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Abstract

In this paper, we propose a method to obtain fuzzy solutions of duality fully fuzzy linear system (DFFLS) of
the form ÃX̃ = B̃X̃ + C̃, where Ã, B̃ are fuzzy matrices and C̃, X̃ are fuzzy number vectors. To this end, we
solve the 1-cut of DFFLS (which is a crisp system here) ,then some unknown spreads are allocated to any row
of a 1-cut of dual fully fuzzy linear system in 1-cut position. Also, by using this method we determine fuzzy
solutions will be placed in the tolerable solution set (TSS) and in the controllable solution set (CSS).
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1 Introduction

Linear systems of equations, are used for solving
many problems in various areas of applied sci-

ences. Fuzzy methods constitute an important math-
ematical and computational tool for modeling real-
world systems with uncertainties of parameters.
The system of linear equations ÃX̃ = b̃ ,where the
elements, ãij , of the coefficient matrix Ã and the ele-

ments, b̃i , of the vector b̃ are fuzzy numbers, is called
Fully Fuzzy Linear System (FFLS).
Fully fuzzy linear systems have been studied by sev-
eral authors, like Allahviranloo et al. [1, 2], Buckley
and Qu [3, 4, 5], Dehghan et al. [6, 7, 8], Muzzioli
and Reynaerts [9] and Vroman et al. [10, 11, 12], have
presented new models.
Allahviranloo et al. in [1] proposed an analytical
method for obtaining non-zero solutions from the
FFLS, and in [2], a practical method for solving the
FFLSs was suggested. They obtained some symmet-
ric solutions based on the 1-cut expansion. Clearly,
obtained solutions can be used as bounded solutions.
Buckley and Qu [3, 4, 5], have proposed various solu-
tions for FFLS. Using their works, Muzzioli and Rey-
naerts have investigated DFFLS in [9]. Dehghan et al.
[6, 7, 8], has used famous numerical methods for solv-
ing a FFLS. Vroman et al. in their continuous works
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[10, 11, 12], have presented methods for solving the
FSLEs. In [11], they have suggested the Cramer’s rule,
which had better solutions from Buckley and Qu’s so-
lution, also in [10, 11, 12], an algorithm for improv-
ing is presented which is a better method for solving
FFLS.
The rest of paper is organized as follows: In Section
2, we discuss some basic concepts and results on fuzzy
numbers and fuzzy linear system. In Section 3, we sug-
gest our method to solve DFFLS. In Section 4, The
proposed algorithm is illustrated by solving numerical
example to show the efficiency of method. Conclusions
are drawn in Section 5.

2 Preliminaries

The basic concepts are given as follows [2, 9]:

Definition 2.1 A fuzzy number is a fuzzy set u : R →
[0, 1] which satisfies
1. u is upper semi continuous;
2. u(x) = 0 outside some interval [a, b] ;
3. there are real numbers a, b such as a ≤ b ≤ c ≤ d
and
3.1. u(x) is monotonic increasing on[c, d] ;
3.2. u(x) is monotonic decreasing on[b, d];
3.3. u(x) = 1 for all x ∈ [b, c].
The set of all fuzzy numbers is denoted by E . Another
definition of fuzzy number is:

Definition 2.2 A fuzzy number u in parametric form
is a pair (u, u) of functions u(r), u (r) , 0 ≤ r ≤ 1 ,
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which satisfies the following requirements:
1. u(r) is a bounded monotonic increasing left contin-
uous function;
2. u(r) is a bounded monotonic decreasing left contin-
uous function;
3. u(r) ≤ u (r) , 0 ≤ r ≤ 1 A popular fuzzy number is
the symmetric triangular fuzzy number S [x0, σ] cen-
tered at x0 with basic 2σ

u(x) =


1
σ (x− x0 + σ), x0 − σ ≤ x ≤ x0,
1
σ (x0 + σ − x), x0 ≤ x ≤ x0 + σ,

0 otherwise.

