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Abstract

In this paper, we introduce an iterative algorithm free from second derivative for solving algebraic nonlinear
equations. The analysis of convergence shows that this iterative algorithm has seventh-order convergence.
Per iteration of the new algorithm requires three evaluations of the function and two evaluation of its first
derivative. Therefore this algorithm has the efficiency index which equals to 1.477. The results obtained using
the algorithm presented here show that the iterative algorithm is very effective and convenient for the algebraic
nonlinear equations.
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1 Introduction

Solving nonlinear equations is one of the most im-
portant problems in numerical analysis. There are

many papers that deal with nonlinear equations, such
as, Abbasbandy [7], Chun [9], Aslam Noor [10], Gol-
babai and Javidi [2], and other methods [1, 3, 4, 6, 8,
11, 12, 14, 15, 16, 19]. In this work, we propose the
new seventh-order iterative algorithm. Six numerical
examples are given to illustrate the accuracy of the
new iterative algorithm.
For this purpose, we give the following definitions.

Definition 1.1 Convergence of order P . The se-
quence {xn}∞n=0 converges to r with (at least) order
P ≥ 1 if

lim
n→∞

|xn+1 − r|
|xn − r|P

= c ̸= 0. (1.1)
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Definition 1.2 Let that xn−2, xn−1 , xn and xn+1

are iterations close to a zero of the nonlinear equation.
Then, the computational order of convergence p can be
approximated using the formula

P ≈ ρ =
ln(|xn+1 − xn|/|xn − xn−1|)

ln(|xn − xn−1|/|xn−1 − xn−2|)
. (1.2)

We call this number the approximated computa-
tional order of convergence (COC).

2 Development of seventh-
order algorithm

Let f : D ⊆ ℜ → ℜ, be smooth function. We
assume that r ∈ ℜ is a zero of the nonlinear equation
f(x) = 0, and x∗ ∈ ℜ, is an estimation of a zero
of this nonlinear equation. Using Taylor series, the
nonlinear equation can be written as follows:

f(x∗) + f
′
(x∗)(x− x∗) +R(x) = 0, (2.3)

where

R(x) = f(x)− f(x∗)− f
′
(x∗)(x− x∗). (2.4)

We can rewrite Eq. (2.3) into the following form:

x = x∗ − f(x∗)(x− x∗)

f(x)− f(x∗)
= x∗ − f(x∗)

f [x, x∗]
. (2.5)
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In accordance with the rationale of the homotopy
analysis method (HAM) [5, 13, 17], we construct the
zero-order deformation equations as follows

x(p)−x∗+
f(x∗)

f ′(x∗)
= ph̄[x(p)−x∗+

f(x∗)

f [x(p), x∗]
]. (2.6)

Suppose the solution of Eq. (2.6) has the form:

x(p) = x0 + px1 + p2x2 + ...., (2.7)

further, if this series is convergent at p = 1, we have:

x = x0 + x1 + x2 + · · · . (2.8)

Differentiating the zero-order deformation Eq. (2.6)m
times with respect to embedding parameter q, dividing
them by m!, setting subsequently q = 0, we have:

x0 = x∗ − f(x∗)

f ′ (x∗)
,

x1 = h̄ f(x0)
f [x0,x∗] ,

x2 = (1 + h̄)x1 + h̄x1
f(x∗)

f(x0)−f(x∗) (1−
f
′
(x0)

f [x0,x∗] ),
...

(2.9)

When h̄ = −1 we have

x0 = x∗ − f(x∗)

f ′ (x∗)
,

x1 = − f(x0)
f [x0,x∗] ,

x2 = −x1
f(x∗)

f(x0)−f(x∗) (1−
f
′
(x0)

f(x0)−f(x∗) (x0 − x∗)),
...

(2.10)

Note that x the solution of f(x) = 0, is approximated
by x ≈ x0+x1+x2+...+xM , where limM→∞ xM = x.
For M = 2, we have

x ≈ x0 + x1 + x2. (2.11)

Now Let us consider the algorithm proposed by Eq.
(2.11)

ym = xm − f(xm)

f ′ (xm)
,

zm =

ym − f(ym)
f [ym,xm] (1−

f(xm)
f(ym)−f(xm) (1−

f
′
(ym)

f [ym,xm] )).

(2.12)

By using the Taylor expansion, f(zm) and f
′
(zm) can

be approximated by

(2.13)
f(zm) ≈ f(ym) + f

′
(ym)(zm − ym)

+
1

2
f

′′
(ym)(zm − ym)2,

(2.14)f
′
(zm) ≈ f

′
(ym) + f

′′
(ym)(zm − ym).

