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Abstract

Recently, an innovative single-stage approach was developed in [J. Aparicio, J. L. Ruiz, I. Sirvent, Closest
targets and minimum distance to the Pareto-efficient frontier in DEA, Journal of Productivity Analysis 28
(2006) 209 – 218], to determine the closest Pareto-efficient targets for a given inefficient decision making unit
(DMU). The purpose of this paper is to perfect this approach via integrating it with the concepts of Hölder
norms and directional distance function. To this purpose, first, we introduce a furthest-target based directional,
named Linear FDHDF, Hölder distance function. Then, we characterize the set of Pareto-efficient points of
the production possibility set dominating directionally the assessed DMU. Finally, we develop a closest-target
based directional, named Linear CDHDF, Hölder distance function that, as well as providing an efficiency
index, determines the closest targets. Comparing to the earlier approach, our approach is more general and
the decision maker’s preference information can be appropriately incorporated into efficiency assessment and
target setting. Furthermore, it is more flexible in computer programming.
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1 Introduction

Data envelopment analysis (DEA), originally devel-
oped by Charnes et al. [3] and subsequently ex-

tended by Banker et al. [10], is a non-parametric linear
programming based technique to evaluate the relative
efficiency of a set of homogeneous DMUs. In addi-
tion to the efficiency score, as a practical outcome,
the most powerful piece of the obtained information
by a DEA analysis is the set of Pareto-efficient pro-
jections for the DMU under evaluation. Coordinates
of a projection point can be interpreted as the “tar-
get” levels of operation of inputs and outputs where
give a way of how the assessed DMU can be improved
to perform efficiently. Obviously, the more the targets
are “similar” to a given DMU, the less the DMU needs
practical effort to be efficient. In this sense, the clos-
est targets which the smallest modifications in inputs
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and outputs of the given DMU is required to reach
them, are as much similar as possible to the inputs and
outputs of the assessed DMU. However, the Pareto-
efficient targets determined via the conventional DEA
models (see [2, 3, 9, 10, 18]) have the maximum dis-
tance from the assessed DMU whereas this property
is in contrast with the concept of similarity. In con-
sidering this, the problem of finding closest Pareto-
efficient targets for a given DMU, attracted the atten-
tion of many researchers. A nice and brief review of
the appeared researches in DEA literature concerning
this problem can be found in [8]. There are other re-
lated papers such as [15, 17], which establishing a rela-
tion between the concepts of Hölder norms and direc-
tional distance function (DDF), recently introduced
in [11, 12], try to obtain the minimum distance to the
weak efficient frontier of the production possibility set
(PPS). Briec and Leleu [16] tried to measure arbitrary
normed distances and normed projections of the ineffi-
cient DMUs onto the efficient frontier. More recently,
Amirteimoori and Kordrostami [1] have developed the
Euclidean distance-based (EDB) measure of efficiency
and interpreted it as the “easiest and shortest path to
the efficient frontier”. However, their approach suffers
from several serious problems that we point out them
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in Appendix.
Among the developed approaches, the approach pre-
sented in [8] is an innovative single-stage one and is
based on characterizing the Pareto-efficient points of
PPS dominating the assessed DMU. Our aim in this
paper is to perfect this approach. To this aim, we
develop a closest-target based directional, named Lin-
ear CDHDF, Hölder distance function, by integrating
the concepts of similarity, Hölder norms and DDF.
The Linear CDHDF, as well as providing an efficiency
index and determining the closest Pareto-efficient tar-
gets, is more flexible in computer programming. Fur-
thermore, in comparison with the approach presented
in [8], our approach is more general and proposes fur-
ther modifications in it such as

1. Establishing a close relationship between the
DDF and the Hölder norms for measuring effi-
ciency.

2. Incorporating the decision maker’s (DM’s) pref-
erence information in both efficiency analysis and
target setting.

3. Determining the set of closest observed reference
DMUs to the under assessment DMU.

The reminder of this paper is organized as follows.
In the next Section, we conduct a brief review of the
DDF and its useful role in efficiency measurement. In
Subsection 3.1, we introduce a furthest-target based
Hölder, named Linear FDHDF, distance function. In
Subsection 3.2, by characterizing the set of Pareto-
efficient points of the PPS dominating directionally
the assessed DMU, we develop the Linear CDFDH.
After discussing about the practical advantages of the
proposed distance functions in Subsection 3.3, we de-
rive special cases of them in Subsection 3.4. In Section
4, we illustrate the developed approach. Finally, the
last section summarizes the results and concludes the
paper summary.