We define for arbitrary u = (u(r), u(r)), v =
(v(r), v)(r)) , addition, subtraction , multiplication:

1. Addition: u+ v (r) = u (r)+ v (r) , u+ v (r) =
ū (r) + v̄ (r)

2. Subtracyion: u− v (r) = u (r) −
v̄ (r) , u− v (r) = ū (r)− v (r)

3. Multiplication:

uv (r)

= min {u (r) v (r) , u (r) v̄ (r) , ū (r) v (r) , ū (r) v̄ (r)} ,

uv (r)

= min {u (r) v (r) , u (r) v̄ (r) , ū (r) v (r) , ū (r) v̄ (r)} ,

Definition 2.3 The linear system of equations

ã11x̃1 + ã12x̃2 + ... + ã1nx̃n =

b̃11x̃1 + b̃12x̃2 + ... + b̃1nx̃n + c̃1

ã21x̃1 + ã22x̃2 + ... + ã2nx̃n =

b̃21x̃1 + b̃22x̃2 + ... + b̃2nx̃n + c̃2
...
ãn1x̃1 + ãn2x̃2 + ... + ãnnx̃n =

b̃n1x̃1 + b̃n2x̃2 + ... + b̃nnx̃n + c̃n
(2.1)

where the elements ãij , b̃ij and c̃j , 1 ≤ i, j ≤ n
are fuzzy numbers is so-called dual fully fuzzy linear
systems (DFFLS).

Definition 2.4 The united solution set (USS), the
tolerable solution set (TSS) and controllable solution
set (CSS) for the system (2.1) are respectively as fol-
lows:

X∃∃ = {x′ ∈ Rn : (∃A′ ∈ A)(∃b′ ∈ b) s.t. A′x′ = b′}
= {x′ ∈ Rn : Ax′ ∩ b′ ̸= ∅} ,

X∀∃ = {x′ ∈ Rn : (∃A′ ∈ A) , (∃b′ ∈ b) s.t.A′x′ = b′}
= {x′ ∈ Rn : Ax′ ⊆ b}

X∃∀ = {x′ ∈ Rn : (∃b′ ∈ b) (∃A′ ∈ A) s.t. A′x′ = b′}
= {x′ ∈ Rn : Ax′ ⊇ b}

Definition 2.5 A fuzzy vector X̃ = (x̃1, ..., x̃n)
t
given

by x̃i =
[
xi (r) , x̄i (r)

]
, 1 ≤ i ≤ n, 0 ≤ r ≤ 1 is

called the minimal symmetric solution of (2.1) which
is placed in the CSS if for any arbitrary symmetric
solution Ỹ = (ỹ1, . . . , ỹn)

t
which is place in the CSS

that is Ỹ (1) = X̃ (1) we have(
Ỹ ⊇ X̃

)
, i.e., (ỹi ⊇ x̃i) , i.e., (σỹi ≥ σx̃i) ,∀i

= 1, . . . , n

where σỹi and σx̃i are symmetric spreads of ỹi and x̃i

, respectively.

Definition 2.6 A fuzzy vector X̃ = (x̃1, . . . , x̃n)
t

given by x̃i =
[
xi (r) , x̄i (r)

]
, 1 ≤ i ≤ n, 0 ≤ r ≤

1 is called the minimal symmetric solution of (2.1)
which is placed in the TSS if for any arbitrary sym-
metric solution z̃ = (z̃1, . . . , z̃n)

t
which is place in the

TSS that is Z̃ (1) = X̃ (1) we have(
X̃ ⊇ Z̃

)
, i.e., (x̃i ⊇ z̃i) , i.e., (σx̃i ≥ σz̃i) , ∀i

= 1, · · · , n

where σx̃i and σz̃i are symmetric spreads of x̃i and z̃i
, respectively.

