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Abstract

We present an approach to design of fault tolerant computing systems. In this paper, a technique is
employed that enable the combination of several codes, in order to obtain flexibility in the design of
error correcting codes. Code combining techniques are very effective, which one of these codes are
turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the com-
parison of parity values computed in two ways, the parallel processing of input parity values produce
output parity values comparable with parity values regenerated from the original processed outputs,
can apply turbo codes for the redundancy. The goal is to describe new protection techniques that
are easily combined with normal data processing methods, leading to more effective fault tolerance.
The error detection structures are developed and they not only detected subsystem errors but also
corrected errors introduced in the data processing system. Concurrent parity values techniques are
very useful in detecting numerical error in the data processing operations, where a single error can
propagate to many output errors. This method is a new approach to concurrent error correction
in fault-tolerant computing systems. In this paper we present methods for employ turbo codes into
systematic forms and evaluation them with class of Convolutional codes, which is based on burst-
correcting codes, and bounds on the fault tolerance redundant computations are given. The methods
and analysis of the fault tolerance for the data processing systems are presented. A new technique is
presented for protecting against both hard and soft errors at the data sample level using the error-
detecting properties of turbo codes. The data processing system is surrounded with parallel parity
defined by a turbo code. Erroneous behavior is detected by comparing externally the calculated and
regenerated parity values.
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1 Introduction

I
n the case of fault tolerance, turbo codes are
primarily used for error detection, providing

the vector space separations, and detected ab-
normal behavior leads to re-computation of the
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corrupted results. While the theory of real num-
ber coding is similar to codes over finite fields,
the decoding for error-correcting purposes is more
complicated. Algorithm based fault tolerance,
proposed by Huang and Abraham [1], is a fault
tolerance scheme that uses Concurrent Error De-
tection (techniques at a functional level). ABFT
techniques are most effective when applied in a
systematic form. The redundancy necessary for
the ABFT method is commonly defined by real
number codes, generally of the block type [2]-[8].
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It has been used to reduce redundant hardware.
ABFT methodologies used in [9], [10] present par-
ity values dictated by a turbo code for protecting
linear processing systems. These codes provide
error detection in a continuous mode using the
same computational resources as the algorithm
progresses.
For the first time, in this paper we present meth-
ods for employ turbo codes into systematic forms.
ABFT techniques are most effective when apply-
ing a systematic form. The redundancy neces-
sary for the ABFT method is commonly defined
by real number codes, generally of the block type
[2]-[6].
ABFT technique is distinctive by three charac-
teristics:

(a) encoding the input sequence,

(b) Plan again of the algorithm to act on the
encoded input sequence,

(c) Distribution of the redundant computational
steps among the individual computational
units in order to adventure maximum par-
allelism.

The input sequences are encoded in the form of
error detecting or correcting codes. The mod-

ified algorithm operates on the encoded data and
produces encoded data output, from which useful
information can be recovered very easily. Obvi-
ously, the modified algorithm will take more time
to operate on the encoded data when compared to
the original algorithm; this time redundant must
not be excessive.
In order to use ABFT techniques efficiently, a
systematic form is desirable [11]-[13]. Perform-
ing error correction when infrequent intermittent
errors appear in the protected output values is
appealing in several settings. If corrupted output
values are recomputed after error detection, the
necessary control structure becomes very compli-
cated and the overall processing speed through-
put is degraded accordingly. In another situa-
tion, data and the related real-number parity val-
ues are located in storage and when they are re-
quired again, the occurrence of data errors is de-
tected. Then correcting a few errors may be much
simpler and faster than re-computing the original
data, even if the same processes are still active.
However, error correction would probably be em-
ployed if a viable error-correcting procedure were

available.
The ABFT error detection technique relies on
the comparison of parity values computed in two
ways. Number data processing errors are de-
tected by comparing parity values associated with
a convolution code. This article proposes a new
computing paradigm in order to provide fault tol-
erance for numerical algorithms. The data pro-
cessing system is protected through parity val-
ues defined by a high-rate real convolution code.
Parity comparisons provide error detection, while
output data correction is affected by a decoding
method that includes both round-off error and
computer-induced errors.
We make the following contributions in this pa-
per: In section 2, we discuss the related work, In
Section 3, we propose the usage of codes, turbo
codes and burst-correcting Convolutional codes,
for ABFT technique, In Section 4, we discuss The
error performance along with evaluation and sim-
ulation of turbo codes, In Section 5, simulations
and results are presented, In Section 6, discussion
of the conclusions.

