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Abstract

Consider the random walk among N places with N(N − 1)/2 transports. We attach an exponential
random variable Xij to each transport between places Pi and Pj and take these random variables
mutually independent. If transports are possible or impossible independently with probability p and
1 − p, respectively, then we give a lower bound for the distribution function of the smallest path at
point logN as Np is large.
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1 Introduction

A
random walk is a mathematical formaliza-
tion of a path that consists of a succes-

sion of random steps. For example, the path
traced by a molecule as it travels in a liquid or
a gas, the search path of a foraging animal, the
price of a fluctuating stock and the financial sta-
tus of a gambler can all be modeled as random
walks, although they may not be truly random
in reality. The term random walk was first in-
troduced by Karl Pearson [10] in 1905. Ran-
dom walks have been used in many fields: ecol-
ogy, economics, psychology, computer science,
physics, chemistry, and biology. Random walks
explain the observed behaviors of processes in
these fields, and thus serve as a fundamental
model for the recorded stochastic activity. Al-
though random walk problem is introduced as
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the one-dimensional motion of particles, but it
is not restricted to one dimension nor is the ap-
plications limited to the wanderings of inebriates.
However, the motivation of studying the random
walks and related fields is multifold and there are
some nice articles in this subject and its appli-
cations [1, 2, 4, 5, 3, 6, 11, 13, 14]. In all ran-
dom walks in the mentioned sciences, we label
two arbitrary places with 1 and N and assess the
random walk between these places.

2 Modelling

For two arbitrary places which we label 1 and
N , we attach an exponential random variable Xij

with mean 1 to each transport between places Pi

and Pj and take these random variables mutually
independent. i.e., Xij ∼ f(x) = e−xI(0,∞)(x). A
possible path can be shown as RN : 1 −→ Pi1 −→
Pi2 −→ · · · −→ Pij −→ N where (i1, ..., ij) is
any permutation of (2, ..., N −2). Suppose XN =
X1i1+Xi2i3+ · · ·+XijN . In fact, we define XN as

37

http://ijim.srbiau.ac.ir/


38 R. Kazemi /IJIM Vol. 6, No. 1 (2014) 37-40

the weight of RN . Thus if SN is the weight of the
smallest path, then we define SN = minRN

XN

where we minimize over all possible paths RN

from 1 to N . Now let TN be the smallest path of
a particle, then TN is the number of transports
in a path with weight SN .

Now, let YN = (YN (t); t ≥ 0) be a continuous
time Markov chain which is a pure birth process
with state space {1, 2, ..., N}. The random vari-
able YN (t) represents the number of places that
can be reached from place 1 in a travel time less
than or equal to t. Then the birth rate of this
process is n(N − n). For this, we describe that
the following bijection:
Bijection. The process YN = (YN (t); t ≥ 0)
starts at time 0 with one particle and will even-
tually be absorbed in place N . Let ZN =
(ZN (t); t ≥ 0) denotes the number of distinct
places (including place 1) that can be reached
over the exponential steps starting from place 1
within time t. Thus, the two processes are iden-
tical in distribution (This follows from the mem-
oryless property of the exponential distribution).
When n places are reached, each of these n places
can be connected to the set of N − n remaining
places over N − n different step. This bijection
shows that the rate of YN is λn = n(N − n).

A tree with n vertices labeled 1, 2, ..., n is a
recursive tree if the node labeled with 1 is dis-
tinguished as the root, and for each k such that
2 ≤ k ≤ n, the labels of the vertices in the unique
path from the root to the node labeled with k
form an increasing sequence. The usual model
of randomness on the space of n node recursive
trees is to assume that all (n−1)! trees are equally
likely. It is easy to see that given a random tree
Tn−1 on n− 1 nodes, we obtain a random tree on
n nodes by choosing a node (a parent) of Tn−1

uniformly at random and joining a node labeled
n (a child) to it (see Javanian and Vahidi-Asl [8]).

Definition 2.1 [9] The depth of a node in a tree
is the number of edges from the root node to that
node .

The evolution of the above discussed process can
be visualized by a random recursive tree of N

nodes. Also each birth in the pure birth process
corresponds to connecting an edge of unit length
randomly to one of the existing nodes in the as-
sociated tree.

3 The Main Results

As our first result we prove the following Lemma.

