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Abstract

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp.
fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of
Hilbert C*—modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel
multipliers and Bessel fusion multipliers in Hilbert C*— modules. Moreover, we obtain some results

for the tensor product of duals using Bessel multipliers.
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1 Introduction

Rames for Hilbert spaces were first introduced
F by Duffin and Schaeffer [7] in 1952 to study
some problems in nonharmonic Fourier series,
reintroduced in 1986 by Daubechies, Grossmann
and Meyer [6]. Frames are very useful in char-
acterization of function spaces and other fields
of applications such as filter bank theory, sigma-
delta quantization, signal and image processing
and wireless communications. Fusion frames [5]
and g-frames [23] are important generalizations
of frames.

Hilbert C*—modules are generalizations of Hilbert
spaces by allowing the inner product to take val-
ues in a C*-algebra rather than in the field of
complex numbers. Hilbert C*—modules are used
in the study of locally compact quantum groups,
completely positive maps between C*—algebras,
non-commutative geometry and KK-theory.

Frank and Larson presented a general approach to
the frame theory in Hilbert C*—modules (see [8]).
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TDepartment of Mathematics, Faculty of Science, Uni-
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Also A. Khosravi and B. Khosravi introduced fu-
sion frames and g-frames in Hilbert C*—modules
(see [12]).

Bessel multipliers in Hilbert spaces were intro-
duced by Balazs in [3]. Bessel fusion multipliers
and g-Bessel multipliers in Hilbert spaces were in-
troduced in [17] and [21], respectively. Also mul-
tipliers were introduced for p-Bessel sequences in
Banach spaces (see [22]). Recently the present
author and A. Khosravi generalized Bessel multi-
pliers, g-Bessel multipliers and Bessel fusion mul-
tipliers to Hilbert C*—modules (see [15]).
Tensor products of frames, fusion frames and g-
frames in Hilbert spaces have been studied by
some authors recently, see [4, 11, 13]. Also tensor
products of g-frames were considered in Hilbert
C*—modules, see [11, 12, 10, 20]. Tensor prod-
ucts have important applications, for example
tensor products are useful in the approximation
of multi-variate functions of combinations of uni-
variate ones. In this paper, we investigate tensor
products of g-frames, fusion frames and frames in
Hilbert C*—modules and we consider their mul-
tipliers.
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2 Frames, fusion frames and g-
frames in Hilbert C*—modules

Suppose that 2 is a C*—algebra and F is a
left A—module such that the linear structures
of % and E are compatible. FE is a pre-Hilbert
Q—module if E is equipped with an 2A—valued
inner product (.,.) : E x E — 2, such that

() (a@ + By,2) = alz,2) + Bly,2), for cach
a,f€Cand x,y,z € E;

(i) (az,y) = a(z,y), for each a € A and z,y €
E;

(iii) (x,y) = (y,z)*, for each x,y € F;

(iv) (x,z) > 0, for each x € E and if (x,z) =0,
then x = 0.

For each = € E, we define |z|= (x,x)é and ||z||=
[z, )|

12.1 fEiscompletewithl]|.||, it is called a Hilbert
A—module or a Hilbert C*—module over 2A. We
call Z(A) = {a € A : ab = ba,Vb € A}, the center
of /. Let Fq7 and EF5 be Hilbert 2-modules. The
operator T' : Fhy — FE» is called adjointable if
there exists an operator T : Fy — FE7 such that
(T'(x),y) = (x,T*(y)), for each x € E; and y €
F>. Every adjointable operator T' : F; — F»
is bounded and A-linear (that is, T'(az) = aT'(z)
for each x € E; and a € 2A). We denote the set
of all adjointable operators from F; into Ey by
Lo(E1, E2). Note that £9(E1, E7) is a C*-algebra
which is denoted by £y (F1), for more details see
[16].
A Hilbert 2-module F is finitely generated if
there exists a finite set {z1,...,z,} C F such
that every element x € E can be expressed as
an A-linear combination z = Y I | a;z;,a; € 2L
A Hilbert A—module E is countably generated if
there exists a countable set {z;};c;7 C E such
that E equals the norm-closure of 2-linear hull
of {37i}i€1'
Let E be a Hilbert A—module. A family F =
{fitier C E is a frame for E, if there exist real
constants 0 < A < B < oo, such that for each
x € F,