2 RELATED WORK

High performance computers are in great demand
in modern data processing systems which involve
processing of a large amount of data. The ap-
plication areas of these high-speed computers de-
mand a large degree of reliability of the computed
results. However, the probability of errors in the
result increases with the amount of computation.
In order to accommodate the contradictory re-
quirements, high complexity and high reliability,
the system has to be designed to be fault tol-
erant. Conventional fault tolerance techniques
such as triple modular redundancy (TMR) and
triple time redundancy (TTR) suffer from either
a high hardware overhead (cost) or time overhead
(degraded performance). The Algorithm Based
Fault-Tolerance (ABFT) approach transforms a
system that does not tolerate a specific type of
faults, called the fault-intolerant system, to a sys-
tem that provides a specific level of fault toler-
ance, namely recovery and/or safety. The advan-
tage of Algorithm Based Fault-Tolerance is that
errors which are caused by permanent or tran-
sient failures in the system can be detected and
corrected by using a very low overhead and at
the original throughput. Real number codes in-
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volve symbols that have real or integer values
as opposed to classic binary codes. The real
number turbo codes hold great promise of pro-
tecting many data processing subsystems. There
are times when the error detection capabilities of
ABFT methods are not enough. Concurrent error
correction at the data-level for compensating the
effects of intermittent failures avoids disrupting
the data flow to react to detected errors. Turbo
codes which employ real-number symbols are dif-
ficult to decode because of the size of the alphabet
and the numerical and round-off noise inherent
in arithmetic operations. Such codes find appli-
cations in both fault-tolerance support for signal
processing subsystems and in channel coding for
communication systems. The previous researches
do not contain any realistic decoding algorithms
for real-number turbo codes particularly when
there is inherent numerical and round-off error in
processing operations. Any decoding algorithm
must function properly within these levels of er-
ror. Moreover, the presence of numerical round-
off error is a second form of disruptive influence
not present in decoding finite-field-based turbo
codes. An important challenge is separating nu-
merical round-off effects from internal hardware
failure effects.
In this paper, a framework for ABFT methods
is presented in the design of fault tolerant com-
puting systems. The ABFT error detection tech-
nique relies on the comparison of parity values
computed in two ways. Parity comparisons, syn-
dromes, provide error detection, while output
data correction is affected by a threshold de-
coding that includes both round-off error and
computer-induced errors. The detection perfor-
mance in the data processing system depends on
the detection threshold, which is determined by
round-off tolerances. A majority logic decoder
can easily detect and correct single errors by ob-
serving the syndrome sequence. The simulations
show that the great difference between the round-
off error and the computer-induced error is large
enough to be distinguished. This allows the range
of error detection thresholds to be chosen. Also,
the detection and miss probabilities are demon-
strated for some high-rate turbo codes. Examples
showing the correction behavior and mean-square
error performance is presented.
ABFT for arithmetic and numerical processing
operations is based on linear codes. G. Bosilca et

al. [7] for high-performance computing (HPC),
propose a new ABFT method based on a par-
ity check coding. In [8] is the application of Low
Density Parity Check (LDPC) based ABFT, it
compare and analyses the use of LDPC to clas-
sical Reed-Solomon (RS) codes with regards to
different fault models. But, [8] did not pro-
vide a method for constructing LDPC codes al-
gebraically and systematically, such as RS and
BCH codes are constructed, and LDPC encod-
ing is very complex due to the miss of appropri-
ate structure. ABFT methodologies used in [9]
present parity values dictated by a real convolu-
tional code for protecting linear processing sys-
tems. Paper [10] introduces a class of Convolu-
tional codes which is called burst-correcting Con-
volutional codes; these codes provide error detec-
tion in a continuous mode using the same com-
putational resources as the algorithm progresses.
Redinbo [11] presented a method to Wavelet
Codes into systematic forms for Algorithm-Based
Fault Tolerance applications. This method em-
ploy high-rate wavelet codes along with low-
redundancy which use continuous checking at-
tributes to detect the errors, in this paper since
their descriptions are at the algorithm level can
be applied in hardware or software. But, this
technique is suited to image processing and data
compression applications and is not a general
method. Also, other constraint is on burst-error
due to computational load high relatively. More-
over, there is onerous analytical approach to ex-
act measures of the detection performances of the
ABFT technique applying wavelet codes.
For error correction purposes, redundancy must
be inserted in some form and, using the ABFT,
turbo parity codes will be employed. A system-
atic form of turbo codes is especially profitable
in the ABFT detection plan because no redun-
dant transformations are needed to achieve the
processed data after the detection operations. To
achieve fault detection and correction properties
of turbo code in data processing with the min-
imum additional computations, we propose the
block diagram in Fig. 1. This figure summa-
rizes an ABFT technique employing a systematic
turbo code to define the parity values. The k is
the basic block size of the input data, and n is
block size of the output data, new data samples
are accepted and (n − k) new parity values pro-
duced.
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The upper way, Fig. 1, is the Process data flow

Figure 1: Block diagram of the Algorithm-based
fault tolerance technique.

which passes through the process block (data pro-
cessing block) and then fed to the turbo encoder
(parity regeneration) to make parity values. On
the other hand, the comparable parity values are
generated efficiently and directly from the inputs,
parity and processing combined, without produc-
ing the original outputs. The ABFT method de-
tects errors whenever these two parity values do
not compare within a tolerance threshold. The
difference in the comparable two parity values,
which are computed in different ways, is called
the syndrome; the syndrome sequence is a stream
of zero or near zero values. The turbo codes struc-
ture is designed to produce distinct syndromes for
a large class of errors appearing in the processing
outputs. Fig. 1 employs turbo code parity in
detecting and correcting processing errors.