2 Preliminaries

First, we introduce the necessary notations and de-
fine the basic concepts used in this article. Through-
out this paper, we deal with n DMUs with m inputs
(i = 1, ...,m) and s outputs (r = 1, ..., s). The in-
put and output vectors of DMUj (j = 1, ..., n), are

xj = (x1j , ..., xmj)
T and yj = (y1j , ..., ysj)

T
where

xj ≥ 0, xj ̸= 0, yj ≥ 0 and yj ̸= 0. Further, we
consider DMUo as the DMU under evaluation.

2.1 Production possibility set

One of the first steps in DEA, after identifying in-
puts and outputs and gathering corresponding data,
is choosing an appropriate technology, i.e., determin-
ing the PPS. The PPS, T, is the set of all feasible

input-output vectors is given by the following produc-
tion technology:

T = {(x, y) : x can produce y} . (2.1)

Under the standard assumptions of inclusion of ob-
servations, convexity, constant returns to scale (CRS)
and free disposability of inputs and outputs, the
unique non-empty PPS spanned by n observed DMUs,
DMUj = (xj , yj), j = 1, ..., n, is as follows:

TC = { (x, y) ∈ Rm+s
≥0

∣∣ n∑
j=1

λjxij ≤ x
n∑

j=1

λjyrj ≥ y

(2.2)
λj ≥ 0, j = 1, ..., n }.

Note: Our study is carried out under the CRS and
the results can be recast for other types of returns to
scale after some simple changes.

2.2 Directional distance function

The directional distance function, recently introduced
in [11, 12] , is a version of Luenberger’s shortage func-
tion (see [5, 6], which generalizes the traditional Shep-
hard distance function (see [13]) and is well-suited to
the task of providing a measure of technical efficiency
in the full input-output space. This function projects
a given input-output vector, (x, y), proportionally
from itself to the frontier of PPS, T , in a pre-assigned
direction vector g = (−g−, g+) ∈ (−Rm

+ )×Rs
+, and is

defined as:

(2.3)
−→
DT

(
x, y;−g−, g+

)
=Max

{
β
∣∣(x− βg−, y + βg+

)
∈ T

}
.

The DEA formulation for the DDF, relative to (2.2),
becomes

β∗ =Max β
s.t.

∑n
j=1 λjxij ≤ xio − βg−i , i = 1, ...,m,∑n
j=1 λjyrj ≥ yro + βg+r , r = 1, ..., s,

λj ≥ 0 , j = 1, ..., n.
(2.4)

Although β is, in principle, unrestricted in sign, its
optimal value will never be less than zero, i.e. β∗ ≥ 0.
The optimal objective, β∗, in general, cannot be in-
terpreted as an efficiency index for any arbitrary di-
rection vector. A way of avoiding this shortcoming
is imposing the following primary conditions on the
direction vector g

Max
i

{
xij

/
g−i

}
≤ 1, j = 1, ..., n, (2.5)

which guarantees that β∗ ≤ 1 and, thereby, 1−β∗ can
be interpreted as an efficiency index. For instance,
each of the following direction vectors satisfies the con-
dition (2.5):
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g−i = xio, i = 1, ...,m, g+r = yro, r = 1, ..., s. (2.6)

g−i = xi =Max
j

{xij} , i = 1, ...,m, (2.7)

g+r = yr =Max
j

{yrj} , r = 1, ..., s.

