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Addition of Two Generalized Fuzzy NumbersD. Chakraborty �, D. GuhaDepartment of Mathematics, IIT-Kharagpur Kharagpur-721302, IndiaReceived 5 March 2010; revised 3 July 2010; accepted 6 July 2010.|||||||||||||||||||||||||||||||-AbstractThe objective of this paper is to develop arithmetic operations between generalized trape-zoidal (triangular) fuzzy numbers so that the drawbacks of the existing works are overcome.In this respect, the extension principle has been used to calculate di�erent arithmetic op-erations.Keywords : Generalized fuzzy number, Extension principle, Function principle||||||||||||||||||||||||||||||||{1 IntroductionPresent-day science and technology are featured with a complex process and phenomenafor which complete information is not always available. For such situations, mathematicalmodels have to be set up using the available data which is only approximately known. Tomake this possible Zadeh [25] introduced fuzzy set theory. In recent years, this theory hasemerged as an interesting branch of pure and applied sciences [1, 18, 20]. In 1985 and1999, Chen [2, 3] further developed the theory and possible applications of generalizedfuzzy numbers. In the paper [2, 3] di�erent arithmetic operations on generalized fuzzynumbers were formulated by proposing the function principle. In 1996, Chen et al. [11]mentioned that the function principle was proposed in order to overcome the complicationsarising due to the use of extension principle [14, 26]. It was also mentioned in [8] that \themethod known as the function principle is more useful than the extension principle forthe fuzzy numbers with trapezoidal membership functions". There are few literatures [4{13, 15{17, 19, 21{24] involving generalized fuzzy numbers theory and applications basedon Chen's arithmetic operations.Though the function principle was used to develop arithmetic operations on generalizedfuzzy numbers, in practice it has been realized that there are some shortcomings of Chen's�Corresponding author. Email address: drdebjanic@yahoo.co.in9



method. From mathematical point of view it can be said that, computing di�erent arith-metic operations using function principle is basically a point wise operation (addition,subtraction, multiplication and division). Due to this reason, it has been observed thatarithmetic operations of generalized trapezoidal (triangular) fuzzy numbers with functionprinciple cause the loss of information and do not give exact results. This motivates us tocorrect the results of arithmetic operations of generalized trapezoidal (triangular) fuzzynumbers.The structure of this paper has been organized as follows. In section 2, the basic arith-metic operations between generalized trapezoidal fuzzy numbers have been reviewed. Thissection also give the examples to show that the existing operations make some approxi-mation, thereby causes loss of information. In section 3 the extension principle has beenused to correct the result. Numerical examples have been given in section 4. The paperhas been concluded in Section 5.2 The fuzzy arithmetic operations with function principleIn this section the arithmetic operations between generalized trapezoidal fuzzy numbersare reviewed from [2, 3, 15].Let us consider ~A1 = (a1; b2; c1; d1;w1) and ~A2 = (a2; b2; c2; d2;w2) be two generalizedtrapezoidal fuzzy numbers.(i) The addition of ~A1 and ~A2:� ~A1(+) ~A2 = (a1 + a2; b1 + b2; c1 + c2; d1 + d2;min(w1; w2)).(ii) The subtraction of ~A1 and ~A2:� ~A1(�) ~A2 = (a1 � d2; b1 � c2; c1 � b2; d1 � a2;min(w1; w2)).(iii) The multiplication of ~A1 and ~A2:� ~A1(�) ~A2 = (a1�a2; b1�b2; c1�c2; d1�d2;min(w1; w2)), if a1; b2; c1; d1; a2; b2; c2; d2are all positive real numbers.(iv) The division, ~A1 is divided by ~A2:� ~A1(=) ~A2 = (a1=d2; b1=c2; c1=b2; d1=a2; min(w1; w2)), if a1; b2; c1; d1; a2; b2; c2; d2are all nonzero positive real numbers.It has been found that most of the work [4{13, 15{17, 19, 21{24] done using generalizedfuzzy numbers is based on Chen's arithmetic operations. Therefore, the importance ofthese operations and the high number of citations of Chen's [2, 3] work related to this,warrants a thorough study of their work. In course of this study some shortcomings ofChen's method have been observed which have been illustrated with the help of followingexample:
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2.1 ExampleLet us consider two generalized triangular fuzzy numbers of the following form: ~A1 =(0:7; 0:8; 0:9; 0:5) and ~A2 = (0:8; 0:9; 1:0; 1:0). After performing Chen's addition operation(de�ned above) between ~A1 and ~A2, the result has been obtained as ~A1(+) ~A2 = ~B =(1:5; 1:7; 1:9; 0:5), which is a generalized triangular fuzzy number. In our opinion this resultdoes not give the exact value. The result after performing Chen's addition operation hasbeen illustrated with the help of Figure 2.1 given below.