3 Using of codes for fault toler-
ance technique

3.1 Turbo Encoder

Early Most of the researchers tend to focus on
methods are structured, such as RM and BCH
codes with very strong algebraic structures, or
topological, such as Convolutional codes [12]
Anyway, structures does not always result in the
best distance properties for code, and can be pro-
duced very complex operations. Special types
of Convolutional codes, called recursive system-
atic Convolutional codes (RSC), are used as the
building blocks of a turbo code encoder, Fig. 2
(a). The basic turbo code encoder is built using

two identical recursive systematic Convolutional
(RSC) codes with parallel concatenation [1]. The
two component encoders are separated by an in-
terleaver (p), only one of the systematic outputs
from the two component encoders is used, be-
cause the systematic output from the other com-
ponent encoder is just a permuted version of the
chosen systematic output, Fig. 2 (b). A turbo
code encoder with two component codes is shown
in the Fig. 2 (b).
In the general case, the code consists of two

Figure 2: (a) Block diagram of the general-
ized turbo encoder, (b) Block diagram of the two-
component turbo encoder.

parts: the un-coded input values and a set of
parity sequences generated by passing interleaved
versions of the information bits through Convo-
lutional encoders. Typically, the encoders used
are Recursive Systematic encoders; also, in most
turbo codes the encoders used are the same (mak-
ing the Turbo code symmetric), and two sets of
parity values are used, one which is generated
from the non-interleaved data sequence, and one
which is generated from an interleaved sequence.
This structure is shown schematically in Fig.
2(b). The parity values are usually punctured in
order to raise the code rate to, R = k/n, 1/2. The
data sequence may or may not be terminated,
usually depending on the kind of interleaver used.
We will assume that the input sequence contains
k input values and is represented by X(0).

X(0) = (x
(0)
0 , x

(0)
1 , · · · , x(0)k−1) (3.1)
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The input values, X(0), are the first transmit-
ted values, which is Y (0).

Y (0) = X(0) = (y
(0)
0 , y

(0)
1 , · · · , y(0)k−1) (3.2)

The first encoder generates the parity values,

Y
(1)
p .

Y (1)
p = (y

(1)
0 , y

(1)
1 , · · · , y(1)k−1) (3.3)

The interleaver reorders or permutes the k bits
in the input block so that the second encoder re-
ceives X ′(0) different from the first. The parity
values generated by the second encoder are rep-

resented by Y
(2)
p .

Y (2)
p = (y

(2)
0 , y

(2)
1 , · · · , y(2)k−1) (3.4)

The output, final transmitted sequence,
corresponding to an input symbol input is

(Y (0) = X(0), Y
(1)
p , Y

(2)
p ), which Y

(1)
p and Y

(2)
p

are represented the redundant symbols. We
employ the systematic form of turbo codes to
define parity values associated with groups of
data samples. These parity values are computed
by a finite impulse response of several groups of
previous data samples, [9], [12].
Assume that the component codes are two binary
systematic linear block C1(n1, k1) and C2(n2, k2).
Let Gi = [Ii|Hi] denote the generator
of codes C1 and C2.Then the genera-
tor matrix of parallel concatenated code
Gp = [Ik1k2 |H1|H2] can be put in the following
form, which π is the permutation matrix asso-
ciated with the interleaver, and Hi is the parity
matrix of code Ci, i = 1, 2 , [13], [14]:

Gp =

[
Ik1k2

]
.

h1

. . .

h1

 .π

h2

. . .

h2



(3.5)

The number of times that h1 appears in the mid-
dle part h′1 of Gp is k2; while the number of times
that h2 appears in the leftmost portion h′2 of Gp

is k1, all other entries in h′1 and h′2 are zero. It
follows that code word of Gp are of the form
G = [X(0)|X(0)h′1|X(0)h′2], and the final trans-
mitted code word is given by Y .

Y = (y
(0)
0 y

(1)
0 y

(2)
0 , y

(0)
1 y

(1)
1 y

(2)
1 , · · · , y(0)1 y

(1)
2 y

(2)
3 )
(3.6)

The rate of the overall code has length N = 3K
and rate R = K/N ≈ 1/3 for large K. One
method to explain a parallel turbo code is as

a punctured product code in which the redun-
dant values matches to the checks on checks are
deleted, Fig.3 . The redundancy of the code is
r1 = n1 − k1. After encoding the rows, the
columns are encoded using another block code
(n2, k2), where the check bits of the first code are
also encoded. The overall block size of such a
product code is n = n1n2, the total number of
information bits k1 × k2.
This explanation is shown in Fig. 3. The only

Figure 3: A punctured product code to explain
a parallel turbo code.

essential difference between a turbo code and a
block product code is that the inter-leaver is not
clearly a row by row, column by column inter-
leaver, but one that introduces enough disorder in
the input values so that iterative decoding works
[14].

3.2 Class of Convolutional Code

Considering that turbo encoder is combined of
the two Convolutional encoders, Error probabil-
ity of turbo code is related to Convolutional code.
We consider only systematic forms of Convolu-
tional codes because the normal operation of Pro-
cess block is not change and there is no need
to decoding for obtaining true outputs. In ad-
dition Convolutional codes have good correcting
characteristics because of memory in their encod-
ing structure [13]. A burst of length d is ex-
plained as a vector whose nonzero components
are confined to d consecutive numeral situation,
the first and last are nonzero [14], A burst ap-
ply to a group of errors which is characteristic of
unforeseeable effects of errors in data computa-
tion. Costello [13] has shown that a sequence of
error bits ed+1, ed+2, · · · , ed+a is called a burst of
length a concerning a guard space of length b if
ed+1 = ed+a = 1,and the b bits preceding ed+1

and the b bits following ed+a are zero; and the
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a bits from ed+1 through ed+a include no sub-
sequence of b zero. Also, for any Convolutional
code of rate R that corrects all bursts of length
a or less relative to a guard space of length b,
b
a ≥ 1+R