Adw,a) < S (o f) (fin2) < Bula,a),

el

(2.1)

i.e., there exist real constants 0 < A < B < o0,
such that the series )./ (x, fi)(fi, ) converges

in the ultraweak operator topology to some ele-
ment in the universal enveloping Von Neumann
algebra of 2 such that the inequality (2.1) holds,
for each x € E. The numbers A and B are called
the lower and upper bound of the frame, respec-
tively. In this case we call it an (A, B) frame. If
only the second inequality is required, we call it a
Bessel sequence. If the sum in (2.1) converges in
norm, the frame is called standard. It F = { fi }ier
is a standard Bessel sequence, then the operator
Sz is defined on E by Srx =3, /(x, fi) fi- SFris
an adjointable and positive operator and if F is a
standard frame, then S is invertible. For more
results about frames in Hilbert C*—modules, see
8, 1].

A closed submodule M of E is orthogonally com-
plemented if E = M @ M~+. In this case my €
Lo(E, M), where mpr : E — M is the projection
onto M.

Suppose that {w; : ¢ € I} C A is a family of
weights, i.e., each w; is a positive, invertible ele-
ment from the center of A, and {W; : i € I} is
a family of orthogonally complemented submod-
ules of E. Then {(W;,w;)}icr is a fusion frame if
there exist positive numbers A and B such that

Az, x) < wi{mw, (z), 7w, (z)) < B.(z, ),
i€l

for each x € E. If we only require to have the
upper bound, then {(W;,w;) }ier is called a Bessel
fusion sequence with upper bound B.

Let {E;}ier be a sequence of Hilbert 2-modules.
A sequence A = {A; € £y(E, E;) i € I} is called
a g-frame for E with respect to {E; : i € I} if
there exist real constants A, B > 0 such that for
each x € F,

Az, x) < Z(Am,/\m) < Bz, x).
i€l

If only the second-hand inequality is required,
then A is called a g-Bessel sequence. Standard
g-frames and fusion frames are defined similar to
frames.

If W = {(W;,w;)}ier is a standard Bessel fusion
sequence, then the operator Sy : £ — E which
is defined by Swx =, ; w;?mw,x is adjointable
and called the operator of W. For a standard g-
Bessel sequence A, the operator Sy : £ — FE
which is defined by Sx(z) = 3,7 AjAi(z) is ad-
jointable and it is called the operator of A. If A
is a standard (A, B) g-frame, then A.Jdg < Sj <



M. Mirzaee Azandaryani /IJIM Vol. 8, No. 1 (2016) 9-16 11

B.Idg. For more results about fusion frames and
g-frames in Hilbert C*—modules, see [12, 24].
Also note that fusion frames have been intro-
duced in Hilbert modules over pro-C*—algebras
(see [2]).

In this paper all C*—algebras are unital and
Hilbert C*—modules are finitely or countably
generated. All frames, fusion frames, g-frames
and Bessel sequences are standard.

Throughout this paper I and I, for each
1 < k < n, are subsets of N. %, is a uni-
tal C*—algebra, E, Ej and FEj;) are finitely
or countably generated Hilbert C*—modules, for
each k € {1,...,n} and i(k) € Ij.

3 Tensor products of Bessel

multipliers

First we recall the definitions of Bessel multipli-
ers, g-Bessel multipliers and Bessel fusion multi-
pliers from [15].

As usual (*°(1,2() is the set {{CLZ'}ZE] c A

sup{||a;||: i € I} < oo}, and in this note m

is always a sequence {m;}ie; € ¢°°(I,2) with
m; € Z(2), for each i € I. Each sequence with
these properties is called a symbol.

Definition 3.1 Let E; and FEs be Hilbert -
modules, and let F = {fi}icr € FEy and G =
{gi}icr € E3 be standard Bessel sequences. The
operator Spygr : E1 — Ea defined by Spgr(x) =
Y ic1 milx, fi)gi, is adjointable and it is called the
Bessel multiplier for the Bessel sequences F and

g.

Recall from Example 3.1 in [12] that if W =
{(Wi,w;) }ier is a standard Bessel fusion sequence
(resp. standard fusion frame) for F, then Ay =
{wimw, }ier is a standard g-Bessel sequence (resp.
standard g-frame) for E' with respect to {Wj}ier.

Definition 3.2 Let A = {A;}ic; and T' =
{T;}icr be standard g-Bessel sequences for E
with respect to {E;}ic;. Then the operator
Smra @ B — E which is defined by Sy,ra(z) =
Yicrmil'iAi(z) is adjointable and it is called
the g-Bessel multiplier for the g-Bessel sequences
A and T. Also if W = {(Wi,w;)}tier and
V = {(Vi,vi) }ier are standard Bessel fusion se-
quences for E, we call the operator Spyw(x) =

Smay Ay (T) = e miviw;Ty, T, (), the Bessel
fusion multiplier for W and V.

