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Abstract

In this paper, we first show that the tensor product of a finite number of standard g-frames (resp.
fusion frames, frames) is a standard g-frame (resp. fusion frame, frame) for the tensor product of
Hilbert C∗−modules and vice versa, then we consider tensor products of g-Bessel multipliers, Bessel
multipliers and Bessel fusion multipliers in Hilbert C∗− modules. Moreover, we obtain some results
for the tensor product of duals using Bessel multipliers.
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1 Introduction

F
rames for Hilbert spaces were first introduced
by Duffin and Schaeffer [7] in 1952 to study

some problems in nonharmonic Fourier series,
reintroduced in 1986 by Daubechies, Grossmann
and Meyer [6]. Frames are very useful in char-
acterization of function spaces and other fields
of applications such as filter bank theory, sigma-
delta quantization, signal and image processing
and wireless communications. Fusion frames [5]
and g-frames [23] are important generalizations
of frames.
Hilbert C∗–modules are generalizations of Hilbert
spaces by allowing the inner product to take val-
ues in a C∗–algebra rather than in the field of
complex numbers. Hilbert C∗−modules are used
in the study of locally compact quantum groups,
completely positive maps between C∗−algebras,
non-commutative geometry and KK-theory.
Frank and Larson presented a general approach to
the frame theory in Hilbert C∗–modules (see [8]).
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Also A. Khosravi and B. Khosravi introduced fu-
sion frames and g-frames in Hilbert C∗–modules
(see [12]).
Bessel multipliers in Hilbert spaces were intro-
duced by Balazs in [3]. Bessel fusion multipliers
and g-Bessel multipliers in Hilbert spaces were in-
troduced in [17] and [21], respectively. Also mul-
tipliers were introduced for p-Bessel sequences in
Banach spaces (see [22]). Recently the present
author and A. Khosravi generalized Bessel multi-
pliers, g-Bessel multipliers and Bessel fusion mul-
tipliers to Hilbert C∗−modules (see [15]).
Tensor products of frames, fusion frames and g-
frames in Hilbert spaces have been studied by
some authors recently, see [4, 11, 13]. Also tensor
products of g-frames were considered in Hilbert
C∗−modules, see [11, 12, 10, 20]. Tensor prod-
ucts have important applications, for example
tensor products are useful in the approximation
of multi-variate functions of combinations of uni-
variate ones. In this paper, we investigate tensor
products of g-frames, fusion frames and frames in
Hilbert C∗−modules and we consider their mul-
tipliers.
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2 Frames, fusion frames and g-
frames in Hilbert C∗−modules

Suppose that A is a C∗−algebra and E is a
left A−module such that the linear structures
of A and E are compatible. E is a pre-Hilbert
A−module if E is equipped with an A−valued
inner product ⟨., .⟩ : E × E −→ A, such that

(i) ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩, for each
α, β ∈ C and x, y, z ∈ E;

(ii) ⟨ax, y⟩ = a⟨x, y⟩, for each a ∈ A and x, y ∈
E;

(iii) ⟨x, y⟩ = ⟨y, x⟩∗, for each x, y ∈ E;

(iv) ⟨x, x⟩ ≥ 0, for each x ∈ E and if ⟨x, x⟩ = 0,
then x = 0.

For each x ∈ E, we define |x|= ⟨x, x⟩
1
2 and ∥x∥=

∥⟨x, x⟩∥
12.IfEiscompletewith∥.∥, it is called a Hilbert

A−module or a Hilbert C∗−module over A. We
call Z(A) = {a ∈ A : ab = ba, ∀b ∈ A}, the center
of A. Let E1 and E2 be Hilbert A–modules. The
operator T : E1 −→ E2 is called adjointable if
there exists an operator T ∗ : E2 −→ E1 such that
⟨T (x), y⟩ = ⟨x, T ∗(y)⟩, for each x ∈ E1 and y ∈
E2. Every adjointable operator T : E1 −→ E2

is bounded and A–linear (that is, T (ax) = aT (x)
for each x ∈ E1 and a ∈ A). We denote the set
of all adjointable operators from E1 into E2 by
LA(E1, E2). Note that LA(E1, E1) is a C

∗-algebra
which is denoted by LA(E1), for more details see
[16].
A Hilbert A–module E is finitely generated if
there exists a finite set {x1, . . . , xn} ⊆ E such
that every element x ∈ E can be expressed as
an A–linear combination x =

∑n
i=1 aixi, ai ∈ A.