1−R . Binary burst-correcting Convolutional
codes at structure of the turbo codes are appro-
priate and efficient in detecting and correcting
errors from internal computing failures. Binary
burst-correcting Convolutional codes need guard
bands (error-free regions) before and after bursts
of errors, particularly if error correction is needed
[[13], Chapter 20]. One class of burst-correcting
codes is the Berlekamp-Preparata (BP) codes
[13], [14] that have many appropriate character-
istic with regard to failure error-detecting. Their
design properties vouch for detecting the onset of
errors due to failures, regardless of any error-free
region following the beginning of a burst of errors.
Consider designing an (n, k = n − 1,m) system-
atic Convolutional encoder to correct a phased
burst error confined to a single block of n bits rel-
ative to a guard space of m error free blocks. One
parity value is assigned for each input of (n− 1)
values. Their constraint length is l = 2n− 1. To
design such a code assure that each correctable
error value [E]m = [e0, e1, · · · , em] results in a
distinct syndrome [S]m = [s0, s1, · · · , sm] .This
infer that each error values whit e ̸= 0 and
ed = 0, d = 1, 2, · · · ,m must produce a sepa-
rate syndrome and that each of these syndromes
must be separate from the syndrome caused by
any error value with e0 = 0 and a single block
ed ̸= 0, d = 1, 2, · · · ,m. Therefore, the first
error block e0 can be correctly decoded if first
(m + 1) blocks of e contain at most one nonzero
block. An (n, k = n − 1,m) systematic code
is depicted by the set of generator polynomials

g
(n−1)
1 (D), g

(n−1)
2 (D), · · · , g(n−1)

n−1 (D). The gener-
ator matrix of a systematic Convolutional code,
G, is a semi finite matrix evolving m finite sub
matrixes as:

G =

1P0 0P1 0P2 · · · 0P0
1P0 0P1 · · · 0Pm−1 0Pm

1P0 · · · 0Pm−2 0Pm−1 0Pm

.
.
.

.
.
.

.
.
.


(3.7)

Where I and 0 are identity and all zero k × k
matrixes respectively [15] and Pi with i = 0 to m
is a k× (n−k) matrix . The parity-check matrix,
3.8, is constructed from a basic binary matrix,
labeled H0 , a 2n × n binary matrix containing

the skew-identity matrix in its top n rows, 3.8.

Hm = [H0,H1, · · · ,Hm] (3.8)

Where H0 is an n× (m+ 1) matrix, 3.9.

H0 =


g
(n−1)
1,0 g

(n−1)
1,1 · · · g

(n−1)
1,m

...
...

...

g
(n−1)
n−1,0 g

(n−1)
n−1,1 · · · g

(n−1)
n−1,m

1 0 · · · 0

 (3.9)

For 0 < d ≤ m, we obtain Hd from Hd−1 by
shifting Hd−1 one column to the right and delet-
ing the column. In a mathematical form, this
operation can be expressed as:

H0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

 = Hd−1 · T (3.10)

Where T is an (m + 1) × (m + 1) shifting ma-
trix. Another important parity check type of ma-
trix is put together using H0 and its d successive
downward shifted versions [16], [17]. However, all
necessary information for forming the systematic
parity check matrix HT is contained in the basis
matrix H0. The lower triangular part of this ma-
trix, (n−1) rows, (n−1) columns, hold binary val-
ues selected by a construction method to produce
desirable detection and correction properties[16].
For systematic codes, the parity check matrix
sub-matrices Hm in 3.8 have special forms that
control how these equations are formed.

HT
0 = [P0|In−k], (3.11)

HT
i = [Pi|0n−k] i = 1, 2, · · · , L.

Where In−k and 0n−k are identity and all
zero k × k matrixes respectively and Pi is a
(n − k) × k matrix . However, in an alternate
view, the respective rows of H0 contain the par-
ity sub matrices Pi needed in HT , 3.8 and 3.11.

H0 =



P0 | I1
P1 | 0
P2 | 0
...

...
...

PL−1 | 0
PL | 0


(3.12)

The n columns of H0 are designed as an n di-
mensional subspace of a full (2n) dimension space
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comparable with the size of the row space. Using
this notation, we can write the syndrome as

[S]m = [E]m · [HT ]m (3.13)

= e0H0 + e1H1 + · · ·+ emHm

= e0H0 + e1H0T + · · ·+ emH0T
m

=


si
si+1
...

si+n



[S]m is a syndrome vector with (l + 1) values, in
this class of codes (n − k) equal 1. The design
properties of this class of codes assure any con-
tribution of errors in one observed vector, [E]m,
appearing in syndrome vector [S]m is linearly in-
dependent of syndromes caused by ensuing error
vectors [E]i+1, [E]i+2, · · · , [E]i+l in adjacent ob-
served vectors. At any time a single burst of er-
rors is limited to set [E]m, correction is possible
by separating the error effects. These errors in
[E]m are recognized with the top n items in [S]m.

[Em] =


ei,1
ei,2
...

ei,n

 (3.14)

Then error values recognition

ei,n = Si, ei,n−1 = Si+1 (3.15)

If there are nonzero error bursts in
[E]i+1, [E]i+2, · · · , [E]i+l, their accumulate
contribution is in a separate subspace never per-
mitting the syndrome vector [S]m to be all zeros.
The beginning of errors, even if they overwhelm
the correcting capability of the code, can be de-
tected. This distinction between correctable and
only detectable error bursts is achieved by using
an annihilating matrix, denoted F T

0 , which is
n× 2n and has a defining property, F T

0 H0 = 0n.
Hence, it is possible to check whether a syn-
drome vector [S]m represents correctable errors,
F T
0 · [S]m = 0, then [S]m contain correctable

model. For optimum burst error correcting code,
b/a = (1 + R)/(1 − R). For the preceding case
with R = (n − 1)/n and b = m · n = m · a, this
implies that b

a = m = 2n − 1, and H0 is an
n× 2n matrix.

