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Abstract

Let [A] = [[ajj]]nxnbe an interval for [a;] = [a;5,@i5] (i,j=1,2,...,n). In transformation a
matrix into upper triangular matrix by Gauss method, entries under the main diameter
should be zero by elementary row operations. In this paper we consider zero as an interval;
and, we would apply Gauss elimination method on interval matrix by arithmetic operations
on intervals and the definition of comparison method interval dates, we would use Gauss
elimination method on interval matrix.
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1 Introduction

The problems of interval equations solution are of perennial interest, because of their
direct relevance to practical modeling and optimization of real-world processes including
finance [2,4], economy [1,3,8,11], and mechanics [5]. Gauss elimination method is used for
transformation matrix into upper triangular form. This upper triangular form can be used
for solving system[9].Gunter worked on feasibility result for interval Gaussian elimination
[6].Jurgen presented a method by which the breakdown of interval Gaussian elimination
caused by division of an interval containing zero can be avoided for some classes of matrices
[7]. Dymova and Sevastjanov proposed ”interval extended zero” method for solving interval
and fuzzy equations and they applied it for Gauss elimination algorithm [10]. We simply
see if we use the method, coefficient matrix will not be transformed into upper triangular
form.Therefor, we proposed a new method for solving the problem. The organization of
the paper is as follows: In Section 2, we will remind some basic definitions of interval
mathematics, interval extended zero method,and Gauss elimination algorithm. ”Interval
extended zero” method will be used for Gauss elimination algorithm in section 3. Examples
will be provided in Section 4 and finally, Section 5 is allocated to conclusion.
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2 Preliminaries

Definition 2.1. We call [a] = [a,a] an interval number if a < @, and we consider arith-
metic operations on these two intervals of [a], [b] as follows:

[a] + [b] = [a + b, @ +b], (2.1)
| [ka,ka] k>0,
Kla] = { k@, ka] k<0 (22)
[a] = [b] = [a] + (—[b]) = [a — b,a — D], 2.3
[a] x [b] = [min{ab, ab,ab,ab}, max{ab, ab,ab,ab}], (2.4)
11
lal /1) = [a] x [, 7); (2.5)

And, we define the comparison of these two intervals such as:

B =l «—a=0b, a=0b (2.6)
[a] < [b] «+—a <D
[a] <[] ¢—a <D

[a] = [b] +— a +
[a] X [b]+—a+a<b
2.1 interval Extended zero

In problems with interval entries, it is better to consider zero as a symmetric interval
around zero in the form of [—y,y]. In which y > 0 and we show it as [0,] = [y, y].

2.1.1 Properties of interval extended zero

Zero satisfies some of the properties in real number set,for the present we show in the
following equalities that the properties satisfy in interval extended zero, too:

L [0y] +[0y] = [y, 9yl + =¥, ¥ = [y + '), (v + ¥)] = [0y14]
2. [0y] x [0y] = [~y,y] x =yl = vy, '] = [0yy]
3. [a] +[0y] = [a,@] + [~y,y] = [a — y, @ + y] = [a]

4.
[a] x [0,] = [a,a] % [~y,y]
[—ay, ay] ~ [Ogy], [a] > 0
(2.11)
= lay, —ay]| ~ [Ofgy]a [a] <0

[—max{—gy,dy},max{—gy,ay}] ~ [Omax{fgy,ﬁy}]a 0€ [a]
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2.1.2 Solving interval equation

Dymova and Sevastjanov proposed interval extended zero method for solving a linear
equation as [a][z] — [b] = [0] where [a], [0], [z] are interval numbers [10], and O ¢ [a]. In
the method,they get the interval solution of this equation as[z] = [z, Z|by using arithmetic
operations, we obtain:

1 If [a] > 0, [b]>0,then§:%, z:“g—g:’;
2 If [a] > 0, [b] <O, then z = &b 2t 75
31fa] <0, 0] <0, thenz =2, z="1Pt_ 3
4 If [a] <0, [b]>0,then§:bf—g—a—g, E:ﬁ

5If[a]>0a06b,then£:%, 7= btb _

[ISRIISH

o

+

>
Qll

61f[a]<0,0€b,theng:§, T =

2.1.3 Gauss elimination algorithm

Elementary row operations:
1. R;j: we move i-th row and j-th row for each other.
2. Ri(a): we multiply i-th row in a.
3. Rjj(a): we multiply i-th row in a,and add the result to j-th row.