3 Fuzzy solutions of DFFLS

In this section, we propose a practical method to ob-
tain solutions of DFFLSs. First, we obtain the crisp
solution from 1-cut of original system. So, we have
the following crisp system:

n∑
j=1

ãij(1)xj =
n∑

j=1

b̃ij(1)xj + c̃i(1), i = 1, ..., n

(3.2)
Where b̃i (1) , ãij (1) ∈ R and xj , j = 1, . . . , n are
unknown real variables. Then, we fuzzify 1-cut solu-
tion with unknown unsymmetric spreads.
Consequently, the crisp system (3.2) is changed to lin-
ear equations, which we only consider its i-th row as
following:

[ai1 (r) , āi1 (r)] [x1 − αi (r) , x1 + βi (r)] + ...

+ [ain (r) , āin (r)] [xn − αi (r) , xn + βi (r)] =[
bi1 (r) , b̄i1 (r)

]
[x1 − αi (r) , x1 + βi (r)] + ...

+
[
bin (r) , b̄in (r)

]
[xn − αi (r) , xn + βi (r)]

+ [ci (r) , c̄i (r)] .

(3.3)

in above row, xj , j = 1, . . . , n are solutions of
crisp system (3.2) and αi (r) > 0, βi (r) > 0, are
unknown unsymmetric spreads, if in the above row
spread αi = βi, the solutions are symmetric and oth-
erwise, we calculate non-symmetric solutions of the
DFFLS.
Furthermore, the obtained solutions using our pro-
posed method are approximating solutions. Then, for
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solving the system on the elements of matrices Ã, B̃
, we consider nine following types:

1. I1 =
{
(i, j) ∈ Nn ×Nn

∣∣∣ãij > 0 , b̃ij > 0
}
,

2. I2 =
{
(i, j) ∈ Nn ×Nn

∣∣∣ãij > 0 , b̃ij < 0
}
,

3. I3 =
{
(i, j) ∈ Nn ×Nn

∣∣∣ãij > 0 , b̃ij > 0,

∀j ∈ Ns, s < n, b̃ij < 0, ∀j ∈ Nn −Ns},

4. I4 =
{
(i, j) ∈ Nn ×Nn

∣∣∣ãij < 0 , b̃ij > 0
}
,

5. I5 =
{
(i, j) ∈ Nn ×Nn

∣∣∣ãij < 0 , b̃ij < 0
}
,

6. I6 =
{
(i, j) ∈ Nn ×Nn

∣∣∣ãij < 0 , b̃ij > 0,

∀j ∈ Ns, s < n, b̃ij < 0, ∀j ∈ Nn −Ns},

7. I7 = {(i, j) ∈ Nn ×Nn |ãij > 0, ∀j ∈ Ns,

s < n, ãij < 0, ∀j ∈ Nn −Ns, b̃ij > 0 },

8. I8 = {(i, j) ∈ Nn ×Nn |ãij > 0, ∀j ∈ Ns,

s < n, ãij < 0, ∀j ∈ Nn −Ns, b̃ij < 0 ,

9. I9 = {(i, j) ∈ Nn ×Nn |ãij > 0, ∀j ∈ Ns,

s < n, ãij < 0, ∀j ∈ Nn −Ns, b̃ij > 0,

∀j ∈ Ns, s < n, b̃ij < 0, ∀j ∈ Nn −Ns

where Nn = {1 , . . . , n}.
Type 1. I1 =

{
(i, j) ∈ Nn ×Nn

∣∣∣ãij > 0 , b̃ij > 0
}

Since, elements of matrices in the i-th row of interval
system are positive, then we have:

n∑
j=1

aij(r)(xj −αi(r)) =
n∑

j=1

bij(r)(xj −αi(r)) + ci(r)

⇒ αi(r) = f1(x1, · · · , xn, ai1(r), · · · , ain(r), bi1(r), · · ·

, bin(r), ci(r))

n∑
j=1

āij(r)(xj + βi(r)) =

n∑
j=1

b̄ij(r)(xj + βi(r)) + c̄i(r) ⇒ βi(r) = f2(x1, · · ·

, xn, āi1(r), · · · , āin(r), b̄i1(r), · · · , b̄in(r), c̄i(r))