3.3 Iterative Turbo Code Decoder

In this paper, the turbo code decoder is based on
a modified Viterbi algorithm that includes relia-
bility values to improve decoding performance.
The Viterbi algorithm produces the majority
logic (ML) output value for Convolutional codes.
This algorithm provides optimal sequence esti-
mation for one stage Convolutional codes. For
concatenated Convolutional codes, there are two
main disadvantages to conventional Viterbi de-
coders. First, the inner Viterbi decoder produces
bursts of bit errors which reduce the performance
of the outer Viterbi decoders [18], [19]. Second,
the inner Viterbi decoder produces hard deci-
sion outputs which prevent the outer Viterbi de-
coders from deriving the advantage of soft de-
cisions [1], [20], [21], [22]. Both of these draw-
backs can be reduced and the performance of the
overall concatenated decoder can be improved if
the Viterbi decoders are able to produce reliabil-
ity (soft-output) values [1]. The reliability values
are passed on to subsequent Viterbi decoders as
apriori information to improve decoding perfor-
mance. The Viterbi algorithm was modified to
output bit reliability information [22]. The soft-
output Viterbi algorithm (SOVA) computes the
reliability of the input values as a log-likelihood
ratio (LLR),

Λ(X(0)) = log
(Pr[X(0) = 1|r̄]
Pr[X(0) = 0|r̄]

)
(3.16)

Where r̄ denotes the received sequence. In an it-
erative decoding procedure, the output informa-
tion provided by Λi,e(X

(0)) can be fed back to
the decoder as a priori probability for a second
round of decoding. The output LLR can be writ-

ten as, Let D
(j)
i be the set of branches connecting

state S
(l′)
i−1 to state S

(l)
i such that the associated

information bit X(0) = j, with j ∈ {0, l}.

Λi,e(X
(0)) = log

( ∑
(l,l′)∈Di(0)

ζi−1(l
′)γi(l, l

′)ηi(l)∑
(l,l′)∈Di(1)

ζi−1(l
′)γi(l, l

′)ηi(l)

)
(3.17)

Where ζi−1(l
′),ηi(l) and γi(l, l

′) are given by

ζi(l) = Pr{S(l)
i , r′i} (3.18)

ηi(l) = Pr{r′i|S
(l)
i } (3.19)

γi(l, l
′) = δij(l · l′) exp

( E

N0

n−1∑
m=1

ri,mxi,m

)
(3.20)
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Where

δij(l · l′) =
{

1 if (l′, l) ∈ D
(j)
i

0 else
(3.21)

This output LLR, for an information position i,
does not contain any variable directly related to
Xi(0), for i = 1, 2, · · · , N . It should be noted that
because of the assumption that encoding is sys-
tematic, and therefore the sum in the modified
branch metric [20] starts at m = 1. In the more
general case of a two-dimensional product cod-

ing scheme, the first decoder produces Λ
(1)
i,e (X

(0))
which is given to the second decoder as a pri-

ori probability Λ
(2)
i,e (X

(0)) to be used in the com-

putation of the LLR of input values Xi
(0). In

other words, the output information provides a
soft output that involves only reliabilities that
are not directly related to the information symbol

X
(0)
i . The basic structure of an iterative decoder

with two component codes is shown in Figure 4;
each iteration consists of two phases, one decod-
ing phase per component decoder. First phase,
In the first decoding iteration the soft-in soft-
out decoder for the first component code com-
putes the a posteriori LLR ,3.17.This decoder
computes the extrinsic information for each in-

formation symbol,Λ
(1)
i,e (X

(0)) , on the basis of the
part of the received sequence that corresponds to
the parity symbols,r̄pl ,and sends the result to the
second decoder.
In the second phase of the first decoding itera-

Figure 4: An iterative decoder for a parallel
turbo code.

tion, the permuted (or interleaved) output infor-
mation from the first decoder is used as a pri-

ori LLR, π · Λ(1)
i,e (X

(0)). Extrinsic information

Λ
(2)
i,e (X

(0)) is computed on the basis of the part
of the received sequence that corresponds to the

parity values of the second component code,r̄p2
, thus conclude the first decoding iteration. At
this point, a decision can be made on an informa-
tion symbol, on the basis of its a posteriori LLR
Λi,e(X

(0)). In subsequent iterations, the first de-
coder uses the de interleaved extrinsic informa-
tion from the second decoder, π−1 · Λ(2)

i,e (X
(0)),

as a priori LLR for the computation of the soft-
output (the a posteriori LLR), Λi,e(X

(0)). This
procedure can be repeated until either a stopping
criterion is met [23], [24] or a maximum number
of iterations is performed. It should be noted that
making decisions on the information symbols af-
ter the first decoder saves one deinterleaver.