A Hilbert A−module E is countably generated if
there exists a countable set {xi}i∈I ⊆ E such
that E equals the norm-closure of A–linear hull
of {xi}i∈I .
Let E be a Hilbert A−module. A family F =
{fi}i∈I ⊆ E is a frame for E, if there exist real
constants 0 < A ≤ B < ∞, such that for each
x ∈ E,

A.⟨x, x⟩ ≤
∑
i∈I

⟨x, fi⟩⟨fi, x⟩ ≤ B.⟨x, x⟩, (2.1)

i.e., there exist real constants 0 < A ≤ B < ∞,
such that the series

∑
i∈I⟨x, fi⟩⟨fi, x⟩ converges

in the ultraweak operator topology to some ele-
ment in the universal enveloping Von Neumann
algebra of A such that the inequality (2.1) holds,
for each x ∈ E. The numbers A and B are called
the lower and upper bound of the frame, respec-
tively. In this case we call it an (A,B) frame. If
only the second inequality is required, we call it a
Bessel sequence. If the sum in (2.1) converges in
norm, the frame is called standard. If F = {fi}i∈I
is a standard Bessel sequence, then the operator
SF is defined on E by SFx =

∑
i∈I⟨x, fi⟩fi. SF is

an adjointable and positive operator and if F is a
standard frame, then SF is invertible. For more
results about frames in Hilbert C∗–modules, see
[8, 1].
A closed submodule M of E is orthogonally com-
plemented if E = M ⊕ M⊥. In this case πM ∈
LA(E,M), where πM : E −→ M is the projection
onto M.
Suppose that {ωi : i ∈ I} ⊆ A is a family of
weights, i.e., each ωi is a positive, invertible ele-
ment from the center of A, and {Wi : i ∈ I} is
a family of orthogonally complemented submod-
ules of E. Then {(Wi, ωi)}i∈I is a fusion frame if
there exist positive numbers A and B such that

A.⟨x, x⟩ ≤
∑
i∈I

ω2
i ⟨πWi(x), πWi(x)⟩ ≤ B.⟨x, x⟩,

for each x ∈ E. If we only require to have the
upper bound, then {(Wi, ωi)}i∈I is called a Bessel
fusion sequence with upper bound B.
Let {Ei}i∈I be a sequence of Hilbert A–modules.
A sequence Λ = {Λi ∈ LA(E,Ei) : i ∈ I} is called
a g-frame for E with respect to {Ei : i ∈ I} if
there exist real constants A,B > 0 such that for
each x ∈ E,

A.⟨x, x⟩ ≤
∑
i∈I

⟨Λix,Λix⟩ ≤ B.⟨x, x⟩.

If only the second-hand inequality is required,
then Λ is called a g-Bessel sequence. Standard
g-frames and fusion frames are defined similar to
frames.
If W = {(Wi, ωi)}i∈I is a standard Bessel fusion
sequence, then the operator SW : E −→ E which
is defined by SWx =

∑
i∈I ωi

2πWix is adjointable
and called the operator of W . For a standard g-
Bessel sequence Λ, the operator SΛ : E −→ E
which is defined by SΛ(x) =

∑
i∈I Λ

∗
iΛi(x) is ad-

jointable and it is called the operator of Λ. If Λ
is a standard (A,B) g-frame, then A.IdE ≤ SΛ ≤
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B.IdE . For more results about fusion frames and
g-frames in Hilbert C∗−modules, see [12, 24].
Also note that fusion frames have been intro-
duced in Hilbert modules over pro-C∗−algebras
(see [2]).
In this paper all C∗−algebras are unital and
Hilbert C∗−modules are finitely or countably
generated. All frames, fusion frames, g-frames
and Bessel sequences are standard.

Throughout this paper I and Ik, for each
1 ≤ k ≤ n, are subsets of N. Ak is a uni-
tal C∗−algebra, E, Ek and Ei(k) are finitely
or countably generated Hilbert C∗−modules, for
each k ∈ {1, . . . , n} and i(k) ∈ Ik.

3 Tensor products of Bessel
multipliers

First we recall the definitions of Bessel multipli-
ers, g-Bessel multipliers and Bessel fusion multi-
pliers from [15].

As usual ℓ∞(I,A) is the set

{
{ai}i∈I ⊆ A :

sup{∥ai∥: i ∈ I} < ∞
}
, and in this note m

is always a sequence {mi}i∈I ∈ ℓ∞(I,A) with
mi ∈ Z(A), for each i ∈ I. Each sequence with
these properties is called a symbol.