In Gauss elimination algorithm, all entries under the main diameter should be zero by
elementary row operations to make matrix,upper triangular.In order to this matrix is
considered as A = [a;j]nxn,where a;; € R and a;; # 0. Let we are in k—th iterate. At the

beginning of k—th iteration, A*~1 as follows:
- (0 0 0) -
0 ay ... ... cee Gy
A(kfl) :
o ... 0 a,(jc_l) - a,(clfl_l)
| 0 ... 0 aglkkfl) ... agifl)
Q=1
We put my, = —%,all entries under main diameter will be zero by Ry;(m)(i =

k

k
E+1,...,nk=12.,n—1)and we have:

(k—1)

k-1),. .
W =l dmaal V0 = k41, nk =1,2,.0,m) (2.12)
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3 Interval extension of Gauss elimination algorithm

Let [A] = [[a;;]]nxn is a matrix of n X n with the entries [a;;] = [a;;,@ij] (i,j=1,2,...,n). In
interval Gauss elimination method,we have:

[ai]®) = [ai;) 5= + [ [ox] (3.13)

In Gauss elimination method the interval matrix should be transformed into upper trian-

gular matrix. We solve the following equation to obtain [m;;] = —%:
[are]* D mig] + [ai]F ) =0 (3.14)
Therefore, by interval extended zero method we get:
[mik] = [my,, Mk (3.15)

Where we will obtain [m] from Section (2.1.2),
1. If [akk](kfl) > 0, [aik](kfl) > 0, then

a4t e Dag (D)

myg = Tk D ap kD2 )
M, = _M
ik Tr*-D

2. If [akk](kfl) > 0, [aik](kfl) < 0, then

a(k=1)
. a
Mik = — 2=,
m(k—1)+%(k—1) m(k‘—l)ﬂ(k‘—l)

Mg = — kD (k—1)2

Akl

3. If [akk](kfl) <0, [aik](kfl) > 0, then

Y
Mik = = 4 F—D>

_aik(k*1)+ﬁ(k*1) m(kfl)%(kfl)
g F D g P12

Mgk =

4. If [akk](kfl) <0, [aik](kfl) < 0, then

%(k—l)_,_aik(k—l) (k=1)gzp(k—1)

Lo [
mig = PG g F- D2 )
—(k—1)
o — — ik
Mgk = agpF D
5. If [age] *= > 0, 0 € [a;]*~Y, then
—(k—-1)
o= Gik
Mmik = agpF D
k—1) 4 7—(k— (ke
mi = _ap®V4agpt gpke-n
aer kD %(k—l)
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6. If [apr] =D <0, 0 € [a]* =Y, then

e (B D

Mmik = W’
_ _%(k*1)+m(k*1) D
Mgk = agrF D ak_k_(k )

Proposition 3.1. By Ryi([mi]);is obtained [aj]*tY) = [04] for (i = k+1,...,n,k
L...,n—1).

Proof: In Ry;([mik]),i-th row is multiplied in [m;] and the result is added to k-th

row,therefore,we obtain [m;;], if [arr]* =D > 0, [aix]*~") > 0Then
o (k=1) 4 g—(k-1) (k-1)q., (k—1)  (k=1)
ik + ;i agk Gk ik
[mk] = [mik, Mir) = [—= + = ,— =] (3.16)
t —te> 1T akk(k 1) akk(k 1)2 akk(k 1)
Hence,
[aie] ™ = [ag] * 1 + [ma][agi]
= [aipF D, @]
aig*=Dpaz k=D g, (k=Dg (k=1) L (F=1) B
+[__k W(k—f) kkakk(k If)z , akk(k— 1)][akk( b akk(k 1)]
(k—1)g., (k—1) (k—1)g,, (k—1)
= lag® V), am® D)+ [man® D — gt ¢ e, S
(k—1)g,, (k—1) (k—1)g, , (k—1)
[ azk(k b + 2k —(1? k1) ’_a = —(Zkﬁ) + azk(k 1)] - [Ozk]

Ak Ak k

Other cases are similar.