Lemma 3.1 Let B(α, β) be the Beta function
and ϕTN

(t) be the probability generating function
of TN . Then

E[TN ] ∼ logN + γ − 1,

Var[TN ] ∼ logN + γ − π2

6
, (3.1)

ϕTN
(t) =

N
(
(N+t+2)(N+t−1)

B(N+1,t+1) − 1
N

)
N − 1

,

where γ is Euler’s constant.

Proof. By bijection introduced in Section 2, the
random variable TN is equal to the depth DN

of particle N in the recursive tree. Thus proof
is completed (see Smythe and Mahmoud [12] for
details).□
Lemma 3.2 Let ϕSN

(t) be the probability gener-
ating function of SN . Then

ϕSN
(t) =

1

N − 1

N−1∑
j=1

j∏
i=1

λi

λi − t
. (3.2)

Proof. Suppose that YN (t) = n and that the as-
sociated tree has n nodes. After an exponential
time with rate n(N − n) the pure birth process
gives birth to a new node, which is born with
equal probability out of any of the n nodes. In
the tree we connect the new node to one of the n
existing nodes by a unit edge with equal probabil-
ity. Since the tree of size n is uniform, it follows
that the final tree with N nodes is uniform. Then
each of the N−1 possibilities of positions for node
N is equally likely and the generating function of
the

∑j
i=1Ei, where Ei ∼ Exp(i(N − i)) equals:

ϕj(t) =
∏j

i=1
λi

λi−t . Thus

ϕSN
(t) =

1

N − 1

N−1∑
j=1

ϕj(t)
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and proof is completed.□
Now, let transports are possible or impossible

independently with probability p and 1 − p, re-
spectively. The above discussion was based on
the fact that from each node in a cluster of size
n there are a constant number N −n of outgoing
links. Now each node in the cluster of the root
when this cluster has size n, the number of outgo-
ing links is binomial with parameters N − n and
p. As indicated in Lemma 3.1, we expect that
the probability that TN exceeds a large multiple
of logN is small. If TN is bounded by a multi-
ple of logN , then the exponential weights over
the shortest path are likely to be bounded by an-
other multiple of logN times the typical weight
over each edge of the shortest path. These typ-
ical weights are of order (Np)−1. The size of a
typical weight of an edge belonging to the short-
est path follows, because each node has on the
average Np edges and the minimum of Np in-
dependent exponentials each with weight 1 has
expectation (Np)−1.

Theorem 3.1 (Cramér’s theorem) Take a se-
quence of IID copies of the random variable
X1, ..., Xn and consider the sum Sn of the first
copies. The cumulative generating function of Sn

is nKX(t) where KX(t) = logE[etX ]. Then

logP

(
Sn

n
≥ ϵ

)
≤ inf

t↓0
−ntϵ+ nKX(t).

Theorem 3.2 There exists constant ϵ > 0 such
that for Np sufficiently large,

FSN

( logN
Np

)
≥ 1− 1

N ϵ
. (3.3)

Proof. If Wn is the sum of n independent expo-
nentials with mean 1, then Wn ∼ Gamma(n, 1).
Thus (Hofstad and et. al [7]),

SN ≤ 2W4j+1

Np
,

where j = ⌈log
√
N/log 2⌉ and ⌈y⌉ is the smallest

integer larger than y. Apply Cramér’s theorem

to W4j+1,

FSN

( logN
Np

)
= P

(
SN ≤ logN

Np

)
= P

(2W4j+1

Np
≥ logN

Np

)
= P

(
W4j+1 ≥

logN

2

)
≥ 1− 1

N ϵ
.

□

In the following theorem , we give a lower
bound for the distribution function of the small-
est path at point logN as Np is large.

Theorem 3.3 There exists constant ϵ > 0 such
that for Np sufficiently large,

FTN
(logN) ≥ 1− 2

N ϵ
.

Proof. By definition and applying Cramér’s the-
orem, we have

FTN
(logN)

= P (TN ≤ logN)

= 1− P (TN > logN)

= 1− P
(
TN > logN,SN >

logN

Np

)
− P (TN > logN,SN ≤ logN

Np
)

≥ 1− 1

N ϵ
− P (W[logN ] ≤ logN)

≥ 1− 1

N ϵ
− 1

N ϵ
= 1− 2

N ϵ
.

□
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