4 Performance and Evaluattion

4.1 Error Performance

With iterative decoding, [1], the error perfor-
mance improves. Typical of turbo coding schemes
is the fact that increasing the number of itera-
tions results in a monotonically decreasing im-
provement in coding gain. Increasing the num-
ber of iterations from 2 to 6 gives an improve-
ment in SNR of 1.7 dB, whereas going from 6
to 18 iterations yields only a 0.3 dB improve-
ment in coding gain. Since the appearance of
turbo codes, advances have taken place in un-
derstanding the bit error rate (BER) behavior of
turbo codes [25]. There appears to be a consen-
sus among researchers on why turbo codes offer
such an superior error performance, 3.1 Turbo
codes have a weight distribution that approaches,
for long interleavers, that of random codes, 3.2
Recursive Convolutional encoders and proper in-
terleaving map most of the low-weight informa-
tion sequences into high-weight coded sequences,
and 3.3 Systematic encoders allow the effective
use of iterative decoding techniques utilizing con-
stituent SOVA decoders. Information symbol es-
timates are available directly from the channel.

4.2 Evaluation and Simulation of
Turbo Codes

Considering that turbo encoder is combined of
the two Convolutional encoders, Error probabil-
ity and performance of turbo code is related to
Convolutional code, the number of iterations, and
interleaver. My simulations are based on use of
the SOVA decoder and constraint lengths of 3-5.
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We have considered that, the use of 1/2 rate codes
degrades the BER performance by only 0.5 to 0.7
dB relative to 1/3 rate codes,10 decoding itera-
tions are adequate. This computational are made
using standard MATLAB, version 2010a. In our
research the performance of turbo codes several
simulations were run on a PC, CPU: Core 2 Dou
2.2 GHz 2MB RAM: 4 GB DDR 2 HDD: 640 GB.
For the purposes of this simulation a punctured
turbo code at rate R = 1/2 is used. The data
block length is k = 400 bits, and a SOVA decoder
is used in the simulation. The results shown at
Fig. 5 are the BER versus Eb/No (channel signal
to noise ratio) curves for different numbers of it-
erations from n = 1, 2, 5 and 10.
It can observe that BERs of the order of 10−5

Figure 5: BER for Turbo Code.

are achievable with Eb/No > 3 dB with mod-
est numbers of iterations. A typical coding gain
of Eb/No > 3 dB, relative to an un-coded chan-
nel, is observed at a BER of 10−5. Fig. 5 derive
that the BER should improve with each itera-
tion, so a series of simulations are run to evaluate
the improvement. It can observe from Fig. 6
that the first few iterations yield the most signifi-
cant improvements in BER for any given Eb/No.
Thereafter the results appear to converge onto a
BER for each value of Eb/No. It is obvious that
there is a tradeoff to be made between the num-
ber of iterations, processing power, and Eb/No

when looking for a given BER.

4.3 Turbo Code Error-Performance
Example

Performance results using turbo codes
have been presented in [3] for a rate 1/2,
K = 5 encoder implemented with generators
G1 = {11111} and G2 = {10001}, using parallel

concatenation and a 256 . 256 array inter-
leaver. The modified algorithm was used with
a data block length of 65,536 bits. After 18
decoder iterations, the bit-error probability PB
was less than 10−5 at Eb/No = 0.7 dB. The
error-performance improvement as a function of
the number of decoder iterations is seen in Fig.
5. Note that, as the Shannon limit of -1.6 dB
is approached, the required system bandwidth
approaches infinity, and the capacity (code rate)
approaches zero. Therefore, the Shannon limit
represents an interesting theoretical bound, but
it is not a practical goal. For binary modulation,
several authors use PB = 10−5 and Eb/No = 0.2
dB. Thus, with parallel concatenation of RSC
convolutional codes and feedback decoding, the
error performance of a turbo code at PB = 10−5

is within 0.5 dB of the Shannon limit. A
class of codes that use serial instead of parallel
concatenation of the interleaved building blocks
has been proposed.

Figure 6: BER versus as number of iterations
varies.

5 Simulation and Results

5.1 Error Correction System

Error correction system, Fig. 6, provides a more
detailed view of some subassemblies in Fig. 1, in
Fig. 7. The processed data d̄i can include errors
ēi and the error correction system will subtract
their estimates ē′i as indicated in the corrected
data output of the error correction system. If
one of the computed parity values, P̄ui or P̄li in
Fig. 7, comes from a failed subsystem, the er-
ror correction systems inputs may be incorrect.
Since the data are correct under the single failed
subsystem assumption, the data contain no errors
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and the error correction system is operating cor-
rectly. The error correction system will observe
the errors in the syndromes and properly estimate
them as limited to other positions. Moreover, an
excessive number of error estimates {ē′i} could
be deduct from correct data, yielding {d̄i − ē′i}
values at the Error Correction Systems output,
which the regeneration of parity values produces
{p̄′ui

}, as shown in Fig. 7 at the final output.

p̄′ui
=

l∑
j=0

pj(d̄i−j − ē′i−j) (5.22)

Simultaneously, if the errors do not affect the par-
allel parity values {p̄′li}, its value is correct.

p̄li =

l∑
k=0

pkd̄i−k (5.23)

The output checking syndromes {s̄′i} will become
nonzero at the beginning of errors because of the
burst-detecting nature of the code.