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Fig. 1. Sum of two generalized triangular fuzzy numbersIt may be observed from the above �gure that, min(1; 0:5) = 0:5. If the both fuzzynumbers are taken to the same level by "truncating the higher one" i.e. if we take0:5(since 0:5 < 1:0) cut of ~A2 then ~A2 is transformed into a generalized trapezoidal(
at) fuzzy number. Therefore, it is necessary to conserve this 
atness into the resultantgeneralized fuzzy number. In this respect Chen's approach is incomplete and hence losesits signi�cance. In view of this, there is a need to develop arithmetic operations for gen-eralized fuzzy numbers, which calculates the result more appropriately.Therefore, in the next sections the aim is to develop the arithmetic operations betweengeneralized fuzzy numbers based on the extension principle to improve the method.3 Operations on generalized fuzzy numbersLet ~A1 = (a1; b1; c1; d1;w1) and ~A2 = (a2; b2; c2; d2;w2) be two generalized 
at fuzzynumbers with membership functions � ~A1 and � ~A2 respectively, which can be written inthe following form: � ~A1(x) = 8>>>>>><>>>>>>:0 if �1 < x � a1w1fa(x) if a1 � x � b1w1 if b1 � x � c1w1ha(x) if c1 � x � d10 if d1 < x �1
11
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� ~A2(y) = 8>>>>>><>>>>>>:0 if �1 < y � a2w2fb(y) if a2 � y � b2w2 if b2 � y � c2w2hb(y) if c2 � y � d20 if d2 < y � 1Here, fa(x) is strictly increasing from the interval [a1; b1] to the interval [0; 1] and ha(x) isstrictly decreasing from the interval [c1; d1] to the interval [0; 1]. Similarly fb(y) is strictlyincreasing from [a2; b2]to the interval [0; 1] and hb(y) is strictly decreasing from [c2; d2] tothe interval [0; 1].The membership function � ~C of their composition ~A1(�) ~A2, (where (�) is an extendedbinary operation to combine two generalized fuzzy numbers ~A1 and ~A2) is de�ned usingZadeh's extension principle, [14, 26] as follows:� ~C(z) = supz=x�y minf� ~A1(x); � ~A2(y)gIf ~A1(�) ~A2 is denoted by ~C from the above de�nition it can be said that ~C will be ageneralized fuzzy number with con�dence level wc = min(w1; w2): Di�erent arithmeticoperations between ~A1 and ~A2 have been established with the following theorems.3.1 Sum of two generalized fuzzy numbersLet ~A1 and ~A2 be two generalized 
at fuzzy numbers, as de�ned above. If ~C = ~A1(+) ~A2,then the following relation can be written� ~C(z) = supz=x+y minf� ~A1(x); � ~A2(y)gTheorem 3.1. Let � ~C be the membership function of ~A1(+) ~A2; then� ~C(z) = 8><>:0 8z 2 (�1; a1 + a2] [ [d1 + d2;1)[0; wc] 8z 2 [a1 + a2; f�1a (wc) + f�1b (wc)] [ [h�1a (wc) + h�1b (wc); d1 + d2]wc 8z 2 [f�1a (wc) + f�1b (wc); h�1a (wc) + h�1b (wc)]where wc = min(w1; w2):Proof: For~C = ~A1(+) ~A2 = n(z; � ~C(z)) : z = x+ y and ~A1 = (x; � ~A1(x)); ~A2 = (y; � ~A2(y))odepending on the positions of x and y the following three cases may arise:Case 1: Let us consider x 2 (�1; a1] and y 2 (�1; a2] ) x + y = z 2 (�1; a1 + a2].As � ~A1(x) = 0 8x 2 (�1; a1] and � ~A2(y) = 0 8y 2 (�1; a2]; we need to prove� ~C(z) = 0 8 z 2 (�1; a1 + a2]: 12