3 Our proposed distance func-
tions

3.1 Linear furthest-target based direc-
tional Hölder distance function

Due to proportional adjustments of inputs and out-
puts in the model (2.4), the non-zero input and out-
put slacks are omitted and, therefore, the DDF fails
to take account them as sources of inefficiency. Thus,
the model (2.4) does not necessarily lead to a Pareto-
efficient projection point on the frontier. To remedy
this shortcoming, extending the DDF to non-radial
form and using the Hölder norms, we develop a new
distance function.

Definition 3.1 ˚The Hölder norms LP, p ∈ [1,∞],
are defined over an n−dimensional real-normed space
as follows:

∥∥p : x→ ∥x∥p =

{
(
∑n

i=1 |xi|
p
)

1
p , if p ∈ [1,∞[

Max
i

{|xi|} , if p = ∞.

(3.8)

The norm ∥ . ∥p is called the p-norm. Note that for
p = 2, we have the usual Euclidean distance. If p = ∞,
then the Hölder norm is also called infinity or Cheby-
shev norm. Over Rn, the most commonly used norms
are ∥ . ∥p, p = 1, 2,∞.
Now, we introduce a complete furthest-target based
directional, named Linear FDHDF, Hölder distance
function, relative to TC , as

Np, q
o (g) =Max ∥β−∥p + ∥β−∥q

s.t.
∑n

j=1 λjxij = xio − β−
i g

−
i , i = 1, ...,m,∑n

j=1 λjyrj = yro + β+
r g

+
r , r = 1, ..., s,

λj ≥ 0, β−
i ≥ 0, β+

r ≥ 0, ∀j,∀i,∀r.
(3.9)

In the above model, the vector g, which satisfies
in (2.5), represents the pre-assigned direction vector
along which DMUo, if it is an inefficient unit, is pro-
jected onto the Pareto-efficient frontier of the PPS.
The variables β−

i (i = 1, ...,m) and β+
r (r = 1, ..., s)

respectively represent the individual rates of contrac-
tion and expansion in the ith input and rth output of
DMUo, in the direction of g.

The Linear FDHDF simultaneously seeks to non-
proportionally expand outputs and reduce inputs.
Therefore, it takes account all non-zero slacks and
has higher discriminatory power in evaluating DMUs,
comparing with the model (2.4).
We define the optimal objective Np, q

o (g) as an inef-
ficiency index. Further, corresponding to the model
(3.9), we introduce a new efficiency index, named
Ep, q

o , as follows:

Ep, q
o (g) :=

[
1− 1

m

∥∥β−∗∥∥
p

]
×
[
1 +

1

s

∥∥β+∗∥∥
q

]−1

.

It is worth to note that imposing the condition (2.5)
on g makes the above index well-defined. This index
can be interpreted as the product of two separate com-
ponents of the input efficiency, θI = 1+ 1

m

∑m
i=1 τ

−
i

∗,

and the output efficiency, θO =
(
1− 1

s

∑s
r=1 τ

+
r

∗)−1
.

This interpretation gives a better explanation of the
efficiency of the under assessment DMU.

Definition 3.2 ˚ DMUo is said to be L-efficient if
and only if Ep, q

o (g) = 1.

The above conditions is equivalent to β−∗
i = β+∗

r =
0, for all i, r in each optimal solution of the model
(3.9), i.e., there is no input inefficiency (waste) and no
output inefficiency (shortfall) in all inputs and outputs
in any optimal solution. The Linear FDHDF satisfies
the following properties that can be readily verified:

1. Efficiency requirement: 0 ≤ Ep, q
o (g) ≤ 1. (see

[10, 13, 18])

2. Np, q
o (g) and Ep, q

o (g) are “complete” in the sense
that are non-oriented and also take account all
inefficiencies associated with the non-zero slacks.
(see [18])

3. Np, q
o (g) = 0 if and only if Ep, q

o (g) = 1.

4. β∗ ≤ Np, q
o (g) and Ep, q

o (g) ≤ 1− β∗.

5. Ep, q
o (g) = 1 if and only if DMUo is Pareto-

efficient.

6. Homogeneity of minus one: Np, q
o (αg) =

1
αN

p, q
o (g).

