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Some Results on Continuous Frames for HilbertSpacesM. Azhini �, M. BeheshtiDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.Received 15 October 2009; revised 29 Desember 2009; accepted 13 January 2010.|||||||||||||||||||||||||||||||-AbstractIn this paper some results of continuous frames are discussed. After giving some basicde�nitions about these frames, we give some results about the characteristics of continuousframes in terms of the synthesis operator and its adjoint. Also we discuss the model ofnormalized tight continuous frames, and the orthogonal projection which is in relationwith these frames. Moreover the best approximation of the coe�cients for these frames isdiscussed.Keywords: Continuous frame, Synthesis operator, Best approximation adjoint.MSC 2000: 41A50, 41A58, 42A16, 42C40, 42C15||||||||||||||||||||||||||||||||{1 IntroductionThe theory of frames plays an important role in signal processing because of their resilience toquantization (Goyal, Vetterli and Thao [5]), resilience to additive noise, as well as their numericalstability of reconstruction and greater freedom to capture signal characteristics. Also frames havebeen used in sampling theory to oversampled perfect reconstruction �lter banks, system modeling,neural networks and quantum measurements (Eldar and Forney [4]). New application in imageprocessing, robust transmission over the Internet and wireless (Goyal, Kovacevic and Kelner [6]),coding and communication (Strohmer and Health Jr. [8]) was given.The concept of discrete frames in Hilbert spaces has been introduced by Du�n and Schae�er [2]and popularized greatly by Daubechies, Grossmann and Meyer [3]. A discrete frame is a countablefamily of elements in a separable Hilbert space which allows stable and not necessarily uniquedecompositions of arbitrary elements in an expansion of frame elements. Later, the concept ofcoherent states was generalized by Ali, Antoine and Gazeau [1] to families indexed by some locallycompact space endowed with a Radon measure and it leads to the notion of continuous frame.Some results about continuous frames were discussed by Rahimi, Najati and Dehghan in [7]. Inthis paper, we give other results in a di�erent approach. The continuous wavelet transformationand short time Fourier transformation are examples of continuous frames.In this section, we begin with a few preliminaries that will be needed in the next section.�Corresponding author. Email address: m.azhini@srbiau.ac.ir37



Assume that H is a Hilbert space and (
; �) is a measure space with positive measure �. A mappingF: 
! H is called a continuous frame with respect to (
; �) if F is weakly measurable and thereexist constants A, B such that:Akfk2 � Z
 j < f; F (!) > j2d�(!) � Bkfk2; 8f 2 H: (1.1)The constants A and B are called the continuous frame bounds. A continuous frame F is calledtight if A=B and normalized tight if A=B=1.The mapping F: 
! H is called Bessel if the second inequality in (1.1) holds and in this case Bis called the Bessel constant. If F is Bessel, then TF : L2(
; �)! H is weakly de�ned by< TF'; h >= Z
 '(!) < F (!); h > d�(!); h 2 H:In the next section, we show that the mapping TF is well de�ned, linear and bounded and then wecan de�ne its adjoint by T �F : H ! L2(
; �)with (T �Fh)(!) =< h; F (!) >; 8! 2 
:The operator TF is called a pre-frame operator or synthesis operator and T �F is called an analysisoperator. We can de�ne the operator SF = TFT �F and it can be shown that SF is a positive andinvertible operator. We call SF the continuous frame operator of F and denote it bySF f = Z
 < f; F (!) > F (!)d�(!):2 Main ResultsTheorem 2.1. let (
; �) be a measurable space and F : 
 ! H be an arbitrary function.F is a Bessel Function with bound B, if and only if the mapping T : L2(
; �) ! H withT (g) = R
 g(!)F (!)d�(!) is well de�ned, linear, bounded and we have kTk � pB .Its adjointis given by T � : H ! L2(
; �); T �x =< x; F (:) >; 8x 2 H:Proof: Let F be a Bessel function with bound B, then for all x 2 H the function Fx : 
! Cde�ned by Fx(!) =< x; F (w) >; 8w 2 
is integrable and Fx 2 L2(
; �) such thatkFxk2L2 � B:kxk2; 8x 2 Hwhich implies that kFxkL2 � pBkxk. Therefore for all g 2 L2, we have g:Fx 2 L1 and this functionis integrable. Hence T is well de�ned. It is clear that T is linear. Moreover:j < x; Tg > j = j Z