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To evaluate � ~C(z) we must consider every pair (p; r) such that, z = p+ r. Now for everypair (p; r) (for p+ r = z) the following two possibilities have been considered:(i) For p < x and r > y, minf� ~A1(p); � ~A2(r)g = 0 as � ~A1(p) = 0 8p < x,(ii) For p > x and r < y, minf� ~A1(p); � ~A2(r)g = 0 as � ~A2(r) = 0 8 r < y:From both (i) and (ii), supz=p+r minf� ~A1(p); � ~A2(r)g = 0 ) � ~C(z) = 0:Since this result holds for any arbitrary z, therefore, � ~C(z) = 08z 2 (�1; a1 + a2].In a similar manner it can be proved that � ~C(z) = 0 8 z 2 [d1 + d2;1).Thus, � ~C(z) = 0 8 z 2 (�1; a1 + a2] [ [d1 + d2;1).Case 2: Suppose min(w1; w2) = w2For x 2 [a1; f�1a (w2)] and y 2 [a2; b2], i.e. x 2 [a1; f�1a (w2)] and y 2 [a2; f�1b (w2)],) x+ y = z 2 [a1 + a2; f�1a (w2) + f�1b (w2)].We need to prove � ~C(z) 2 [0; w2] 8z 2 [a1 + a2; f�1a (w2) + f�1b (w2)].Now for z 2 [a1 + a2; f�1a (w2) + f�1b (w2)), for every pair (p; r)(for p+ r = z)the followingtwo possibilities have been considered:(i) For p < x and r > y,(a) For p > a1 and r < f�1b (w2) = b2, we have 0 < minf� ~A1(p); � ~A2(r)g < w2.(b) For p > a1 and r > b2 = f�1b (w2), we have minf� ~A1(p); � ~A2(r)g < w2.(c) For p < a1 and r > b2, we can obtain minf� ~A1(p); � ~A2(r)g = 0.(d) For p < a1 and r < b2, we have minf� ~A1(p); � ~A2(r)g = 0.(ii) For p > x and r < y,(a) For p < f�1a (w2) and r > a2, we have minf� ~A1(p); � ~A2(r)g = 0.(b) For p < f�1a (w2) and r < a2, we obtain minf� ~A1(p); � ~A2(r)g = 0.(c) For p > f�1a (w2) and r > a2, we have minf� ~A1(p); � ~A2(r)g < w2.(d) For p > f�1a (w2) and r < a2, we have minf� ~A1(p); � ~A2(r)g = 0.Consequently for both (i) and (ii), 8z 2 [a1 + a2; f�1a (w2) + f�1b (w2)) we have, 0 �supz=p+r minf� ~A1(p); � ~A2(r)g < w2.And for z = f�1a (w2) + f�1b (w2), i.e. when x = f�1a (w2) and y = f�1b (w2), the fol-lowing holds: minf� ~A1(x); � ~A2(y)g = w2.As before, if we consider the following possibilities:(iii) For p < x and r > y, we get minf� ~A1(p); � ~A2(r)g < w2.(iv) For p > x and r < y, we get minf� ~A1(p); � ~A2(r)g < w2.13
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(v) For p = x and r = y only, we get minf� ~A1(p); � ~A2(r)g = w2.Consequently for (iii), (iv) and (v), we have, supz=p+r minf� ~A1(p); � ~A2(r)g = w2.Therefore, from the above �ve possibilities, we can say that for any arbitrary z 2 [a1 +a2; f�1a (w2) + f�1b (w2)], 0 � supz=p+r minf� ~A1(p); � ~A2(r)g � w2) 0 � � ~C(z) � w2Since this result holds for any arbitrary z 2 [a1 + a2; f�1a (w2) + f�1b (w2)], so we can saythat this is true for all z 2 [a1 + a2; f�1a (w2) + f�1b (w2)].Therefore, � ~C(z) 2 [0; w2] 8z 2 [a1 + a2; f�1a (w2) + f�1b (w2)].In a similar manner we can prove that � ~C(z) 2 [0; w2] 8 z 2 [h�1a (w2) + h�1b (w2); d1 + d2].Similar result can be obtained if we consider min(w1; w2) = w1:Hence, in general, it can be written that if min(w1; w2) = wc then � ~C(z) 2 [0; wc] forall values of z belongs to [a1 + a2; f�1a (wc) + f�1b (wc)] [ [h�1a (wc) + h�1b (wc); d1 + d2] .Case 3: Let us consider x 2 [f�1a (wc); h�1a (wc)] and y 2 [f�1b (wc); h�1b (wc)] ) x + y =z 2 [f�1a (wc) + f�1b (wc); h�1a (wc) + h�1b (wc)]Now � ~A1(x) = wc 8x 2 [f�1a (wc); h�1a (wc)] and � ~A2(y) = wc 8y 2 [f�1b (wc); h�1b (wc)].Therefore, it is obvious that 8z 2 [f�1a (wc) + f�1b (wc); h�1a (wc) + h�1b (wc)], � ~C(z) = wc.Thus, the proof has been completed.Therefore, for ~C = ~A1(+) ~A2, the membership function � ~C(z) can be written as follows:� ~C(z) = 8>>>>>><>>>>>>:0 if �1 < z � a1 + a2wcfc(z) if a1 + a2 � z � f�1a (wc) + f�1b (wc)wc if f�1a (wc) + f�1b (wc) � z � h�1a (wc) + h�1b (wc)wchc(z) if h�1a (wc) + h�1b (wc) � z � d1 + d20 if d1 + d2 < z � 1Where fc(z) = supz=x+y minffa(x); fb(y)g and hc(z) = supz=x+y minfha(x); hb(y)g.3.1.1 Particular Case: For generalized triangular fuzzy numbersLet us consider, two generalized triangular fuzzy numbers ~A1 and ~A2 denoted as ~A1 =(a1; b1; c1;w1) and ~A2 = (a2; b2; c2;w2).Theorem 3.2. Addition of two triangular fuzzy numbers with di�erent con�dence levelsgenerates a trapezoidal fuzzy number as follows:
14
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~A3 = ~A1(+) ~A2 = (a3; b3; c3; d3;w3)where,a3 = a1 + a2b3 = a1 + a2 + (b1 � a1)w3=w1 + (b2 � a2)w3=w2c3 = c1 + c2 � (c1 � b1)w3=w1 � (c2 � b2)w3=w2d3 = c1 + c2and w3 = min(w1; w2); w1 6= w2.Proof: Generalized triangular fuzzy numbers ~A1 and ~A2 have the membership func-tions of the following form:� ~A1(x) = 8>>>><>>>>:0 if �1 < x � a1w1(x� a1)=(b1 � a1) if a1 � x � b1w1(c1 � x)=(c1 � b1) if b1 � x � c10 if c1 < x � 1 (3.7)
� ~A2(y) = 8>>>><>>>>:0 if �1 < x � a2w2(y � a2)=(b2 � a2) if a2 � y � b2w2(c2 � y)=(c2 � b2) if b2 � y � c20 if c2 < y � 1 (3.8)

It can be said that for a �xed value of w 2 [0;min(w1; w2)], there exists (x; y) 2 R2such that � ~A1(x) = � ~A2(y) = w = � ~A3(z) holds,where z = x+ y.For obtaining ~A3, z needs to be found with respect to w. For this purpose the increasingpart of the membership functions of ~A1 and ~A2 has been considered.From (3.7), the increasing part of � ~A1(x) gives the following relation between x and ww1(x� a1)=(b1 � a1) = w ) x = a1 + (b1 � a1):w=w1 (3.9)And similarly from (3.8) we get the followingw2(y � a2)=(b2 � a2) = w) y = a2 + (b2 � a2):w=w2 (3.10)Therefore, to compute z, from (3.9) and (3.10) we getw = z � (a1 + a2)(b1 � a1)=w1 + (b2 � a2)=w2 (3.11)On the other hand the increasing part of the membership function of ~A3 can be writtenin the following form: 15