7. Input monotonicity:

x′ ≥ x⇒

Np, q
(
x′, y;−g−, g+

)
≥ Np, q

(
x, y;−g−, g+

)
.

8. Output monotonicity:

y′ ≤ y ⇒

Np, q
(
x′, y;−g−, g+

)
≥ Np, q

(
x, y;−g−, g+

)
.
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9. By choosing a direction vector such that the ith
component of g−i (i = 1, ...,m) and rth compo-
nent of g+r (r = 1, ..., s) respectively have the same
units of measurement as the ith input and rth
output, e.g., the vectors (2.6) and (2.7), Np, q

o (g)
and Ep, q

o (g) will be unit invariant. (see [4, 18])

10. Translation invariant: by adding the convexity
constraint

∑n
j=1 λj = 1, the indices Np, q

o (g)
and Ep, q

o (g) will be translation invariant, as long
as translation of data does not affect the pre-
assigned direction vector. (see [7, 9, 13, 18])

3.2 Linear closest-target based direc-
tional Hölder distance function

A serious drawback of the traditional DEA models is
that the obtained targets by them are the ”furthest”
Pareto-efficient targets from a given inefficient DMU,
instead of the closest ones. This is a consequence
of the common feature of maximizing slacks in these
models (e.g., see the objective of the models presented
in [2, 9, 18]. Similarly, the targets obtained by the
Linear FDHDF are the furthest ones from the DMU
under evaluation. Therefore, this model does not re-
move the above-mentioned shortcoming. As pointed
out in [8], this is in contrast with the idea of similarity
that is implemented as closeness between the values of
the inputs and/or outputs of the evaluated DMU and
the obtained target levels. To remedy this deficiency,
similar to the work of Aparicio et al. [8], we introduce
a new closest-target based directional Hölder distance
function, which provides the closest Pareto-efficient
targets for a given inefficient DMU. Before character-
izing the set of Pareto-efficient points of TC dominat-
ing DMUo in the direction of g, denoted by ∂oPETC ,
consider the following model:

N1, 1
o =Max

∑m
i=1 β

−
i +

∑s
r=1 β

+
r

s.t.
∑

j∈E λjxij = xio − β−
i g

−
i , i = 1, ...,m,∑

j∈E λjyrj = yro + β+
r g

+
r , r = 1, ..., s,

λj ≥ 0, β−
i ≥ 0, β+

r ≥ 0,∀j, ∀i,∀r.
(3.10)

which is a reduced form of the model (3.9) for p = q =
1. The dual problem of the above model is formulated
as follows:

Min
∑m

i=1 vixio −
∑s

r=1 uryro

s.t.
∑m

i=1 vixij −
∑s

r=1 uryrj − dj = 0, j ∈ E,

dj ≥ 0, vi ≥ 1
g−
i

, ur ≥ 1
g+
r
, ∀j,∀i,∀r.

(3.11)
In the following theorem, connecting the models (3.10)
and (3.11), we characterize the set ∂oPETC .

Theorem 3.1 (X,Y ) ∈ ∂oPETC if and only if there
exist λj ≥ 0, dj ≥ 0, Ij ∈ {0, 1}, j ∈ E, vi ≥ 1

g−
i

,

β−
i ≥ 0, ur ≥ 1

g+
r
, β+

r ≥ 0, for all i, r, such that

X =
∑

j∈E λjxj , Yr =
∑

j∈E λjyj ,∑
j∈E λjxij = xio − β−

i g
−
i , i = 1, ...,m,∑

j∈E λjyrj = yro + β+
r g

+
r , r = 1, ..., s,∑m

i=1 vixij −
∑s

r=1 uryrj − dj = 0, j ∈ E,

dj −M Ij ≤ 0, j ∈ E,

λj ≤M (1− Ij) , j ∈ E.
(3.12)

Proof. This theorem can be proved as the Theorem
cited in [8] with slight modifications.