Hence, we set:

αi(r) =

n∑
j=1

b ij(r)xj−
n∑

j=1

a ij(r)xj + c i(r)

n∑
j=1

b ij(r)−
n∑

j=1

a ij(r)
,

and

βi(r) =

n∑
j=1

b̄ ij(r)xj−
n∑

j=1

ā ij(r)xj + c̄i(r)

n∑
j=1

āij(r)−
n∑

j=1

b̄ij(r)
.

But, concerning αi(r), βi(r) and the matter that
we need linear spreads the following conditions are
considered:
Let aij (r) ∈

[
aij (0) , aij (1)

]
and āij (r) ∈

[aij (1) , āij (0)] , then:

min
0 ≤r≤1


n∑

j=1

b ij(r)−
n∑

j=1

a ij(r)


=

n∑
j=1

min
0≤r≤1

{b ij(r)} −
n∑

j=1

max
0≤r≤1

{a ij(r)}

=

n∑
j=1

b ij(0)−
n∑

j=s+1

a ij(1),

max
0 ≤r≤1


n∑

j=1

b ij(r)−
n∑

j=1

a ij(r)


=

n∑
j=1

max
0≤r≤1

{b ij(r)} −
n∑

j=1

min
0≤r≤1

{a ij(r)}

=
n∑

j=1

b ij(1)−
n∑

j=s+1

a ij(0),

min
0 ≤r≤1


n∑

j=1

ā ij(r)−
n∑

j=1

b̄ ij(r)


=

n∑
j=1

min
0≤r≤1

{ā ij(r)} −
n∑

j=1

max
0≤r≤1

{
b̄ ij(r)

}
=

n∑
j=1

ā ij(1)−
n∑

j=1

b̄ ij(0),

max
0 ≤r≤1


s∑

j=1

ā ij(r)−
n∑

j=1

b̄ ij(r)


=

n∑
j=1

max
0≤r≤1

{ā ij(r)} −
n∑

j=1

min
0≤r≤1

{
b̄ij(r)

}
=

n∑
j=1

ā ij(0)−
n∑

j=1

b̄ ij(1).

Then, we get:

αl
i(r) =

n∑
j=1

b ij(r)xj−
n∑

j=1

a ij(r)xj + c i(r)

n∑
j=1

b ij(1)−
n∑

j=1

a ij(0)
, i

= 1, . . . , n
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αu
i (r) =

n∑
j=1

b ij(r)xj−
n∑

j=1

a ij(r)xj + c i(r)

n∑
j=1

b ij(0)−
n∑

j=1

a ij(1)
, i

= 1, . . . , n

βl
i(r) =

n∑
j=1

b̄ ij(r)xj−
n∑

j=1

ā ij(r)xj + c̄ i(r)

n∑
j=1

ā ij(0)−
n∑

j=1

b̄ ij(1)
, i

= 1, . . . , n

βu
i (r) =

n∑
j=1

b̄ ij(r)xj−
n∑

j=1

ā ij(r)xj + c̄ i(r)

n∑
j=1

ā ij(1)−
n∑

j=1

b̄ ij(0)
. i

= 1, . . . , n

Now, some conditions are considered on the obtained
linear spreads of DFFLS as following:

α−, l, u
un (r) = min

0≤r≤1

{∣∣αl
i(r)

∣∣ , |αu
i (r)|

}
, (3.4)

β−, l, u
un (r) = min

0≤r≤1

{∣∣βl
i(r)

∣∣ , |βu
i (r)|

}
, (3.5)

α+, l, u
un (r) = max

0≤r≤1

{∣∣αl
i(r)

∣∣ , |αu
i (r)|

}
, (3.6)

β+, l, u
un (r) = max

0≤r≤1

{∣∣βl
i(r)