Recall that if 2, is a C*—algebra, for each 1 <
k < n, then ®;_,% is a C*—algebra with the
spatial norm and for each ap € 2, we have
lar @ ... ® anll= IL;_;[lax].
tion and involution on simple tensors are de-
fined by (®}_,ar)(®}_,bk) = ®F_,(arby) and
(®p_jar)* = ®}_,a}, respectively. As we know
if aj, > 0, for each 1 < k < n, then ®}_ a; > 0.
Now if E} is a Hilbert 2(;—module, for each
1 < k < mn, then the (Hilbert C*—module) tensor
product ®;_,E, = F1 ® ... ® E, is a Hilbert
(®)_,2A)—module. The module action and inner
product for simple tensors are defined by

The multiplica-

(®k=108) (®=12k) = (0171) ® ... @ (anTn)
= ®=1(axy),

and

<®Z:1$k, ®Z:1yk>
<5U17y1> K...Q® <xmyn>
- ®Z:1 <xkayk>a

respectively, where a; € 20 and xk,yr € Fr. If
Ui is an adjointable operator on Ej, then the
tensor product ®;_,Uy is an adjointable opera-
tor on ®}_, Ei. Also (®7_,U)* = ®@}_, Uy and
|@F_Ukl|=1}_,||Ug||. Note that if M}, is an or-
thogonally complemented submodule of Ej, for
each 1 < k < n, then it is easy to see that
®p_1 My, is an orthogonally complemented sub-
module of ®p_; By, and mgyp_ M, = Q_qma, . For
more results, see [19, 16].

In this paper F*) = {fitk) Yitkyer, and Gk =
{9ik) Yigk)er, are sequences in £y, and ®Z:1]~"(k) is
defined by { f;(1)®- - -® fi(n) }(i(1),....i(n)) (L1 x..x L) -
oW = (A € Lo (Ers By Viwyer,, ¥F) =
{Fi(k) € 'QQLk(Ek,Ei(k)) (k) € Iy}, wk =
{Wigywi) Yiwer, VE = {Vig, vir))
i(k) € I}, where Wy and Vg, are orthogo-
nally complemented submodules of Ej and wjy,)
and vj(y) are weights in 2y, for each 1 < k < n.
®Z:1<I>(k) and ®Z:1W(k) are

M) ®@...® Ay €
Loane..o,) (@p=1 Lk, Ei1) @ ... @ Ej(n))
> (Z(l)v s 7Z(n)) € (Il X ... X In)}a

(1), .. i(n) € (I % ... x I))},
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respectively.  Also m®*) = {mig Yiwer, 15 a
symbol in £2°(I},A) and @7_,m®* is the set
{mi) @ - @ M) }i(1),ni(n)) eIy X x 1)

The following theorem is a generalization of
[13, Theorem 2.1 (i)] to Hilbert C*—modules and
also generalizes the results obtained for tensor
products of g-frames in [12], [20] and [10].

Theorem 3.1 (i) If ®® s a g-Bessel se-
quence, for each 1 < k < n, then ®z:1<1>(k)
is a g-Bessel sequence. Moreover, ®%) is q
g-frame, for each 1 < k < n if and only if
®Z:1<I>(k) is a g-frame.

(i) If ®®’s  and TR are
sequences, then the
S(®n=1m(k))(®Z:1W(k>)(®z=1¢'(k>) 18 well—deﬁned
and 73 equal to Q7 _1S,, (k) p k) k) -

Proof. (i) It is enough to prove the theorem
for n = 2. Let By and Bo be upper bounds of
W and @), respectively, I = {iy1,... AT
and Iy = {io1, ..., i2q,...}. Then define Sipx =

g:l A;(MAilrx and Sagy = Zgzl A;QtAiztyf for
each x € Ey and y € E>. Now [|S1p||< [|Sem ||
and ||Seql|< [|Sp |, for each p,q € N and
since ®1 and @ are standard g—Bessel se-
quences, then 0 < Sgw) < By.ldg,, for each
k € {1,2} and consequently 0 < Sy ® Spe) <
B1By.1d(g,gE,)- Therefore by Lemma 4.1 in [16],
for each z € E1 ® E5 and p,q € N, we have

g-Bessel
operator

((S1p ® S2q)2,2) <

<(Sq>(1) ® S¢(2))Z,Z> < BlBg.<Z,Z>.