S̄′
i = p̄′ui

− p̄li =

l∑
j=0

(−1)pj ēi−j (5.24)

Therefore, there are several indicators that
will detect errors in the error correction systems
input syndromes {S̄i}. The checking syndromes
{S̄′

i} must indicate the beginning of errors,
so the error correction system cannot subtract
incorrect, even overwhelming errors from oth-
erwise correct data without observation. The
limited checking features inserted in and around
the corrector will always detect its unsuitable
behavior.
It is an easy matter to construct MATLAB to

Figure 7: Block diagram of the ABFT technique
along with error correction system.

implement the BP Convolutional codes and turbo
codes. Thus, a series of simulations provide ap-
praise of the probability of detection and failure.
Several simulation schemes modeling the ABFT
method for detecting numerical level errors were
described in MATLAB, version 2010a, where the
modeling errors were assumed Gaussian with
zero means and statistically independent from
symbol to symbol. Errors were allowed in the
parity values computed by the combined data
parity generator, Fig. 1, and in the processed
data symbols. Very researches were performed
to verify the iterative decoding technique. The
error modeling provides a strong set of conditions
of failure effects and is completely general. An
example of the G and HT matrices for n = 4 is
extracted after execution of these scripts. The
encoding matrix G is 4 × (3.8) with its top
three rows containing zeros and a 4 × 3 identity
matrix in the rightmost three columns. The
last row of G exhibit the additive identity as,
(−1,−1,−1,−1,−1, 0,−1, 0,−1, 0, 0, 0,−1,
0, 0, 0,−1, 0, 0, 0,−1, 0, 0, 0). The signif-
icant parity check part HT , which dic-
tates the parity values, is 1 × (4.8);
(l + 1) = 2n in this case. Its single row is,
(1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1). The simulation code
randomly inserts a burst of errors in each block
of input symbols, representing an encoded
block. The choice of the burst is controlled by
probability parameter ρ. Once an error situation
is established in the simulation, n symbols
representing a burst are determined using a
uniform distribution and then are added to the n
code symbols to model a burst. Many simulation
steps were executed at various error rates ρ. For
a high value of ρ, the error bursts are frequent
enough that they may sometimes happen so close
as to violate the protective band requirement
for correction, leading to incorrect. A typical
test used n = 7 with ρ = 10−2 and employed
105 code word blocks. The experimental ratio of
bursts introduced in one run of 105 was 0.000101,
and the experimental conditional probability
of correction was 0.9832561, whereas that of
failure was 0.0167439. When the probability of
a burst was lowered to ρ = 10−7, there were no
failures for long runs. Moreover, statistically
defined numerical errors were inserted randomly
in the parity and data symbols. The inherent
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memory in the parity regeneration from data
allows errors to produce large syndrome values
beyond the first block in which they first appear.
The simulation results are shown in Fig. 8. Each
estimation point employed 105 data blocks of k
symbols, k. 105 symbols overall. Errors were
inserted according to probability p, statistically
independently for all positions. The probability
of detection is the joint probability of detecting
an error that is really present while the probabil-
ity of miss (failure) is the joint probability of no
detection when an error is there. The curves in
Fig. 8 for detection and failure probabilities are
as the probability of error insertions p is varied,
it is shown detection and miss probabilities for
two codes with R = 3/4 and 6/7. The detection
curves are separated because the rate at which
errors occur in any blocking of data and parity
symbols depends on n and the symbol error rate
p. The two curves have respective block sizes
of four and six. At high insertion rates p, there
are on average more opportunities for misses
(failures) which are masked by adjacent large
errors that are detected in the same data block.
Hence, the miss probabilities tend to decrease at
high insertion rates.

Figure 8: Detection and miss (failure) probabili-
ties for two codes with R=3/4 and 6/7.

Figure 9 shows how the errors are reflected at
the checker output (comparator). The top figure
shows a very small difference between the two
parity values P̄ui and P̄li . The reason for the
nonzero differences is round off errors due to the
finite answer of computing system. In the bottom
figure, the values of P̄li − P̄ui reflect errors oc-
curred. If the error threshold is setup low enough,
then most of the errors can be detected by the
comparator; however, if we set the threshold too

low, the comparator may pick up the round-off er-
rors and consider those to be the errors due to the
computer-induced errors. Thus, we need to find
a good threshold, which separates the errors due
to computer analysis limited and the computer-
induced errors.

Figure 9: The responding to errors: (a) no er-
rors (b) errors and the difference between the two
parity values P̄ui and P̄li .

Figure 10 shows the quality performance curves
of the turbo encoder with and without error cor-
rection. The dash line and solid line curves
present the reconstruction performance of input
with and without encoding request, respectively,
versus error rate. As a matter of fact, the fidelity
is much improved when the error correction sys-
tem is implemented.
The simulation results plotted in Fig. 11, show

Figure 10: Quality performance curves with and
without encoding request (error correction perfor-
mance vs. error rate).
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the performance of the iterative decoder for the
Turbo Code (3750, 2550). Figure 11 show that
the slope of curves and coding gain are improved
by increasing the number of iterations. At 10−5

about 1.8 dB coding gain can be obtained after
4 iterations. After the 4th iteration, the amelio-
ration of the coding gain becomes negligible be-
cause of the steep slope of the BER curve. The
Turbo Code is well established. The curves are
done with 4 iterations.
The performance of the continuous iterative de-

Figure 11: Effect of iterations on Iterative de-
coding for Turbo Code (3750, 2550) code.

coding algorithm applied to the turbo code is
shown in Fig. 12, where we plot the bit-error
probability as a function of the number of itera-
tions of the decoding algorithm for various values
of the bit signal-to-noise ratio. It can be seen that
the decoding algorithm converges down to an er-
ror probability of 10−5 for signal-to-noise ratios
of 0.2 dB with nine iterations. Moreover, conver-
gence is guaranteed also at signal-to-noise ratios
as low as 0.05 dB, which is 0.55 dB from the Shan-
non capacity limit.
The procedures performed by the iterative de-