In (n — 1)-th iteration, we get an upper triangular matrix with interval zero as:

[ [an]©@ [a]® L [a1n]©@ T
[021] [022](1) ... [a2n](1)
An=1) — :
[07;1] . . [Onn;l] [ann]'(nfl) |
Where
[a;;]®) = [a;;]*Y + [mzk][ak]] D(k=1,2,...,n—1) (3.17)

Remark 3.1. If we don’t have row changing, then the determinant of interval matriz will

be as follows:

14] = [ Jlaa) " (3.18)

=1

This obvious that, [A] is nonsingular if and only if 0 ¢ [a;]"~Y fori=1,..,n
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4 Numerical examples

Here,we illustrate our method.

Example 4.1. Let us consider

If we use the proposed method for Gauss elimination algorithm we will get:

_[ 3 B
A= o
t] = [y, 71] =[5, 1]

Then with Rio([ma1])

A= |

[2,8] [5,6]]
[-2,2] [-9,-3]

|

[091]

Example 4.2. Let us consider [A] matriz as follows [8]:

[ [0.1389,0.1396]
[0.1565,0.1571]
[0.0001,0.0002]
[0.0110,0.01130]

[0.0214,0.0216]

| [0.0268,0.0271]

[ [0.1389,0.1396]
[-0.0014,0.0014]
[-0.0001,0.0001]
[-0.0003,0.0003]

[-0.0003,0.0003]

| [-0.0004,0.0004]

[0.0804,0.0806]
[0.5048,0.5047]
[0.0004,0.0005]
[0.0178,0.0178]
[0.0749,0.0750]

[0.0284,0.0407]

We will get [A®)] as follows:

[0.0804,0.0806]
[0.4131,0.4146]
[-0.0001,0.0001]
[-0.0003,0.0003]
[-0.0005,0.0005]

[-0.0127,0.0127]

5 Conclusion

[0.0033,0.0036]
[0.5684,0.5643]
[0.0067,0.0069]
[0.0296,0.0298]
[0.0917,0.0917]

[0.0142,0.0144]

[0.0033,0.0036]
[0.5593,0.5606]
[0.0061,0.0065]
[-0.0015,0.0015]
[-0.0013,0.0013]

[0.0177,0.00177]

[0.0001,0.0001]
[0.8401,0.8421]
[0.0013,0.0015]
[0.0140,0.0143]
[0.00490,0.0490]

[0.0358,0.0363]

[0.0001,0.0001]
[0.8400,0.342]
[0.001,0.0013]
[0.0015,0.0083]
[-0.003,0.003]

[-0.0251,0.0231]

[2,3]  [5,6] ]
['9"3]

[0.0321,0.0827]
[0.2405,0.2411]
[0.0090,0.0090]
[0.1103,0.0111]
[0.0400,0.0402]

[0.1086,0.1090]

[0.0321,0.0327]
[[0.2085,0.2051]
[0.0088,0.0089]
[0.081,0.0845]
[0.0698,0.1524]

[-0.776,0.776]
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(4.19)

[0.0052,0.0054] W
[0.2642,0.2654]
[0.0145,0.0149]
[0.0413,0.0417]

[0.0454,0.0458]

[0.0981,0.0987] J

[0.0052,0.0054] T
[0.2581,0.2596]
[0.0142,0.0147]
[-0.0008,0.004]

[-0.013,0.0010]

[-0.051,0.158] |

In Gauss elimination method all of entries under main diameter with elementary row
operations should be zero in order to transform matrix into upper triangular form; but,
we simply see if we use the proposed method in[10] for Gauss elimination method, the
matrix will not be transformed into upper triangular form. Therefore, in order to solve
this problem we proposed to use interval extended zero method for obtaining [m;x] in
Gauss elimination algorithm.
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