∣∣ , |βu
i (r)|

}
, (3.7)

Therefore, by using the unsymmetric spreads (3.4)-
(3.7), the fuzzy non-symmetric solutions of DFFLS
are calculated as following:

X̃−, l
L (r) = (x̃−, l

1 (r), . . . , x̃−, l
n (r))t, s.t. x̃−, l

i (r)

=
[
xi − α−, l

us (r), xi + β−, l
us (r)

]
,

(3.8)

X̃+, u
U (r) = (x̃+, u

1 (r), . . . , x̃+, u
n (r))t, s.t. x̃+, u

i (r)

=
[
xi − α+, u

us (r), xi + β+, u
us (r)

]
,

(3.9)

Proposition 3.1 Let us consider the crisp solution of
system (2.1) as and the linear spreads and solutions
of the DFFLS are obtained by Eqs.(3.4)-(3.7), and by
Eqs.(3.8)-(3.9), respectively then:

1. α−, l, u
us (1) = α+, l, u

us (1)

= β−, l, u
us (1)

= β+, l, u
us (1)

= 0,

2. X̃−, l, u
L (1) = X̃+, l, u

U (1)

= Xc.

Theorem 3.1 Our proposed solutions of the DFFLS
is always gives fuzzy vector.

Theorem 3.2 Let us consider spreads (3.4)-(3.7)
and solutions (3.8)-(3.9), of the DFFLS, then we get:

1. X̃−, l, u
L ∈ TSS ,

2. X̃+, l, u
U ∈ CSS.

Theorem 3.3 Consider X̃−, l, u
L and X̃+, l, u

U are
defined in Theorem 3.2, then we have the following:
1. X̃−, l, u

L is maximal unsymmetric solution in TSS.

2. X̃+, l, u
U is minimal unsymmetric solution in CSS.

4 Numerical examples

Example 4.1 Consider the fuzzy system

Ã =

(
(5 + r, 7− r) (3 + r, 5− r)
(3 + r, 5− r) (3 + 2r, 6− r)

)
,

B̃ =

(
(3 + r, 5− r) (1, 2− r)
(2 + r, 4− r) (1, 2− r)

)
,

b̃ =

(
(6− r, 7− 2r)
(6− r, 7− 2r)

)
The 1-cut solution of DFFLS is Xc = (x1, x2) =
(1, 1) . We fuzzify this crisp solution by the use of
α, β spreads, which for each row are determined like
this:

α1(r) =
2−2r

(4+r)−(8+2r) ,

β 1(r) =
2−2r

(12−2r)−(7−2r) ,

α2(r) =
3−3r

(3+r)−(6+3r) ,

β 2(r) =
2−2r

(11−2r)−(6−2r) .

Then, various forms of crisp solution spreads are ob-
tained:

α−, l, u
un (r) =

2− 2r

6
,

β−, l, u
un (r) =

2− 2r

7
,

α+, l, u
un (r) =

3− 3r

2
,

β+, l, u
un (r) =

2− 2r

3
.

And finally, fuzzy solutions of the according to linear
spreads above are:

X̃−, l, u
L (r) = ([

1− 2− 2r

6
, 1 +

2− 2r

7

]

,

[
1− 2− 2r

6
, 1 +

2− 2r

7

]t
,
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X̃+, l, u
U (r) = ([

1− 3− 3r

2
, 1 +

2− 2r

3

]

,

[
1− 3− 3r

2
, 1 +

2− 2r

3

]t
.

5 Conclusion

In this paper, we offered a simple method to obtain so-
lutions of duality fully fuzzy linear system. For deter-
mining the solutions, first, we solved 1-cut from DF-
FLS to obtain the crisp solution, then solution from
1-cut are fuzzified with some non-symmetric spreads.
In order to, obtain the spreads of system solution by
the use of this new system. Also, our method led to
the determining some solutions which are in the TSS
and CSS and decides this method grantees that always
give us fuzzy vector solution.
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