Since g > 0, each optimal solution of the above system
satisfies (u, v) > 0 and for any j that dj = 0, DMUj

is Pareto-efficient, accordingly. Thus, the resulting
projection point, (X,Y ) = (

∑
j∈E λjxij ,

∑
j∈E λjyrj)

would be Pareto-efficient.
Now, using minimization form of the Linear FDHDF
on ∂oPETC , we develop a complete closest-target
based directional, named Linear CDHDF, Hölder
distance function as

CNp, q
o (g) =Min ∥β−∥p + ∥β−∥q

s.t.
∑

j∈E λjxij = xio − β−
i g

−
i , i = 1, ...,m,∑

j∈E λjyrj = yro + β+
r g

+
r , r = 1, ..., s,∑m

i=1 vixij −
∑s

r=1 uryrj − dj = 0, j ∈ E,

dj −M Ij ≤ 0, j ∈ E,

λj ≤M (1− Ij) , j ∈ E,

λj ≥ 0, Ij ∈ {0, 1} , j ∈ E,

vi ≥ 1
g−
i

, ur ≥ 1
g+
r
, ∀i, ∀r,

β−
i ≥ 0, β+

r ≥ 0, ∀i,∀r.
(3.13)

where the direction vector g = satisfies in (2.5).
The corresponding closest targets to the above
model will be given by the optimal projections,(∑n

j=1 λ
∗
jxij ,

∑n
j=1 λ

∗
jyrj

)
. Meanwhile, E is the set

of all extreme efficient DMUs founded in [8].
The Linear CDHDF measures the minimum linear dis-
tances from DMUo to ∂ o

PET and, similar to the ap-
proach presented in [8], provides a single-stage pro-
cedures to identify the closest Pareto-efficient targets
for DMUo. Corresponding to the Linear CDHDF, we
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introduce a new efficiency index, CEp, q
o , as follows:

CEp, q
o (g) :=

[
1− 1

m

∥∥β−∗∥∥
p

]
×

[
1 +

1

s

∥∥β+∗∥∥
q

]−1

.

Definition 3.3 ˚ DMUo is said to be LC-efficient if
and only if CEp, q

o (g) = 1.

Because ∂ o
PET ⊆ T and the Linear FDHDF and Lin-

ear CDHDF respectively maximizes and minimizes the
same function on the regions T and ∂ o

PET, so the fol-
lowing relation is held:

CNp, q
o (g) ≤ Np, q

o (g) . (3.14)

The above relation demonstrates that the projection
onto the closest point on the efficient frontier leads to
an inefficiency score that is not less than that obtained
from the usual DEA projection.
The traditional DEA models often, choose a reference
set that it contains the furthest Pareto-efficient ob-
servations from the inefficient DMU. By contrast, the
Linear CDHDF has a most important property that
its projection points for a given inefficient DMUo can
be expressed in terms of such observed Pareto-efficient
DMUs that they are as much similar as possible to
DMUo.

Definition 3.4 (Closest-Reference Set) Let
(λ∗, β−∗, β+∗) be an optimal solution of (3.13)
corresponding to a given inefficient DMUo. We
define the set of all DMUs corresponding to positive
λ∗j as the closest-reference set to DMUo which is
denoted by Ro i.e.,

Ro =
{
DMUj

∣∣λ∗j > 0 , j = 1, ..., n
}
. (3.15)

Each member of the set Ro is called a closest refer-
ence DMU to DMUo. In fact, the inputs and outputs
levels of each closest reference DMU to DMUo can be
interpreted as the closest observed targets for DMUo

and also it can be presented as a benchmark. By a
technique similar to that presented in [14], we can de-
termine all the observed closest reference DMUs to
DMUo.

3.3 Practical advantages of the Linear
FDHDF and Linear CDHDF

The Linear FDHDF and the Linear CDHDF have sev-
eral desirable and important properties that we dis-
cuss them here.

1. Incorporating the DM’s preference information
into efficiency assessment and target setting

In some practical cases, if the DM does not
equally prefer the efficient units, then it is nec-
essary to incorporate the DM’s judgments or a
priori knowledge into the consideration.