Definition 3.1 Let E1 and E2 be Hilbert A-
modules, and let F = {fi}i∈I ⊆ E1 and G =
{gi}i∈I ⊆ E2 be standard Bessel sequences. The
operator SmGF : E1 −→ E2 defined by SmGF (x) =∑

i∈I mi⟨x, fi⟩gi, is adjointable and it is called the
Bessel multiplier for the Bessel sequences F and
G.

Recall from Example 3.1 in [12] that if W =
{(Wi, ωi)}i∈I is a standard Bessel fusion sequence
(resp. standard fusion frame) for E, then ΛW =
{ωiπWi}i∈I is a standard g-Bessel sequence (resp.
standard g-frame) for E with respect to {Wi}i∈I .

Definition 3.2 Let Λ = {Λi}i∈I and Γ =
{Γi}i∈I be standard g-Bessel sequences for E
with respect to {Ei}i∈I . Then the operator
SmΓΛ : E −→ E which is defined by SmΓΛ(x) =∑

i∈I miΓ
∗
iΛi(x) is adjointable and it is called

the g-Bessel multiplier for the g-Bessel sequences
Λ and Γ. Also if W = {(Wi, ωi)}i∈I and
V = {(Vi, υi)}i∈I are standard Bessel fusion se-
quences for E, we call the operator SmVW (x) =

SmΛV ΛW
(x) =

∑
i∈I miυiωiπViπWi(x), the Bessel

fusion multiplier for W and V .

Recall that if Ak is a C∗−algebra, for each 1 ≤
k ≤ n, then ⊗n

k=1Ak is a C∗−algebra with the
spatial norm and for each ak ∈ Ak, we have
∥a1 ⊗ . . . ⊗ an∥= Πn

k=1∥ak∥. The multiplica-
tion and involution on simple tensors are de-
fined by (⊗n

k=1ak)(⊗n
k=1bk) = ⊗n

k=1(akbk) and
(⊗n

k=1ak)
∗ = ⊗n

k=1a
∗
k, respectively. As we know

if ak ≥ 0, for each 1 ≤ k ≤ n, then ⊗n
k=1ak ≥ 0.

Now if Ek is a Hilbert Ak−module, for each
1 ≤ k ≤ n, then the (Hilbert C∗−module) tensor
product ⊗n

k=1Ek = E1 ⊗ . . . ⊗ En is a Hilbert
(⊗n

k=1Ak)−module. The module action and inner
product for simple tensors are defined by

(⊗n
k=1ak)(⊗n

k=1xk) = (a1x1)⊗ . . .⊗ (anxn)

= ⊗n
k=1(akxk),

and

⟨⊗n
k=1xk,⊗n

k=1yk⟩
= ⟨x1, y1⟩ ⊗ . . .⊗ ⟨xn, yn⟩
= ⊗n

k=1⟨xk, yk⟩,

respectively, where ak ∈ Ak and xk, yk ∈ Ek. If
Uk is an adjointable operator on Ek, then the
tensor product ⊗n

k=1Uk is an adjointable opera-
tor on ⊗n

k=1Ek. Also (⊗n
k=1Uk)

∗ = ⊗n
k=1U

∗
k and

∥⊗n
k=1Uk∥= Πn

k=1∥Uk∥. Note that if Mk is an or-
thogonally complemented submodule of Ek, for
each 1 ≤ k ≤ n, then it is easy to see that
⊗n

k=1Mk is an orthogonally complemented sub-
module of ⊗n

k=1Ek and π⊗n
k=1Mk

= ⊗n
k=1πMk

. For
more results, see [19, 16].
In this paper F (k) = {fi(k)}i(k)∈Ik and G(k) =

{gi(k)}i(k)∈Ik are sequences in Ek and ⊗n
k=1F (k) is

defined by {fi(1)⊗. . .⊗fi(n)}(i(1),...,i(n))∈(I1×...×In).

Φ(k) = {Λi(k) ∈ LAk
(Ek, Ei(k))}i(k)∈Ik , Ψ(k) =

{Γi(k) ∈ LAk
(Ek, Ei(k)) : i(k) ∈ Ik}, W(k) =

{(Wi(k), ωi(k))}i(k)∈Ik V(k) = {(Vi(k), υi(k)) :
i(k) ∈ Ik}, where Wi(k) and Vi(k) are orthogo-
nally complemented submodules of Ek and ωi(k)

and υi(k) are weights in Ak, for each 1 ≤ k ≤ n.