It is also easy to see that lim, ,(S1, ® Soq)z =
(Sp) @ Sp@)z, for each z = Y " 1@y €
Ey ®alg 2. Now if z € E1 ® Es, then by an
appropriate choice of zo € Ei ®quq E2, and the
imequality

(3.2)

1(S1p ® S2¢)2 — (Sp) @ Spe)2|l
< S II[Ss@ |z — 2ol
+  [[(S1p ® S29)20 — (Sp) ® Sp@ )20l
+ BiBallz — 20,

we get limy, 4(S1p ® S2q)z = (Sg) ® Sp))z. This
means that the series

2o Gienen < (i) ® i)z, (i) ® Niz))2)

converges in norm and by (3.2), we have

Z (i) @ Aj(2))2, (i) ® Ay(2))2)
(i(1),i(2)) el x I

= ((5'(1)(1) & Sq)(z))z, z) < B1Bs.{z,2). (3.3)

This shows that ®V) @ ®?) s a standard ¢-Bessel
sequence with upper bound By Bs.

Now suppose that 1) and ®? are g-frames with
lower bounds A1 and As, respectively. Since

A1As 1dg, gk,
< (ISgo I M IS0 17D Tdp o m,
1(Sp ® Sp@) I~ Tdp o8,
< Se) ® Spe,

using (3.2) and (3.3), we obtain that @7_,®*) is
a standard g-frame with lower bound AjAs.
Conversely let ®i:1@(k) be a standard g-frame
with upper bound B and x € Fy. Since ®%:1<I>(k)
is a standard g-Bessel sequence, it is clear that the
series Zi(l)eh (A1), Njyx) converges in norm
and for each y € Es,

Z <Ai(1)xv Ai(1)93>

i(l)ely

Z <Ai(2)y7 Az‘(2)?/> H

i(2)€]2

-]

(i(1),i(2))el x Iz

X

(A1) ® Aj))(z ®@ ),

(A ®Ai(2))(x®y)>H
< Blz@y|*= Bl=|*[y]*

Let y € By with |y||= 1. Since @2_,®%) is a
g-frame,

C = H Ei(Z)EIQ <Ai(2)y,Ai(2)y>H s a positive num-
ber, so we have

Z <Ai(1)x7 Ai(1)$>

i(1)611

B
< 2l

Therefore by [24, Theorem 3.1], ®1) is a stan-
. B

dard g-Bessel sequence with upper bound &.

Now let A be a lower bound for ®i:1<1>(k) and

x € Ey. Ify € Ey with ||y||= 1 and C =

H 2i)en M@y, Ni)y) ‘
that

, then it is easy to see

Z <Ai(1)$7 Az’(1)fc>
i(l)e[l

ZllalP<

Hence ®Y) is a standard g-frame and a similar
proof shows that ®?) is also a standard g-frame.
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(i) By part (i), @7_,®*) and @7_ ¥®) are g-
Bessel sequences. Now let ®}_jax be a simple
tensor in @p_ ™Ay. Since m;qy € Z(Uy,), for each
1 <k <n, we have

(®k=10k) (@f—1Mi(r)) =
=1 (Mjk)ar)
= (®f=1Mik)) (Dp=1ak)-

=1 (arm;))

Because the above equality holds for simple
tensors, N(®z:1mi(k)) = (®Z:1mi(k))N7 for
each N € ®@p_ . Therefore @F_im;qy €
Z(@p_ ™) and the relation ||@]_im;p)ll=
I [ 1< TR _IIm®) || yields that @}_ m®)
is a symbol, so S(®n ) (@ Wk (@r_ o) is

well-defined. Now let n=2andrRy € k1 Q Fs.
Then we have
S(@g_m®) (@, w0 (@f, 0®) (T @ Y) =

>

(i(1),i(2))el1 xI2
i) @ i) (A1) @ Ajga)) (z @ y)

(T
= ( gg:l M)y A ))
(.

i(1) ® Mi2))

1

> M Ai ))

2)6[2
= (S, 0emem @S,@u@e@)(T®Y),

and since the operators are bounded, we have

Sm®em®) (T @u@) (@0 @)
SmnOume®m @ Sp@e@e®

and the result follows.