 g(!) < x; F (!) > d�(!)j= Z jg:Fxjd� � pBkgkL2 :kxkTherefore kTgk = supkxk=1j < x; Tg > j � pBkgkL2 :38
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That means kTk � pB:Conversely, let T be well de�ned, linear, bounded and we have kTk � pB. We �nd its adjoint asfollows; < T �x; g >L2=< x; Tg >H= Z g(!) < x; F (!) > d�(!)=<< x; F (:) >; g >L2 :For all x 2 H and g 2 L2, hence we have T �(x) =< x; F (:) > and in particular for all x 2 H thefunction x!< x; F (:) > is �- measurable. Now, we havekT �k = kTk � pBTherefore k < x; F (:) > k2L2 � Bkxk2thus F is pB - Bessel.Theorem 2.2. Let F : 
 ! H be a continuous frame for H with respect to (
; �) and with theframe operator S. If we de�ne the positive square root of S�1 with S�1=2, then fS�1=2F (!)g!2
is a normalized tight continuous frame and for all f 2 H we have:f = Z
 < f; S�1=2F (!) > S�1=2F (!)d�(!):Proof: Suppose that the constants A and B are frame bounds, then AI � S � BI thereforeB�1I � S�1 � A�1I . Hence S�1 > 0 and it follows that S�1=2 exists. For showing thatfS�1=2F (!)g!2
 is a frame we examine these speci�cations:1) we consider ' : 
! H that is de�ned byw !< f; S�1=2F (w) >; 8f 2 H:we have '(w) =< S�1=2f; F (w) >thus ' is measurable.2) For all f 2 H we have the following relationS(f) = Z < f; F (!) > F (!)d�(!)By substitution of S�1=2f we haveS1=2(f) = Z < S�1=2f; F (!) > F (!)d�(!)= Z < f; S�1=2F (!) > F (!)d�(!)Therefore S�1=2S1=2(f) = S�1=2(Z < f; S�1=2F (!) > F (!)d�(!))= Z < f; S�1=2F (!) > S�1=2F (!)d�(!)Thus f = Z < f; S�1=2F (!) > S�1=2F (!)d�(!)39
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that follows: kfk2 =< f; f >= Z
 < f; S�1=2F (!) >< S�1=2F (!); f > d�(!)= Z
 j < f; S�1=2F (!) > j2d�(!):Hence fS�1=2F (!)g!2
 is a normalized tight continuous frame.Proposition 2.1. Let F;G : 
! H be two frames for H with respect to (
; �) andU : L2(�)! L2(�)is de�ned by Ug(:) = Z
 < G(:); S�1F (�) > g(�)d�(�)for g 2 L2 and S is the frame operator of F. Then U is well de�ned linear and bounded operator.Proof: Since S�1F is a frame, from theorem (2.1) the function g:S�1F is weakly integrableon 
, where g 2 L2 and therefore the function t =< G(:); S�1F (�) > g(�) is integrable. If C is thelower frame bound of F and B is the upper frame bound of G then the frame S�1F has the upperframe bound 1=C. Now, if g 2 L2 since T is bounded then, G is a frame and theorem (2.1) we have:kUgk2L2 = Z
 j Z
 < G(!); S�1F (�) > g(�)d�(�)j2d�(�)= Z
 j < G(!); Z
 S�1F (�)g(�)d�(�) > j2d�(�)� B k Z S�1F (�)g(�)d�(�) k2H� BC kgkL2 <1:Thus G is well de�ned and bounded. Besides, it is clear that U is linear.Proposition 2.2. Let F be a continuous frame for H with respect to (
; �) for H and TF be thepre-frame operator for F. Then the orthogonal projection P from L2(�;
) onto RT� is given by:P (')(�) = Z '(!) < S�1F (!); F (�) > d�(!); 8� 2 
; 8' 2 L2that SF is the operator frame for F.Proof: From the proposition (2.1) if we consider F = G = P , then the mapping P is wellde�ned. Now, it is enough to show that for all ' 2 L2 we have:P (') = ('; if ' 2 RTF �0; if ' 2 R?TF � = NTFLet ' 2 RT�F , then we have: '(!) =< f; F (!) >; ! 2 
:40
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Therefore, from the de�nition of P we have,P (')(�) = Z < f; F (!) >< S�1F (!); F (�) > d�(!); 8' 2 L2:Also we know, f = SFS�1F f = Z < f; F (!) > S�1F (!)d�(!); 8f 2 H:Hence, we have: P (')(�) =< f; F (�) >= '(�)thus P (') = '; for all ' 2 L2:On the other hand we know that:NTF = f' 2 L2(
; �);< TF'; h >= Z '(!) < F (!); h > d�(w) = 0g:If ' 2 NTF , we haveZ '(!) < F (!); F (�) > d�(!) =< TF'; F (�) >= 0; 8� 2 
:Thus S�1(Z '(!) < F (!); F (�) > d�(!)) = 0and it follows that Z '(!) < S�1F (!); F (�) > d�(!) = 0that means P is the orthogonal projection from L2 onto RT�F .Proposition 2.3. Assume that F : 
 ! H is a continuous frame with respect to (
; �). If wehave f = R
 g(!)F (!)d�(!) for g 2 L2(�), thenkgk2L2 = k efk2L2 + k ef � gk2L2 :In other words, if we de�ne ef(!) :=< f; S�1F (!) >; 8! 2 
;then, the function ef is the best approximation coe�cient for the expansion of the elements of thecontinuous frame.Proof: Since Z
(g(!)� ef(!))F (!) = 0thus g � ef 2 NT� = R?T . On the other hand, we have ef =< f; S�1F (:) >2 RT . Therefore fromthe Pythagorian identity in Hilbert space L2(�) we havekgk2L2 = kg � ef + efk2L2 = kg � efk2L2 + k efk2L2 :
41
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