According to the preference orders of inputs and
outputs given by the DM, we can flexibly mod-
ify the vector g. Indeed, the values of the mod-
ified direction vector, g′,‘s components describe
the relative importance of inputs and outputs
given by the DM. Let the non-zero weights, wi,
i = 1, ...,m and vr, r = 1, ..., s, respectively are
associated with the priorities given by the DM
to the inputs and outputs such that the larger
the wi (vr), the more important the ith input
(rth output) is. After incorporating these weights
in these models, the coefficients of the variables
β−
i and β+

r , in the objective function will be wi

and vr, respectively. Therefore, the components
of the modified direction vector, g′, should be
g−i

′
= ξig

−
i and g+r

′
= ψrg

+
r , where ξi = 1/wi

and ψr = 1/vr. This shows that if an input
(output) has a larger importance, it should be
attached a larger weight or equivalently a small
direction’s component. By considering (2.5), we
must have ξi ≥ 1, i = 1, ...,m, equivalently
wi ≤ 1, r = 1, ..., s 1. We will clearly exemplify
this property via an illustrative example in the
next section.

2. Flexibility in computer programming A practical
advantage of our measures is their computational
flexibility i.e., by writing a computer code for one
of them, changing only the direction vector’s in-
puts in this program is enough to achieve new
scores associated with a new direction vectors.
This capability of our models greatly assists the
DM to make a more accurate evaluation, by con-
sidering several direction vectors, when he cannot
rely on an assessment depending only on a spe-
cific direction vector. In this case, by running the
program for the DM’s given direction vectors for
example, the average of the obtained scores can
be suggested to the DM as a final score for a given
DMU.

3. Finding closest Pareto-efficient targets

The levels of the Pareto-efficient targets obtained
from the Linear CDHDF for a given inefficient
DMU provide a way of how improving it to be ef-
ficient. Obviously, the more the targets are close
to a DMU, the less DMU needs practical effort to
be efficient. Therefore, the Linear CDHDF find-
ing the closest observed targets suggests a way of
for how improving the given DMU with the lowest
effort to make it efficient.

1If the given weights do not satisfy these conditions, the
normalized (dividing by Max {wi : i = 1, ...,m}) form of them
will satisfy these conditions.
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Table 1: The data set for Example 4.1.

A B C D E F G

I1 1 2 4 7 4 5 7
I2 6 4 2 1 7 4 5
O1 1 1 1 1 1 1 1

Table 2: Efficiency scores, targets and reference sets obtained by the Linear FDHDF.

Eff. Score Tar. Ref.

E 0.5455 1.67*B+0.17*C=(4,7,1.8333) B, C
F 0.6667 0.5*B+C=(5,4,1.5) B, C
G 0.5000 0.5*B+1.5*C=(7,5,2) B, C

Figure 1: The data set for Example 4.1.

3.4 Specific furthest- and closest-
target based directional distance
functions

In this subsection, specifying which norm (commonly
L1, L2 or L∞) is used in the models (3.9) and (3.13),
we derive the following specific distance functions.

The L1−distance case:

By setting p = q = 1 in (3.9) and (3.13), they
reduce to the Linear L1-FDHDF and Linear L1-
CDHDF models defined as

N1, 1
o (g) =Max

∑m
i=1 β

−
i +

∑s
r=1 β

+
r

s.t. (xo − β−g−, yo + β+g+) ∈ TC .

CN1, 1
o (g) =Min

∑m
i=1 β

−
i +

∑s
r=1 β

+
r

s.t. (xo − β−g−, yo + β+g+) ∈ ∂ o
PETC .

where, β−g− =
(
β−
1 g

−
1 , ..., β

−
mg

−
m

)T
and

β+g+ =
(
β+
1 g

+
1 , ..., β

+
s g

+
s

)T
.

The L2−distance case:

By setting p = q = 2 in (3.9) and (3.13), they re-
duce to the Linear L2-FDHDF and Linear L2-CDHDF
models defined as

N2, 2
o (g) =

Max
(∑m

i=1

(
β−
i

)2)1/2

+
(∑s

r=1 (β
+
r )

2
)1/2

s.t. (xo − β−g−, yo + β+g+) ∈ TC .

