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Abstract

In this paper some results of continuous frames are discussed. After giving some basic
definitions about these frames, we give some results about the characteristics of continuous
frames in terms of the synthesis operator and its adjoint. Also we discuss the model of
normalized tight continuous frames, and the orthogonal projection which is in relation
with these frames. Moreover the best approximation of the coefficients for these frames is
discussed.
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1 Introduction

The theory of frames plays an important role in signal processing because of their resilience to
quantization (Goyal, Vetterli and Thao [5]), resilience to additive noise, as well as their numerical
stability of reconstruction and greater freedom to capture signal characteristics. Also frames have
been used in sampling theory to oversampled perfect reconstruction filter banks, system modeling,
neural networks and quantum measurements (Eldar and Forney [4]). New application in image
processing, robust transmission over the Internet and wireless (Goyal, Kovacevic and Kelner [6]),
coding and communication (Strohmer and Health Jr. [8]) was given.

The concept of discrete frames in Hilbert spaces has been introduced by Duffin and Schaeffer [2]
and popularized greatly by Daubechies, Grossmann and Meyer [3]. A discrete frame is a countable
family of elements in a separable Hilbert space which allows stable and not necessarily unique
decompositions of arbitrary elements in an expansion of frame elements. Later, the concept of
coherent states was generalized by Ali, Antoine and Gazeau [1] to families indexed by some locally
compact space endowed with a Radon measure and it leads to the notion of continuous frame.
Some results about continuous frames were discussed by Rahimi, Najati and Dehghan in [7]. In
this paper, we give other results in a different approach. The continuous wavelet transformation
and short time Fourier transformation are examples of continuous frames.

In this section, we begin with a few preliminaries that will be needed in the next section.
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Assume that H is a Hilbert space and (€2, i) is a measure space with positive measure u. A mapping
F: Q — H is called a continuous frame with respect to (Q, ) if F is weakly measurable and there
exist constants A, B such that:

Al < /Q | < f.F(w) > Pdu(w) < BIfIP, Vi€ H. (11)

The constants A and B are called the continuous frame bounds. A continuous frame F is called
tight if A=B and normalized tight if A=B=1.
The mapping F: Q — H is called Bessel if the second inequality in (1.1) holds and in this case B
is called the Bessel constant. If F is Bessel, then T : L?(Q, u) — H is weakly defined by

<Trp,h >:/cp(<,u)<F(<,u),h>d,u(u))7 heH.
Q

In the next section, we show that the mapping T is well defined, linear and bounded and then we
can define its adjoint by
Tj: H — L*(Q, )
with
(Tph)(w) =< h,F(w) >, YweQ.

The operator T is called a pre-frame operator or synthesis operator and T} is called an analysis
operator. We can define the operator Sp = TrT}. and it can be shown that Sy is a positive and
invertible operator. We call Sg the continuous frame operator of F and denote it by

Srf :/Q < fyF(w) > F(w)dp(w).

2 Main Results

Theorem 2.1. let (Q,u) be a measurable space and F : Q@ — H be an arbitrary function.
F z's a Bessel Functz'on with bound B, if and only if the mapping T : L*(Q,u) — H with

= [ 9(W)F(w)du(w) is well defined, linear, bounded and we have |T| < VB .Its adjoint
18 gwen by

T*:H — L*(Q,p), Tz =< 2,F(.) >, VzeH.

Proof: Let F be a Bessel function with bound B, then for all x € H the function F, : Q — C
defined by
F,(w) =<z, F(w) >, YweQ

is integrable and F, € L*(, 1) such that
|Fl2: < Bllol?, VoeH

which implies that || F,||z2 < V/B||z||. Therefore for all ¢ € L?, we have g.F, € L' and this function
is integrable. Hence T is well defined. It is clear that T is linear. Moreover:

|<ng>|—|/ ) <z, F(w) > du(w)|

- / G.Fuldi < VBllgll 2.l

Therefore
I1Tgll = supje=1] <z,Tg > | < VB|\gll 2
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That means ||T|| < v/B.
Conversely, let T be well defined, linear, bounded and we have ||T'|| < v/B. We find its adjoint as
follows;

<9 >p=<nTy>a= [ 40 <0Fw) > di)

=<<z,F()>9>L2.

For all # € H and g € L?, hence we have T*(r) =< z,F(.) > and in particular for all z € H the
function * —< x, F(.) > is u- measurable. Now, we have

IT*| =TIl < VB

Therefore
| <z, F()> 7. < Blz|?

thus F is /B - Bessel.