⊗n
k=1Φ

(k) and ⊗n
k=1W(k) are

{Λi(1) ⊗ . . .⊗ Λi(n) ∈
L(A1⊗...⊗An)(⊗

n
k=1Ek, Ei(1) ⊗ . . .⊗ Ei(n))

, (i(1), . . . , i(n)) ∈ (I1 × . . .× In)},

{(Wi(1) ⊗ . . .⊗Wi(n), ωi(1) ⊗ . . .⊗ ωi(n))

: (i(1), . . . , i(n)) ∈ (I1 × . . .× In)},
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respectively. Also m(k) = {mi(k)}i(k)∈Ik is a

symbol in ℓ∞(Ik,Ak) and ⊗n
k=1m

(k) is the set
{mi(1) ⊗ . . .⊗mi(n)}(i(1),...,i(n))∈(I1×...×In).

The following theorem is a generalization of
[13, Theorem 2.1 (i)] to Hilbert C∗−modules and
also generalizes the results obtained for tensor
products of g-frames in [12], [20] and [10].

Theorem 3.1 (i) If Φ(k) is a g-Bessel se-
quence, for each 1 ≤ k ≤ n, then ⊗n

k=1Φ
(k)

is a g-Bessel sequence. Moreover, Φ(k) is a
g-frame, for each 1 ≤ k ≤ n if and only if
⊗n

k=1Φ
(k) is a g-frame.

(ii) If Φ(k)’s and Ψ(k)’s are g-Bessel
sequences, then the operator
S(⊗n

k=1m
(k))(⊗n

k=1Ψ
(k))(⊗n

k=1Φ
(k)) is well-defined

and is equal to ⊗n
k=1Sm(k)Ψ(k)Φ(k).

Proof. (i) It is enough to prove the theorem
for n = 2. Let B1 and B2 be upper bounds of
Φ(1) and Φ(2), respectively, I1 = {i11, . . . , i1p, . . .}
and I2 = {i21, . . . , i2q, . . .}. Then define S1px =∑p

r=1 Λ
∗
i1r

Λi1rx and S2qy =
∑q

t=1 Λ
∗
i2t
Λi2ty, for

each x ∈ E1 and y ∈ E2. Now ∥S1p∥≤ ∥SΦ(1)∥
and ∥S2q∥≤ ∥SΦ(2)∥, for each p, q ∈ N and
since Φ(1) and Φ(2) are standard g−Bessel se-
quences, then 0 ≤ SΦ(k) ≤ Bk.IdEk

, for each
k ∈ {1, 2} and consequently 0 ≤ SΦ(1) ⊗ SΦ(2) ≤
B1B2.Id(E1⊗E2). Therefore by Lemma 4.1 in [16],
for each z ∈ E1 ⊗ E2 and p, q ∈ N, we have

⟨(S1p ⊗ S2q)z, z⟩ ≤

⟨(SΦ(1) ⊗ SΦ(2))z, z⟩ ≤ B1B2.⟨z, z⟩. (3.2)

It is also easy to see that limp,q(S1p ⊗ S2q)z =
(SΦ(1) ⊗ SΦ(2))z, for each z =

∑m
l=1 xl ⊗ yl ∈

E1 ⊗alg E2. Now if z ∈ E1 ⊗ E2, then by an
appropriate choice of z0 ∈ E1 ⊗alg E2, and the
inequality

∥(S1p ⊗ S2q)z − (SΦ(1) ⊗ SΦ(2))z∥
≤ ∥SΦ(1)∥∥SΦ(2)∥∥z − z0∥
+ ∥(S1p ⊗ S2q)z0 − (SΦ(1) ⊗ SΦ(2))z0∥
+ B1B2∥z − z0∥,

we get limp,q(S1p ⊗S2q)z = (SΦ(1) ⊗SΦ(2))z. This
means that the series∑

(i(1),i(2))∈I1×I2
⟨(Λi(1) ⊗ Λi(2))z, (Λi(1) ⊗ Λi(2))z⟩

converges in norm and by (3.2), we have∑
(i(1),i(2))∈I1×I2

⟨(Λi(1) ⊗ Λi(2))z, (Λi(1) ⊗ Λi(2))z⟩

= ⟨(SΦ(1) ⊗ SΦ(2))z, z⟩ ≤ B1B2.⟨z, z⟩. (3.3)

