y1+y2+---
p—1

we have the recursive relation as follows:

. (2.22)
Ym(z,t) = 2”:_11 & — t)k_% G(um——1(t)) dt, m > 1.
3 Existence solution and convergence of iterative methods

Theorem 3.1. The weakly singular nonlinear Volterra integro-differential equation in
Eq.(1.1), has a unique solution whenever 0 < a < 1.
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Proof: Let y and y* be two different solutions of Eq.(1.5) then

S MG ) - Gy

< [7

<(b—a) L'M |y—y*,

ly —y*| =

1
oz — t)k 2

|G(y) — G(y*)| dt

Then we obtain (1 — a)|ly — y*| < 0. Since 0 < a < 1, so |y — y*| = 0. Therefore, y = y*
and this completes the proof.

Theorem 3.2. If the series solution y(x) = > " Ym(x) obtained from Eq.(2.18) by using
HAM s convergent then it converges to the exact solution of the Eq.(1.1).

Proof: We assume:

G(y(t) = Xy Glym(2)). (3.23)
where,
Jim ) =0
We can write
[Ym () = Xmym-1(2)] = y1 + (y2 = y1) + -+ (Yn = Yn—1) = Yn(2). (3.24)
m=1
Hence, from Eq.(3.23),
nl;rgo yn(x) = 0. (3.25)
So, using Eq.(3.25)and the definition of the linear operator L, we have
o0 o
Llym(@) = xmym—-1(x)] = L[} _ [ym(®) = Xmym—-1(2)]] = 0.
m=1 m=1

Therefore, from Eq.(2.13) we can obtain that

oo

S Llym(@) = Xontpm-1(@)] = RH() S Ron(m1(2)) = 0.

m=1 =1

Since h # 0 and H(z) # 0, we have

D R (Ym-1(x)) = 0. (3.26)

m=1
By substituting R,,—1(um—1(z,t)) into the relation Eq.(3.26) and simplifying it , we have
Y=t B (Ym—1(2)) =300 [?/m—l —pLt <f; a}—t G(ym-1(1)) dt) — (1= xm)F(2)

= y(a) = F(a) = uL™ (J7 i (S0 Cluma(1)])

(3.27)
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From Eq.(3.26) and Eq.(3.27), we have

y(w) = F(a) + L[ A Gly(®) d),

r—t
therefore, y(z) must be the exact solution of Eq.(1.1).

Theorem 3.3. The series solution y(z) = > o7, ym(x) obtained from Eq.(2.22) by using
HPM is convergent then it converges to the exact solution of the Eq.(1.1).

Proof: We set,
¢n($) = Z?:l yl(x)v
Pnti(z) = Z?If yi(z)

so, we have

| Gns1(2) = Sn(@) | =] o+ yn — 6n |

=[ Yn |

<SP @ = R 5 || Glymen—a (1) | dt.
then,

Dl ¢nti(@) = ¢nl2) < (m =D | Flz) | D a",
n=0 n=0

Since 0 < a < 1, therefore,
lim y,(z) = y(z).

n—o0

4 Numerical example

In this section, we compute a numerical example which is solved by the HAM and HPM .
The programs have been provided with mathematica 6 according to the following algorithm
where ¢ is a given positive value.

Algorithm:

Step 1. n <+ 0.

Step 2. Calculate the recursive relation using Eq.(2.18) for HAM and Eq.(2.22) for HPM.
Step 3. If | ynt1 — yn |< € then go to step 4 else n < n + 1 and go to step 2.

Step 4. Print y(z) = Y ;" , y; as the approximate of the exact solution.

Lemma 4.1. The computational complexity of the above algorithm for HAM is O(n) and
for HPM is O(n?).

Proof: The number of computations including division, production, sum and subtrac-
tion.
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HAM:
In step 2,

y125.

Ynt+1 : 9, n>0.

In step 4, the total number of the computations is equal to
Yo yi(z,t) =5n = O(n).

HPM:
In step 2,

y1:5.

Yn+1 0D, N >0.

In step 4, the total number of the computations is equal to
Sy yiz,t) = 4(n — 1)n = O(5n?).

Example 4.1. Let us now study the nonlinear singular integro-differential equation as
follows

T t 2
y"(x) = e® — 3.34067 x 107022 — 0.2v/z — 0.3 — 1.3333z + / [y()]tdt,
03 VT —
with initial conditions y(0) = 1, y'(0) = 1. The ezact solution is y(x) = e*, a = 0.98
Table 1

Numerical results for Example 4.1

x  Errors (HPM, n=6)) Errors (HAM,n=3)

0.30 0.050281 0.030281
0.35 0.05/18/ 0.032267
0.40 0.05875) 0.03675)
0.45 0.062683 0.038867
0.50 0.065375 0.043578
0.55 0.06728/ 0.045638
0.60 0.069881 0.047245
0.65 0.07267) 0.051257
0.70 0.075843 0.053897
0.75 0.077698 0.056245

0.80 0.079675 0.057895
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Table 1 shows that, the approximation solution of the weakly singular nonlinear Volterra
integro-differential equation is convergent with 3 iterations by using the HAM.

5 Conclusion

The HAM has been shown to solve effectively, easily and accurately a large class of non-
linear problems with the approximations which converge rapidly to the exact solutions. In
this work, the HAM has been successfully employed to obtain the approximate solution to
analytical solution of the weakly singular nonlinear integro-differential equation . For this
purpose in examples, have shown that the HAM converges more rapidly than the HPM
. Also, the number of computations in HAM is less than the number of computations in
HPM.
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