Theorem 2.2. Let F : Q — H be a continuous frame for H with respect to (2, ) and with the
frame operator S. If we define the positive square root of S—% with S~2, then {S~/2F(w)}ueq
18 a normalized tight continuous frame and for all f € H we have:

f:/ < £, STV F(w) > STY2F(w)dp(w).
Q

Proof: Suppose that the constants A and B are frame bounds, then Al < § < BI therefore
BT < 7' < A~'I. Hence S™' > 0 and it follows that S—1/? exists. For showing that
{S12F(w)}weq is a frame we examine these specifications:

1) we consider ¢ : @ — H that is defined by

w—< f,S”V2F(w) >, VfeH.

we have
o(w) =< STV2f F(w) >

thus ¢ is measurable.
2) For all f € H we have the following relation

S(f) = / < £, F(©) > F@)du(w)

By substitution of S~'/2f we have
$12(f) = [ < ST F@) > Flw)du)

= / < f,STVPF(w) > F(w)dp(w)

Therefore
712512y = 571/ / < [.57V2F(w) > F(w)du(w))

- / < f,STVEF(w) > STYEF(w)dp(w)

Thus

f :/< £, STY2F(w) > STYV2F(w)du(w)
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that follows:
IfIIP =< f,f>= / < f,8PF(w) >< SRR (W), f > dp(w)
Q

= [ 1< 2,57 2P @) > Pdute),
Hence {S~'/2F(w)},eq is a normalized tight continuous frame.
Proposition 2.1. Let F,G : Q — H be two frames for H with respect to (0, u) and
U: L*(p) — L*()

18 defined by

Ug) = [ < GOLSTFn) > gladun
for g € L? and S is the frame operator of F. Then U is well defined linear and bounded operator.

Proof: Since S~'F is a frame, from theorem (2.1) the function ¢.S~'F is weakly integrable
on Q, where g € L? and therefore the function t =< G(.), S"1F(n) > g(n) is integrable. If C is the
lower frame bound of F and B is the upper frame bound of G then the frame S~'F has the upper
frame bound 1/C. Now, if g € L? since T is bounded then, G is a frame and theorem (2.1) we have:

1UglI2: = /Q | /Q < G(w), 5 F(n) > g(n)du(n)Pdu(n)
- / | < G), / S F(n)g(n)du(n) > Pdu(n)
Q Q
<B | / ST F(mg(mydu(n) 1%
B

< rel llgllz> < o0.

Thus G is well defined and bounded. Besides, it is clear that U is linear.

Proposition 2.2. Let F be a continuous frame for H with respect to (2, u) for H and T be the
pre-frame operator for F. Then the orthogonal projection P from L?(u,Q) onto Ry is given by:

P)(0) = [ 0lw) < STF@). ) > dulw), Yoef VoelL?
that Sg is the operator frame for F.

Proof: From the proposition (2.1) if we consider F' = G = P, then the mapping P is well
defined. Now, it is enough to show that for all ¢ € L? we have:

0, if ¢€Rf.=Nr,

Let ¢ € Ry, then we have:

o(w) =< f,F(w) >, weN.
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Therefore, from the definition of P we have,

Po)(0) = [ < £.F(@) >< $TUF@), Flo) > dulw). Vo e I

Also we know,

f=8pS7'f= / < f,F(w) > S 'F(w)du(w), VfeH.
Hence, we have:

P(p)(v) =< f,F(v) >= ¢(v)

thus P(p) = ¢, for all p € L?.
On the other hand we know that:

Nr, = {p € L*(Q,pn); < Tro, h >= /go(w) < F(w),h > dp(w) = 0}.

If o € N7, we have

/(p(w) < F(w), F(v) > du(w) =< Trp,F(v) >=0, YveQ.

Thus

57 [ olw) < F@), F) > dufw) =0

and it follows that

/go(w) < ST'F(w), F(v) > du(w) =0
that means P is the orthogonal projection from L? onto Rrs.

Proposition 2.3. Assume that F : Q@ — H is a continuous frame with respect to (0, p). If we
have f = [, g(w)F(w)dp(w) for g € L*(u), then

lgllZe = IfIZ2 +11F = gllZ--
In other words, if we define
flw) =< f,S7'F(w) >, VYweQ,

then, the function f~ is the best approximation coefficient for the expansion of the elements of the
continuous frame.

Proof: Since

[tt) - Fenr) =o
Q

thus ¢ — fG Nr« = R%. On the other hand, we have f:< f,S7YF(.) >€ Ry. Therefore from
the Pythagorian identity in Hilbert space L2(x) we have

2= llg— F+ FlZ: = llg — Fll2= + 171132

gl
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