CN2, 2
o (g) =

Min
(∑m

i=1

(
β−
i

)2)1/2

+
(∑s

r=1 (β
+
r )

2
)1/2

s.t. (xo − β−g−, yo + β+g+) ∈ ∂ o
PETC .

The L∞−distance case:

By setting p = q = ∞ in (3.9) and (3.13), they reduce
to the Linear L∞-FDHDF and Linear L∞-CDHDF
models defined as

N∞, ∞
o (g) =Max Max

i

{
β−
i

}
+Max

r
{β+

r }

s.t. (xo − β−g−, yo + β+g+) ∈ TC .

CN∞, ∞
o (g) =Min Max

i

{
β−
i

}
+Max

r
{β+

r }

s.t. (xo − β−g−, yo + β+g+) ∈ ∂ o
PETC .

Note that, if in the above models we set z =
Max

i

{
β−
i

}
and w = Max

r
{β+

r }, then we can convert

them to the following equivalent forms:
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Table 3: Efficiency scores, targets and reference sets obtained by the Linear CDHDF.

Eff. Score Tar. Ref.

E 0.7143 A A
F 0.8333 0.67*C+0.33*D=(5,1.667,1) C, D
G 0.7143 D D

N∞, ∞
o (g) =Max z + w

s.t. (xo − β−g−, yo + β+g+) ∈ TC

z ≥ β−
i , i = 1, ...,m,

w ≥ β+
r , r = 1, ..., s.

CN∞, ∞
o (g) =Min z + w

s.t. (xo − β−g−, yo + β+g+) ∈ ∂ o
PETC

z ≥ β−
i , i = 1, ...,m,

w ≥ β+
r , r = 1, ..., s.

4 Illustrative examples

In this section, two examples are given to provide
numerical illustrations of our proposed measures and
their features. By the first example, we draw direct
comparisons between efficiency scores, target levels
and reference sets obtained from the Linear FDHDF
and the Linear CDHDF. By the second example, we
elaborate on the effect of incorporating the DM’s pref-
erence information into efficiency measurement and
target setting.

Example 4.1 Consider the hypothetical set of seven
homogeneous DMUs, A, B, C, D, E, F and G, using
two inputs to produce one output (Table 1).

Fig 1 can be viewed as representing a section at a given
output level, say y=1, of the PPS generated by the
seven units. It is easy to see that the units A, B, C
and D are extreme Pareto-efficient and so the Pareto-
efficient frontier consists of the dark solid piecewise
linear part ABCD. Moreover, the units E, F and G are
inefficient. Tables 2 and 3 record the results obtained
when we assess the inefficient units via the Linear FD-
HDF and the Linear CDHDF, with the direction vec-
tor (2.7). For each of the inefficient DMUs, E, F and
G, we have reported the value of its efficiency scores,
target levels and the corresponding reference set.
As it is evident from Tables 2 and 3, the efficiency
scores and reference sets obtained from the Linear
FDHDF is different from that obtained from Linear
CDHDF. The efficiency scores obtained from the Lin-
ear CDHDF (CE1,1) are not less than that obtained

from the Linear FDHDF (E1,1). This happens because
the Linear CDHDF, unlike the FDHDF ones, seeks to
minimize the distance from the efficient frontier and
so minimize the value of the slack variables.
In evaluating the inefficient units by the Linear FD-
HDF, the units B and C are determined as the furthest
observed reference DMUs for each of them whereas the
closest observed reference DMUs determined by the
Linear CDHDF for them are different.
In evaluating the units E and G by the Linear FD-
HDF, they have different score and the unit E per-
forms better than G. However, in evaluating them
by the Linear CDHDF, they have equal efficiency
scores. Therefore, we can conclude that finding the
closest Pareto-efficient targets the ranking orders may
be changed.