In order to avoid the computation of the second
derivative, we can express f

′′
(ym) as follows [18]

(2.15)
f

′′
(ym) ≈ 2f [zm, xm, xm]

=
2(f [zm, xm]− f

′
(xm))

zm − xm
.

From Eqs. (2.13), (2.14) and (2.15), we have

(2.16)f
′
(zm)≈ f [zm, ym]+f [zm, xm, xm](zm−ym).

Substituting Eq. (2.16) in Newton’s formula, we can
construct an algorithm by Eq. (2.12) as follows:

Algorithm. For given x0, find the approxi-
mate solution xm+1 by the iterative algorithm


ym = xm − f(xm)

f ′ (xm)
,

zm =

ym − f(ym)
f [ym,xm] (1−

f(xm)
f(ym)−f(xm) (1−

f
′
(ym)

f [ym,xm] )),

xm+1 = zm − f(zm)
f [zm,ym]+f [zm,xm,xm](zm−ym) .

(2.17)

3 Convergence analysis

Theorem 3.1 Let r be a simple zero of function f(x)
and f : D ⊆ ℜ → ℜ be sufficiently differentiable. Let
x0 is sufficiently close to r, then the convergence of
iterative algorithm is at least of order seven.

Proof: Let, em = xm − r. Denotes cm = 1
m!

f(m)(r)

f ′ (r)
,

m=2,3,. . . . Using the Taylor series, we have:

(3.18)f(xm) = f
′
(r)[em + c2e

2
m + c3e

3
m + c4e

4
m

+ c5e
5
m + c6e

6
m + c7e

7
m +O(e8m)],

f
′
(xm) = f

′
(r)[1 + 2c2em + 3c3e

2
m + 4c4e

3
m + 5c5e

4
m

+ 6c6e
5
m + 7c7e

6
m + 8c8e

7
m +O(e8m)].

(3.19)

Now, from Eqs. (3.18) and (3.19), we have

ym = r + c2e
2
m + (2c3 − 2c22)e

3
m

+ (3c4 − 3c2c3 − 2(2c3 − 2c22)c2)e
4
m

+ (4c5 − 10c2c4 − 6c23 + 20c3c
2
2 − 8c42)e

5
m

+ (−17c4c3 + 28c4c
2
2 − 13c2c5

+ 33c2c
2
3 + 5c6 − 52c3c

3
2 + 16c52)e

6
m

+ (−22c5c3 + 36c5c
2
2 + 6c7 − 16c2c6 − 12c24

+ 92c4c2c3 − 72c4c
3
2 + 18c33 − 126c23c

2
2 + 128c3c

4
2

− 32c62)e
7
m +O(e8m)].

(3.20)
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Table 1: Numerical examples and Comparison of the number of iterations in (NM), (CM1), (CM2), (CM3), (KM1),
(KM2) , and our algorithm when ϵ = 10−15 in Example 4.1.

fi, x0 NM CM1 CM2 CM3 KM1 KM2 Algorithm

f1, x0 = 2: 6 4 4 4 4 4 3
f2, x0 = 2: 6 4 4 4 4 4 3
f3, x0 = 1.7: 5 4 4 4 4 4 3
f4, x0 = 3.5: 8 5 5 5 5 5 3
f5, x0 = 2.3: 6 4 4 4 4 4 3
f6, x0 = 1.4: 46 26 26 28 27 29 16

From Eq. (3.20) we get

f(ym) = f
′
(r)[c2e

2 + (2c3 − 2c22)e
3
m

+ (3c4 − 7c2c3 + 5c32)e
4
m

+ (−6c23 + 24c3c
2
2 − 10c2c4

+ 4c5 − 12c42)e
5 + (−17c4c3 + 34c4c

2
2

− 13c2c5 + 5c6 + 37c2c
2
3 − 73c3c

3
2 + 28c52)e

6
m

+ (−22c5c3 + 44c5c
2
2 + 6c7 − 16c2c6 − 12c24

+ 104c4c2c3 − 104c4c
3
2 + 18c33 − 160c23c

2
2

+ 206c3c
4
2 − 64c62)e

7
m +O(e7m)],

(3.21)

f
′
(ym) = f

′
(r)[1 + 2c22e

2
m + (4c2c3 − 4c32)e

3
m

+ (−11c3c
2
2 + 8c42 + 6c2c4)e

4
m

+ (28c3c
3
2 − 20c4c

2
2 + 8c2c5 − 16c52)e

5
m

+ (−16c4c2c3 + 60c4c
3
2

−26c5c
2
2+10c2c6−68c3c

4
2+32c62+12c33)e

6
m

+ (−20c2c5c3 + 72c5c
3
2

+ 12c2c7 − 32c22c6 − 24c2c
2
4 + 112c4c

2
2c3

− 168c4c
4
2 − 84c2c

3
3 + 160c3c

5
2

− 64c72 + 36c4c
2
3)e

7
m +O(e8m)].