Figure 12: Turbo-decoding: bit error probability
versus the number of iterations.

coder algorithm can be classified as follows [15]:

• Branch Metrics Calculation (Proc. A)

• Path Metrics Update (Proc. E)

• Hard Decision Generation (Proc. G)

Moreover, in this case procedure A does not
exploit any a priori information. Tables 1-3
summarize the computational requirements of
the various decoding algorithms as a function of
the encoder memory order. Note that here we
assume that the constituent RSC encoders for
turbo coding, as well as the RSC encoder for
convolutional coding are rate 1/2. Note that we
also take into account the additional complexity
associated with the branch metrics calculations
due to a priori information exploited by the turbo
decoder. Finally, Table 4 summarizes the overall
complexity (in terms of the number of equivalent
addition operations) of the various decoding
algorithms. As an example, let us consider in
detail the computational requirements of the it-
erative decoder for a rate 1/2 convolutional code
(see Table 3).

Fig. 13 also compares the performance of var-
ious turbo-coded and convolutional-coded sys-
tems for both single and multiple antenna con-
figurations again for the case of frames having
2048 encoded bits. However, here we set the an-
tenna envelope correlation coefficient to be equal
to zero, i.e., the ideal situation. In this case,
as the number of antennas is increased, turbo
codes eventually substantially outperform convo-
lutional codes. In fact, as the number of antennas
is increased the underlying fading channel will ap-
proach a non-fading AWGN channel, where turbo
codes are known to substantially outperform con-
volutional codes.

Figure 13: Compares the performance: Error
rates for various turbo-coded and convolutional-
coded OFDM systems for both single and multi-
ple antenna FWA configurations for frames having
2048 code bits.
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Table 1: Computational Requirments of The Log-Map Algorithm

ADD SUB MUL DIV MAX LKUP

Procedure A 4× 2M - 6× 2M 2× 2M - -
Procedure B 3× 2M 2M - - 2M 2M

Procedure C 3× 2M 2M - - 2M 2M

Procedure D 6× 2M − 2 2× 2M − 1 - - 2× 2M − 1 2× 2M − 1

Table 2: Computational Requirments of The Max-Log-Map Algorithm

ADD SUB MUL DIV MAX LKUP

Procedure A 4× 2M - 6× 2M 2× 2M - -
Procedure B 2× 2M - - - 2M -
Procedure C 2× 2M - - - 2M -
Procedure D 4× 2M − 2 1 - - 2× (2M − 1) -

Table 3: Computational Requirments of The Viterbi Algorithm

ADD SUB MUL DIV MAX LKUP

Procedure A 2× 2M - 4× 2M - - -
Procedure E 2× 2M - - - 2M -
Procedure G - 2M - - - 1

Table 4: Complexity of The Decoding Algorithm

Number of Equivalent Additions
Log-MAP algorithm 48× 2M − 13
Max-log-MAP algorithm 28× 2M − 3
Viterbi algorithm 10× 2M + 3

6 Conclusion

There are many applications of ABFT; this
paper provides a general method and techniques
for employing turbo codes in ABFT, and bounds
on the ABFT redundant computations are given.
This article proposes a new computing paradigm
in order to provide fault tolerance for numerical
algorithms. Turbo codes can be used efficiently
for detecting the errors in numerical processing
systems. This advantage of turbo codes over
Convolutional methods of coding is moderately
typically over the complete range of might be
code rates, that is, coding gain can be achieved
at moderate BERs whit long turbo codes of the
same rate and approximately the same decoding
complexity as Convolutional codes. This paper
proposes an efficient method to detect the
arithmetic errors using turbo codes at the output
compared with an equivalent parity value derived
from the input data. Number data processing

errors are detected by comparing parity values
associated with a turbo code. These comparable
sets will be very close numerically, although not
identical because of round-off error differences
between the two parity generation processes.
The effects of internal failures and round-off error
are modeled by additive error sources located at
the output of the processing block and input at
threshold detector.
Concurrent parity values techniques are very
useful in detecting numerical error in the data
processing operations, where a single error can
propagate to many output errors. Parity values
are the most effective tools used to detect errors
occurring in the code stream. The detection
performance in the data processing system
depends on the detection threshold, which is
determined by round-off tolerances. The struc-
tures have been tested using MATLAB programs
and compute error detecting performance of the
concurrent parity values method and simulation
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results are presented.
The advantage of this paper is that errors which
are caused by permanent or transient failures
in the system can be detected and corrected by
using a very low overhead and at the original
throughput.
However, the probability of errors in the result
increases with the amount of computation. In
order to accommodate the contradictory require-
ments, high complexity and high reliability, the
system has to be designed to be fault tolerant.
Conventional fault tolerance techniques such as
triple modular redundancy (TMR) and triple
time redundancy (TTR) suffer from either a
high hardware overhead (cost) or time overhead
(degraded performance). An important challenge
is separating numerical round-off effects from
internal hardware failure effects. For future work,
our analysis has taken into consideration only
un-punctured rate -1/3 symmetric Turbo codes.
The problem of interleaver design for punctured
codes also necessitates an appropriate interleaver
optimisation. Some work has already been done
on punctured codes, particularly indicating the
usefulness of an odd-even interleaver structure.
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