This shows that Φ(1)⊗Φ(2) is a standard g-Bessel
sequence with upper bound B1B2.
Now suppose that Φ(1) and Φ(2) are g-frames with
lower bounds A1 and A2, respectively. Since

A1A2.IdE1⊗E2

≤ (∥S−1
Φ(1)∥−1∥S−1

Φ(2)∥−1).IdE1⊗E2

= ∥(SΦ(1) ⊗ SΦ(2))−1∥−1.IdE1⊗E2

≤ SΦ(1) ⊗ SΦ(2) ,

using (3.2) and (3.3), we obtain that ⊗2
k=1Φ

(k) is
a standard g-frame with lower bound A1A2.
Conversely let ⊗2

k=1Φ
(k) be a standard g-frame

with upper bound B and x ∈ E1. Since ⊗2
k=1Φ

(k)

is a standard g-Bessel sequence, it is clear that the
series

∑
i(1)∈I1⟨Λi(1)x,Λi(1)x⟩ converges in norm

and for each y ∈ E2,∥∥∥∥ ∑
i(1)∈I1

⟨Λi(1)x,Λi(1)x⟩
∥∥∥∥×

∥∥∥∥ ∑
i(2)∈I2

⟨Λi(2)y,Λi(2)y⟩
∥∥∥∥

=

∥∥∥∥ ∑
(i(1),i(2))∈I1×I2

⟨(Λi(1) ⊗ Λi(2))(x⊗ y),

(Λi(1) ⊗ Λi(2))(x⊗ y)⟩
∥∥∥∥

≤ B∥x⊗ y∥2= B∥x∥2∥y∥2.

Let y ∈ E2 with ∥y∥= 1. Since ⊗2
k=1Φ

(k) is a
g-frame,

C =
∥∥∥∑i(2)∈I2⟨Λi(2)y,Λi(2)y⟩

∥∥∥ is a positive num-

ber, so we have∥∥∥∥ ∑
i(1)∈I1

⟨Λi(1)x,Λi(1)x⟩
∥∥∥∥ ≤ B

C
∥x∥2.

Therefore by [24, Theorem 3.1], Φ(1) is a stan-
dard g-Bessel sequence with upper bound B

C .

Now let A be a lower bound for ⊗2
k=1Φ

(k) and
x ∈ E1. If y ∈ E2 with ∥y∥= 1 and C =∥∥∥∑i(2)∈I2⟨Λi(2)y,Λi(2)y⟩

∥∥∥, then it is easy to see

that

A

C
∥x∥2≤

∥∥∥∥ ∑
i(1)∈I1

⟨Λi(1)x,Λi(1)x⟩
∥∥∥∥.

Hence Φ(1) is a standard g-frame and a similar
proof shows that Φ(2) is also a standard g-frame.
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(ii) By part (i), ⊗n
k=1Φ

(k) and ⊗n
k=1Ψ

(k) are g-
Bessel sequences. Now let ⊗n

k=1ak be a simple
tensor in ⊗n

k=1Ak. Since mi(k) ∈ Z(Ak), for each
1 ≤ k ≤ n, we have

(⊗n
k=1ak)(⊗n

k=1mi(k)) = ⊗n
k=1(akmi(k))

= ⊗n
k=1(mi(k)ak)

= (⊗n
k=1mi(k))(⊗n

k=1ak).

Because the above equality holds for simple
tensors, N(⊗n

k=1mi(k)) = (⊗n
k=1mi(k))N , for

each N ∈ ⊗n
k=1Ak. Therefore ⊗n

k=1mi(k) ∈
Z(⊗n

k=1Ak) and the relation ∥⊗n
k=1mi(k)∥=

Πn
k=1∥mi(k)∥≤ Πn

k=1∥m(k)∥ yields that ⊗n
k=1m

(k)

is a symbol, so S(⊗n
k=1m

(k))(⊗n
k=1Ψ

(k))(⊗n
k=1Φ

(k)) is
well-defined. Now let n = 2 and x⊗ y ∈ E1⊗E2.
Then we have

S(⊗2
k=1m

(k))(⊗2
k=1Ψ

(k))(⊗2
k=1Φ

(k))(x⊗ y) =∑
(i(1),i(2))∈I1×I2

(mi(1) ⊗mi(2))

(Γi(1) ⊗ Γi(2))
∗(Λi(1) ⊗ Λi(2))(x⊗ y)

=

( ∑
i(1)∈I1

mi(1)Γ
∗
i(1)Λi(1)x

)
⊗

( ∑
i(2)∈I2

mi(2)Γ
∗
i(2)Λi(2)y

)
= (Sm(1)Ψ(1)Φ(1) ⊗ Sm(2)Ψ(2)Φ(2))(x⊗ y),

and since the operators are bounded, we have

S(m(1)⊗m(2))(Ψ(1)⊗Ψ(2))(Φ(1)⊗Φ(2))

= Sm(1)Ψ(1)Φ(1) ⊗ Sm(2)Ψ(2)Φ(2) ,

and the result follows.