(3.22)

Combining Eqs. (3.18), (3.19), (3.20), (3.21) and
(3.22), we have

zm = r + c32e
4 + (3c3c

2
2 − 3c42)e

5
m

+ (2c52 + 4c4c
2
2 + c2c

2
3 − 7c3c

3
2)e

6
m − 2c33

+ (2c4c2c3 + 16c62 + 5c5c
2
2 − 12c4c

3
2 + 15c23c

2
2

− 24c3c
4
2)e

7
m +O(e8m),

(3.23)

From Eq. (3.23), we get

f(zm) = f
′
(r)[c32e

4
m + (3c3c

2
2 − 3c42)e

5
m

+ (2c52 + 4c4c
2
2 + c2c

2
3 − 7c3c

3
2)e

6
m − 12c4c

3
2

+ (−2c33 + 16c62 + 15c23c
2
2 − 24c3c

4
2 + 5c5c

2
2

+ 2c4c2c3)e
7
m +O(e8m)].

(3.24)

Combining Eqs. (3.18), (3.20), (3.21), (3.23) and
(3.24), we obtain

xm+1 = −2c3c
4
2e

7
m +O(e8m). (3.25)

Which show that algorithm has at least seventh-order
convergence.

4 Experimental data and re-
sults

We present some examples to illustrate the efficiency
of the iterative algorithm, see Table 1. We com-
pare the Newtons method (NM), Changbum Chuns
method with β = 1

2 , (CM1), [15],which is defined by

xn+1

= yn − f2(xn)

f2(xn)− 2f(xn)f(yn) + 2βf2(yn)

f(yn)

f ′(xn)
,

(4.26)yn = xn − f(xn)

f ′(xn)
,

Changbum Chuns method with β = 1, (CM2), [15],

xn+1 = yn−

f3(xn)

f3(xn)− 2f2(xn)f(yn) + 2βf2(yn)f(xn)− 2β2f3(yn)

.
f(yn)

f ′(xn)
,

(4.27)yn = xn − f(xn)

f ′(xn)
,

Changbum Chuns method (CM3) [9], that is defined
by

xn+1 = xn − f(xn)

f ′(xn)
− 2f(yn)

f ′(xn)
+

f(yn)f
′
(yn)

f ′2(xn)
,

(4.28)yn = xn − f(xn)

f ′(xn)
,

Kous method [1] , (KM1),

xn+1 = xn − f2(xn) + f2(yn)

f ′(xn)(f(xn)− f(yn))
,

yn = xn − f(xn)

f ′(xn)
,
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Kings method with β = 3, (KM2), [16],

xn+1 = yn − f(yn)

f ′(xn)

f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
,

yn = xn − f(xn)

f ′(xn)
,

and our algorithm that is defined by Eq. (2.17). fol-
lowing stopping criterion is used for computer pro-
gram

i. |xn+1 − xn|< ϵ, ii. |f(xn)|< ϵ.

Example 4.1

f1 = sin2(x)− x2 + 1,

f2 = x2 − ex − 3x+ 2,

f3 = cos(x)− x,

f4 = (x− 1)3 − 1,

f5 = sin(x)− x

2
,

f6 = (x3 + 4x2 − 10)2,

(for more detailes see Table 1.)

Remark 4.1 We consider the definition of efficiency
index as P

1
d , where P is the order of the method and

d is the number of functional evaluations per iteration
required by the method. The algorithm that is defined
by the Eq. (2.17) has the efficiency index equals to

7
1
5 ≈ 1.477, which is better than the Newton’s method

with efficiency index equals to 2
1
2 ≈ 1.414.

5 Conclusion

In this work, we proposed an algorithm for solving
the nonlinear equations. We derived analytically the
order of convergence of this algorithm, which is P = 7.
According to obtained results, the iterative algorithm
that was introduced in this paper performs better
than Newton’s algorithm, Changbum Chuns methods
(CM1, CM2 and CM3), Kous method (KM1) and
Kings method (KM2) for solving nonlinear equations.
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