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Abstract

In this paper, we present a comparative study between the Adomian decomposition method
(ADM) and the Laplace transform decomposition algorithm (LTDA) for solving nonlinear
differential equations. For the Bratu’s boundary value problem and the Duffing’s equation,
we show that the LTDA is equivalent to the ADM.
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1 Introduction

Sometimes using several numerical methods to solve a nonlinear problem may give similar
results. It is noticeable that applying different numerical methods to solve a problem may
provide just the same results. For example it is shown that using the ADM and successive
approximation method for linear integral equations [8], give just the same results and also
it will be hold for the ADM and the power series method for differential equations [9], and
the ADM and the Jacobi iterative method for system of linear equation [6].

From the beginning of 1980’s that George Adomian introduced his decomposition
method, this method has been applied to a wide class of functional equations [1, 2] and it
is demonstrated that the method provides accurate and computable solutions for a wide
class of linear or nonlinear functional equations.

The LTDA is an approach based on the ADM, which is considered as an effective
method in solving many problems because it provides, in general, a rapidly convergent
series solution. Since the Laplace transform converts the differentiation to simple algebraic
operations and as the algebraic equations are solvable by the ADM, we can combine the
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Laplace transform and the ADM to solve differential equations. The LTDA approximates
the exact solution with a high degree of accuracy using only few terms of the iterative
scheme [5]. Many authors have used this method to solve the Bratu’s equation [7], the
Duffing equation [11], and integro-differential equation [10].

In this paper, we use both introduced methods to solve two famous and nonlinear
problems, namely Bratu and Duffing equations. We will show that these methods are
equivalent.

2 Bratu’s boundary value problem

In this section, we apply the ADM and the LTDA for the Bratu’s boundary value problem
and show that the results are exactly the same.

2.1 ADM for solving the Bratu’s boundary value problem

Consider the Bratu’s boundary value problem as follow
—u"(z) =A@ ;. w(0) =0, u(l)=0, A>0. (2.1)

Denoting % by G, we have G~! as two-fold integration from 0 to z, through which the
differential equation in (2.1), can be written as

Gu(z) = —Ae"@), (2.2)

After operating with the inverse operator G~!, substituting the initial condition u(0) = 0
and considering u'(0) = k, one gets

w(z) = kx + G (=Xe"@)), (2.3)

In the ADM, the solution u(z) is considered as an infinite series

= Z U (), (2.4)
n=0

and the nonlinear part of the equation (2.3) is replaced by
N(u(z)) =) An(x), (2.5)

where A! s are the Adomian’s polynomials that can be calculated by the following formula

o0

1 d"
n_n' o Z)\Uz Na=o, n=0,1,2,.... (2.6)

Substituting (2.4) and (2.5) into (2.3), we obtain

Zun ) = u(0) +u'(0)z — AL~ ZA (2.7)
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Considering the initial conditions given in the problem (2.1), we can choose the first term
of the series (2.4) as follows:

uo(z) = kz, (2.8)

and its other terms will be obtained by the recursion relation

T T
uiy1(x) = —)\/ / Ajdxdz. (2.9)
o Jo
The components of u;(z) for n = 1,2,3 can be obtained using (2.12) as
1 z ek
uy(z) = A(ﬁ e ﬁ)a (2.10)
5 T ekx xekx 62k:v
= N (= 2.11
u(e) ST T R R < TR (211)
e3k:1: eZk:L‘ xe2kz 5619:1: 3:1;.6]61 xZBkm 11 T
=22\3(— — — — ). (2.12
w@) =2 om ~aw Y e T aw ae i Taw) (212
Similarly, the components u, (z) are calculated for n = 4,5, ... but they are not listed here

for brevity.

2.2 LTDA for solving Bratu’s problem

S. A. Khuri in [7] applied the LTDA to solve the equation (1). We describe this procedure
briefly as follow.

Operating both sides of the differential equation given in (2.1) by Laplace transform
integral operator (denoted throughout this paper by L), gives

Lu"(z)] = —AL[e"®)]. (2.13)
Applying the formulas of the Laplace transform, tends to
s?Lu(z)] — u(0)s — ' (0) = —AL[e"™)]. (2.14)
Using the initial condition u(0) = 0 and considering u’(0) = k, yields
s?Lu(z)] = k — AL[e"™)], (2.15)

that can be solved for L[u] as

Liu(z)] = 8% — %L[e“(fﬂ)]. (2.16)

Now, the Bratu’s differential equation is converted to the algebraic equation (2.16) that
will be solved using ADM. By substituting (2.4) and (2.5) into (2.16), we obtain

LY ()] = 5 — SL[3 Ane) (2.17)
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We can replace the Laplace transform by the summation and since Laplace transform is
a linear operator, the following result will be hold

> Hun@)] = 55— 5 3 1An ()] (2.18)
Choosing L{ug] = s% and Llu;yi(z)] = —S%L[Ai(ac)] and calculating the inverse of the