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� ~A3(z) = w = w3(z � a3)=(b3 � a3) (3.12)Now equation (3.11) can be expressed in the following form:w=w3 = z � (a1 + a2)w3 ((b1 � a1)=w1 + (b2 � a2)=w2) (3.13)Comparing (3.12) and (3.13), the following can be writtena3 = a1 + a2 and b3 � a3 = (b1 � a1)w3=w1 + (b2 � a2)w3=w2Therefore, b3 = a1 + a2 + (b1 � a1)w3=w1 + (b2 � a2)w3=w2.In the same way considering the decreasing part of the membership functions of ~A1 and~A2 the following can be provedc3 = c1 + c2 � (c1 � b1)w3=w1 � (c2 � b2)w3=w2; d3 = c1 + c2Thus, �nally the following can be obtained~A3 = ~A1(+) ~A2 = (a3; b3; c3; d3;w3)where,a3 = a1 + a2b3 = a1 + a2 + (b1 � a1)w3=w1 + (b2 � a2)w3=w2c3 = c1 + c2 � (c1 � b1)w3=w1 � (c2 � b2)w3=w2d3 = c1 + c2Thus, the required value of a3; b3; c3 and d3 can be obtained. Hence, the proof has beencompleted.3.1.2 More on the example of subsection 2.1As shown in the example of section 2.1, after performing the addition operation between~A1 and ~A2, we obtained ~A1(+) ~A2 = ~B = (1:5; 1:7; 1:9; 0:5). But after the discussionstated above in Theorem (3.2), it can be said that the addition of ~A1 and ~A2 generatesa generalized trapezoidal fuzzy number and that should be ~A3 = (1:5; 1:65; 1:75; 1:9; 0:5)which gives a better result. The di�erence between the two operations has been shownin Figure 3.1. From the �gure it is now clear that Chen's addition causes the loss ofinformation.
16
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Fig. 2. Comparison between the two additionsTheorem 3.3. Addition of two generalized trapezoidal fuzzy numbers ~A1 = (a1; b1; c1; d1;w1)and ~A2 = (a2; b2; c2; d2;w2), with di�erent con�dence levels generates a trapezoidal fuzzynumber as follows: ~A4 = ~A1(+) ~A2 = (a4; b4; c4; d4;w4)where,a4 = a1 + a2b4 = a1 + a2 + (b1 � a1)w4=w1 + (b2 � a2)w4=w2c4 = d1 + d2 � (d1 � c1)w4=w1 � (d2 � c2)w4=w2d4 = d1 + d2and w4 = min(w1; w2); w1 6= w2.Proof: The proof is similar to Theorem 3.2.3.2 Subtraction of two generalized triangular fuzzy numbersLet us consider two generalized triangular fuzzy numbers ~A1 = (a1; b1; c1;w1) and ~A2 =(a2; b2; c2;w2). In order to compute the subtraction operation between ~A1 and ~A2, thevalue of ~A1(�) ~A2 can be de�ned as ~A1(�) ~A2 = ~A1(+)(� ~A2). Now the addition operationon ~A1 and (�) ~A2 as discussed in the section 3.1.1, can be easily performed. Hence, thefollowing can be written~A5 = ~A1(�) ~A2 = (a5; b5; c5; d5;w5)where,a5 = a1 � a2b5 = a1 � c2 + (b1 � a1)w5=w1 + (c2 � b2)w5=w2c5 = c1 � a2 � (c1 � b1)w5=w1 � (b2 � a2)w5=w2d5 = c1 � a2and w5 = min(w1; w2); w1 6= w24 Numerical illustrationExample 4.1. Let ~A1 = (1; 2; 4; 5; 0:5) and ~A2 = (5; 6; 8; 9; 1) be two generalized trape-zoidal fuzzy numbers. Find ~A1(+) ~A2.Result: With the help of Theorem 3.3, the following result has been obtained ~A1(+) ~A2 =(6; 6:5; 12:5; 14; 0:5). 17
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