Now we get the following result which is a gener-
alization of [13, Theorem 2.1 (ii)], [13, Corollary
2.6] and [4, Theorem 4.1] to Hilbert C*—modules:

Corollary 3.1 (i) IfW®) is a Bessel fusion se-
quence, for each 1 < k < n, then ®Z:1W(k)
is a Bessel fusion sequence. Moreover, W)
s a fusiton frame, for each 1 < k <n if and
only if®Z:1W(k) is a fusion frame. If W*) s
and V®)’s are Bessel fusion sequences, then
the operator S(®n m®)(@7_ W) (@n_ V)
is well-defined and e equals @} 1Sm(k)w(k)v(k)

(ii) If F®)

1 < k < n,

is a Bessel sequence, for each
then ®Z:1]:(k) is a Bessel

sequence. Moreover, F® is a frame
for each 1 < k < n if and only if
®’,;L:1]:(k) is a frame for ®p_ Ep. If
]:(k s and G®)’s are Bessel sequences, then

®n k) (@r_ ]:(k))(®n LGk is well-defined
andkzs equal to ®k lsm(k)]:(k)g(k)

Proof. (i) We can get the result using the
above theorem, part ( ) of Example 3.1 in [12]
and the fact that ®%) = {w, (k) TW, 0 Filk)el, S @
standard g-frame for each 1 < k < n if and only
if
Ge® = {wm ® .. ©
Win)) T (W) ®..@Wigy) Fi(1),mi(n)) (I oo x ) 08
a standard g-frame.

(ii) The result follows from Theorem 3.1 and part
(b) of Example 3.1 in [12].

Recall that if A = {A; € L£y(F,E;)}tier and
I' = {T'; € £u(F, E;) }ier are standard g—Bessel
sequences such that ) .. I'A;x = 2 or equiva-
lently > .. AiTyx = z, for each # € E, then T
(resp. A) is called a g—dual of A (resp. I'). We
define the operator Sty on E by Sra = Smra,
where m = {m;}icr is a symbol with m; = 1g,
for each ¢ € I. Then T" is a g—dual of A if and
only if Spp = Idg. The canonical g-dual for an
(A, B) standard g-frame A = {A; }261 is defined
by A = {A;}icr, where A; = A;S;* which is an
(%, %) standard g-frame and for each x € E, we
have

el el

If 7 = {fitiecr and G = {gi}ics are standard
Bessel sequences in E, then we say that G (resp.
F)is a dual of F (vesp. G), if x = >,/ (x, fi)gi
or equivalently x = ), ;(x, gi) fi, for each x € E.
If  is an (A, B) standard frame, then F = {S

F -1fi}i€ I is an (4, &) standard frame with
T =2 (T, S

Fr-100) fi = X ier (@, fi) S

F -1fi, foreachxe E. Hence F = {S

Fr-1fi}ie I is a dual of F called the canonical
dual of F.
Let W = {(W;,w;)}ier be a standard Bessel fu-
sion sequence with upper bound B and V =
{(Vi,vi) }ier be a (C, D) standard fusion frame
for E. Since 5;2 < é.IdE, by Lemma 4.1 in
[16] and the fact that v; € Z(2), for each i € I,
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we have

-1 -1
<miviSV v, X, miviSV 7TVZ..T>

—2 (VT X, Uiy, ).

Now for each finite subset Q C I, wus-
ing the Cauchy-Schwarz inequality for Hilbert
C*—modules, we obtain that

= sup HZ(miinmWiS;IWVi%WH
lvl=1"icq

2 : -1
H mivimeiSV v, L
i€

= sup HZ(mwis‘}lﬂwx,mein
lyll=1""%cq

1
(1= )
i€
1
< sup H lemwinH 2)
=

lyll=1

IN

1
2

VB|m
HCHOOH Z<Ui7rvil‘, VY, T

1€Q

Since V is standard, the series

-1 .
Ziel mivw; Ty, Sy, Ty, converges in E and

H Z m; VW T, S‘;lﬂ’ViIL’
el
VBD||m|lo
- C

]]-

Now it is easy to see that the operator Spy,,
which is defined on E by

Smyw.’L' = Zmiviwmwis;lm/ix,
el
is adjointable.
Proposition 3.1 Let W) be a Bessel fusion

sequence and V¥ be a fusion frame, for each
1<Ek<n. Then

S n n
(®k:1m(k))(®kzlv(k))(®Z:1W(k))

_ n
= ®k=15m(k)v(’“) .
wi(k)

Proof. It follows from Corollary 3.1 that
@p_ VO and @F_ W are standard fusion

frame and standard Bessel fusion sequence, re-
spectively. Now it is easy to see that

S(@p_ m0)(@r_ ve)

(i(1),.nri(n))E(T1 X ... x I,

M) (Vi(1) @ -+ - ® Vi) ) (wi1) @

(®p_,wk)

[(mi(l) ...