Laplace transform, we obtain

uo(z) = kx, (2.19)
1z ek
ui(z) = A(ﬁ e ﬁ)a (2.20)
5 T ekx xekx 62k:v

_ 2
Ug(af) = -\ (W—F%—Fﬁ‘ﬁ—m), (2.21)

63k:v 62k:v Ie2kx 5ek:v 3:176’” xQekm 11

oM T 4k T s SES T ks a4kt T 12K0

The components u,(z) are calculated for n = 4,5,... but for brevity they will not
be listed. Comparing (2.8)- (2.12) by (2.19)-(2.22), one by one, shows that u;(x) for
i =0,1,...,3 obtained by the LTDA are just as the same terms obtained by the ADM.

3 Duffing problem

In this section, we apply the methods ADM and LTDA for a spicial version of the Duffing
equation. The Duffing equation

y" + 3y — 2° = coszsin2z, (3.23)
with the initial conditions y(0) = 3'(0) = 1 [4] is solved using ADM and LTDA in this
section.

3.1 ADM for solving the Duffing equation

Denoting % by G, we have G~! as a two-fold integration given by G1(.) = [ ['(.)dzdz.
Using the operator G, the equation (3.23) becomes

Gy = f(x) — 3y +2¢°, (3.24)
where f(z) has seven terms of the Taylor expansion of excitation term about z = 0 as
follow

322 2% T2t 2P 6125

flz) =coszsin2z ~1 -0 — — 4+ —+ — — — —

2 6 8 120 240 ° (3:25)

Applying the inverse operator G~ on both sides of (3.24) and considering the initial
condition, yield

y=t+G f(x)] - 3G y] +2G ). (3.26)
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In order to apply the ADM let

y= Z Yn,s (3.27)
n=0
and
N(y)=y*=)_ An, (3.28)
n=0

where A,’s are the Adomian polynomials depending on yo,y1,...,yn. Replacing (3.27)
and (3.28) into (3.26), we obtain

7 61 ., 547

1
=t -1 = — b — 2
o=t G (m) = ot g GG T 350" T I81ad0” (3.29)
and the recurrence relation
Yni1 = —3G y,] +2G71[A4,], n=0,1,2,... (3.30)
using (3.30), we can obtain the components of y; as follows:
-1 5 1 5 47 - 89
= — — —p - — 31
NE T " Te” " oodso” T (3:31)
3 5 3 523
=—x——z' — —— .32
2= 30" T10" " 20160° T (3:32)
=3 0029
Ys = wor® +960I +... (3.33)
Similarly, the components y, are calculated for n = 3,4,... that was skipped to be

listed here.

3.2 LTDA for solving the Duffing problem

E. Yusufoglu in [11] used the LTDA to solve the Duffing equation that is explained briefly
in this subsection. Operating both sides of differential equation given in (3.23) by the
Laplace transform integral operator gives

Lly"] + L[3y] — L[2y°] = L[f ()]. (3.34)
Applying the the Laplace transform formulas and using the initial conditions, one gets

s’Lly] = 1 +3L[y] - 2L[y*] = L[f(x)], (3.35)
that can be solved for L[y| as

Lly) = o — Ll + L") + 5 LU (@) (3.36)

g2

Substituting (3.27) and (3.28) into (3.36), we obtain

LISl = oy = L il + Y A+ LI (@) (3.37)
n=0 n=0 n=0
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Matching both sides of (3.37), the following iterative algorithm will be obtained

Lyl = & + 5 LI (@)] (3.38)
3 2 .
Llyisi] = =S Tlyl + STA)L i=0,1,2,... (3.39)

Calculating the inverse of the Laplace transforms in (3.38) and three first terms of (3.39),
we obtain

7 61 . 547

1 5
_ 17 _ 4
Yo=T+ 550" T 25207 T 181440° (3.40)
1, 1 . 47 . 89
L Sy ST Ly S 41
M= T 50" T 30" T soaso” (3-41)

3 . 3 . 523
LS N LA 42
2= 0% T 10" 201600 T (3-42)

-3 ;29 4
= _— — e 4
Y3 = gen® +960$ + (3.43)
In a similar manner, the components y; are calculated for ¢ = 4,5, ... but for brevity

they will not be listed. Note that yo,y1,¥%2,y3, and y4 obtained by the ADM as given
in equations (3.29), (3.31), (3.32), and (3.33) are equal to similar terms obtained by the
LTDA as can be seen in (3.40)-(3.43) . This equality for other terms takes place, too.

4 Conclusion

In this paper, the ADM and LTDA were applied for solving the Bratu’s boundary value
problem and the Duffing’s equation. We showed that the ADM is equivalent to the LTDA
from the point of view of estimate the solution for the Bratu’s boundary value problem
and the Duffing’s problem.
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