Example 4.2 Table 4 shows seven DMUs with two
inputs and two outputs. The first four DMUs, A, B,
C, D, are extreme Pareto-efficient and the last three
ones are inefficient. Using this data set, we elabo-
rate how our proposed models are capable to easily in-
corporate the DM’s preference information into effi-
ciency measurement and target setting. So the effi-
ciency scores and the obtained targets will be based on
both the PPS’s characteristics together with the given
information by the DM. To illustrate this, we consider
a specific vector of weights corresponding to I1, I2 and
O1 and O2. Obviously, in real world these weights
depend on the context and the experience of the DM.
So, only for illustrative purposes, we consider here the
vector of weights (w1, w2, v1, v2) = (1/3, 1, 1/10, 1).
As explained in the preceding section, in order to take
these information into account, the direction vector
(here we use the direction (2.7)) used in the Linear
FDHDF and the Linear CDHDF should be modified
as follows:

g = (7, 7, 6, 4) ⇒ g′ = (21, 7, 60, 4 ) .

Table 5 records the results of evaluating inefficient
DMUs by the Linear CDHDF, before and after incor-
porating the DM’s preference information.

Comparing the results of evaluating inefficient DMUs
by the Linear CDHDF, before and after incorporat-
ing the DM’s preference information, we observe sig-
nificant differences between the obtained scores and
the ranking orders. For instance, the rank of unit E
in evaluating by the Linear CDHDF, relative to the
units F and G, before and after taking account the
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Table 4: The data set for Example 4.2.

A B C D E F G

I1 1 2 4 7 4 5 4
I2 6 4 2 1 7 4 5
O1 2 3 5 6 1 2 3
O2 1 4 4 3 3 2 3

Table 5: The results for Example 4.2 before and after incorporating the DM’s preference information in the Linear
CDHDF.

Before incorporating After incorporating

Score Ref. Score Ref.

E 0.7158 A, B 0.9325 A, B
F 0.7286 A, B 0.9095 A, B
G 0.8000 A, B 0.8941 A, B

DM’s preference information are 3 and 1, respectively.
Furthermore, there are noticeable increases in the effi-
ciency scores obtained from the Linear CDHDF after
taking account the DM’s preference information. It
is worth to note that the closest observed reference
DMUs to the unit F before and after taking account
the DM’s preference information respectively are C
and B.
Overall, our findings highlight the pivotal role of the
direction vector in taking the DM’s preference infor-
mation into account and its effect on the efficiency,
the resulting target levels.

5 Conclusion

In this paper, using the concepts of the DDF and
the mathematical Hölder norms, we proposed new
furthest- and closest-target based directional, named
Linear FDHDF and Linear CDHDF, Hölder distance
functions and, in this way, made a useful generaliza-
tion of the approach presented in [8]. Our proposed
distance functions provide complete efficiency indices,
which have straightforward interpretations. Further-
more, the Linear CDHDF provides a more accept-
able and realistic evaluation via comparing the perfor-
mance of the inefficient DMUs with the closest Pareto-
efficient targets. In addition, determining the levels of
the closest targets for an inefficient DMU, this dis-
tance function suggests a way for how improving a
given inefficient DMU with the lowest effort to make it
efficient. From the practical viewpoint, our approach
is very useful since it is more flexible in computer pro-
gramming and appropriately incorporates the DM’s
preference information into efficiency assessment and
target setting.

Appendix

The approach presented by Amirteimoori and Kor-
drostami [1] is based upon a mathematical program-
ming, model (3.8) on page 990 in [1], which suffers
from several serious problems such as:

1. If the number of all the extreme CCR-efficient
DMUs in the data set is less than m + s − 1 or
each of the defining hyperplanes of the PPS has
this property that the number of extreme efficient
DMUs lying on it is less than m+ s− 1, then the
model ((3.8)) will be infeasible.

2. Considering that the Euclidean distance from
(xo, yo) to the hyperplane H = {(x, y)|−αtx +

βty = 0} is computed by
|−α txo+β tyo|

∥(α,β)∥2
. Thus,

to determine such a hyperplane with minimum
Euclidean distance from DMUo, the objective
α txo−β tyo

∥(α,β)∥2
must be minimized, instead of α txo−

β tyo.
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