—1
S@Zzl])(k)7T(Vi(1)®---®vi(n)):|

= ( Z mi(l)vi(l)wi(l)wwi(l)S;(ll)ﬂ-vi(l))
i(Del
®...®
1
Z mi(”)vi(")wi(n)ﬂWi(n)Sv(n)”‘/i(n)
i(n)eln,

n
- ®k:15m(k)v(k)
wi(k)

and the result follows.

Now we have the following definition (see also [9]):

Definition 3.3 Let V = {(Vi,v;) }ier be a stan-
dard fusion frame and W = {(W;,w;)}ier be a
standard Bessel fusion sequence for E. Then
W is called an alternate dual of V if v =
Sier viwimw, Sy v, for each x € E.

The following proposition is a generalization of
[13, Corollary 3.8] and [14, Proposition 2.10] to
Hilbert C*—modules and also generalizes the re-
sult obtained in [18, Proposition 3.6].

Proposition 3.2 (i) If U® is a g-dual of %),
for each 1 < k < n, then ®Z:1\I/(k) is a g-
dual of ®Z:1<I>(k). If ®Z:1\Il(k) s a g-dual of
®Z:1<I>(k) and ¥5*) s a g-dual of ®%), for
each k € {1,...,n — 1}, then ¥ s also a
g-dual of ®™).

(i) If W) s an alternate dual of V¥), for each
1 <k <n, then ®Z:1W(k) is an alternate
dual of ®Z:1V(k).

—_—~—

(iii) If ®*)’s are g-frames, then @p_ ®F) =
®Z:1&E)'
Proof. (i) Let mgy = 1, for each 1 <k <n
and i(k) € I,. Then Theorem 3.1 implies that

S(ep_ ww)(@p_,o®)
5(®Z:1m(k>)(®gzl\p<k>)(®gzlq><k>)

®h=1S k) o) = Dp—1 Sy k)
= ®Z:1IdEk = Id®Z:1Ek'
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This shows that ®Z:1\If(k) s a g-dual of ®’,;°:1<I>(k).
For the rest, we have

Id@ﬁzlEk S(®Z:1\p(k))(®vkz:1¢.(k))

@p=1Sg®) *)
= (®}211dE,) ® Symaem,

so ||Idg, — Symem|= |Hde, ® ... ® Idg, , ®
(Idg, — Symem)||= 0, and this yields that
Symem = 1dg,.
(ii) Let mgy = la,, for each 1 < k < n. Then
Proposition 3.1 implies that
S(®n m(k))(®n V(k))
k=1 k=1 <®E:1W(k))

= ®Z:15m(k)v(k)(k) = ®Z:1[dEk,
w

and the result follows.

(iii) By Theorem 5.1, ®Z:1<I>(k) is a g-frame
and by considering m;yy = 1, for each 1 <
k < n and i(k) € I, similar to part (i), we
get S(®7kz:1q)(k)) = ®F_1Spm . This implies that
S@;}l_l@(k) = ®Z:1Sq:<1k)7 then for each

(1), ...

yi(n)) € I x ... x I, we have
-1
(Az‘(l) ®...® Ai(n))S®Z:1‘b(k)
= (A’i(l)Sq:(ll)) ®...Q (Ai(n)Sq_)(ln))'

—_— —_—

This shows that @7_ ®*) = @1_, @*),

Now we obtain the following result which is a
generalization of Corollary 2.11 in [14] to Hilbert
C*—modules:

Corollary 3.2 (i) Let F*®) and G*) be Bessel
sequences for E. If G®) is a dual of F®) | for
each 1 < k < n, then ®Z:1g(’“) s a dual of
@i F® . Ifer_ GW s a dual of @_, F*)
and G¥) is a dual of F®, for each 1 < k <
n — 1, then G s a dual of}"(”).

(ii) If F®) 4s a frame, for each 1 < k < n, then

Qp_ Fk) = @p_ Fk).

Proof. The result follows from the above
proposition and Corollary 3.1 by considering
%) = (A iwer, and ¥® = {T;00iwer
where Ay = (z, fyry) and Tigyx = (2, gix))
for each x € E.
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