Now we get the following result which is a gener-
alization of [13, Theorem 2.1 (ii)], [13, Corollary
2.6] and [4, Theorem 4.1] to Hilbert C∗−modules:

Corollary 3.1 (i) If W(k) is a Bessel fusion se-
quence, for each 1 ≤ k ≤ n, then ⊗n

k=1W(k)

is a Bessel fusion sequence. Moreover, W(k)

is a fusion frame, for each 1 ≤ k ≤ n if and
only if ⊗n

k=1W(k) is a fusion frame. If W(k)’s
and V(k)’s are Bessel fusion sequences, then
the operator S(⊗n

k=1m
(k))(⊗n

k=1W(k))(⊗n
k=1V(k))

is well-defined and equals ⊗n
k=1Sm(k)W(k)V(k).

(ii) If F (k) is a Bessel sequence, for each
1 ≤ k ≤ n, then ⊗n

k=1F (k) is a Bessel

sequence. Moreover, F (k) is a frame
for each 1 ≤ k ≤ n if and only if
⊗n

k=1F (k) is a frame for ⊗n
k=1Ek. If

F (k)’s and G(k)’s are Bessel sequences, then
S(⊗n

k=1m
(k))(⊗n

k=1F(k))(⊗n
k=1G(k)) is well-defined

and is equal to ⊗n
k=1Sm(k)F(k)G(k).

Proof. (i) We can get the result using the
above theorem, part (a) of Example 3.1 in [12]
and the fact that Φ(k) = {ωi(k)πWi(k)

}i(k)∈Ik is a
standard g-frame for each 1 ≤ k ≤ n if and only
if
⊗n

k=1Φ
(k) = {(ωi(1) ⊗ . . . ⊗

ωi(n))π(Wi(1)⊗...⊗Wi(n))}(i(1),...,i(n))∈(I1×...×In) is
a standard g-frame.
(ii) The result follows from Theorem 3.1 and part
(b) of Example 3.1 in [12].

Recall that if Λ = {Λi ∈ LA(E,Ei)}i∈I and
Γ = {Γi ∈ LA(E,Ei)}i∈I are standard g−Bessel
sequences such that

∑
i∈I Γ

∗
iΛix = x or equiva-

lently
∑

i∈I Λ
∗
iΓix = x, for each x ∈ E, then Γ

(resp. Λ) is called a g−dual of Λ (resp. Γ). We
define the operator SΓΛ on E by SΓΛ = SmΓΛ,
where m = {mi}i∈I is a symbol with mi = 1A,
for each i ∈ I. Then Γ is a g−dual of Λ if and
only if SΓΛ = IdE . The canonical g-dual for an
(A,B) standard g-frame Λ = {Λi}i∈I is defined
by Λ̃ = {Λ̃i}i∈I , where Λ̃i = ΛiS

−1
Λ which is an

( 1
B , 1

A) standard g-frame and for each x ∈ E, we
have

x =
∑
i∈I

Λ∗
i Λ̃ix =

∑
i∈I

Λ̃i
∗
Λix.

If F = {fi}i∈I and G = {gi}i∈I are standard
Bessel sequences in E, then we say that G (resp.
F) is a dual of F (resp. G), if x =

∑
i∈I⟨x, fi⟩gi

or equivalently x =
∑

i∈I⟨x, gi⟩fi, for each x ∈ E.

If F is an (A,B) standard frame, then F̃ = {S
Fˆ-1f˙i}˙i∈ I is an ( 1

B , 1
A) standard frame with

x =
∑

i∈I⟨x, S
Fˆ-1f˙i⟩fi =

∑
i∈I⟨x, fi⟩S

Fˆ-1f˙i, foreachx∈ E. Hence F̃ = {S
Fˆ-1f˙i}˙i∈ I is a dual of F called the canonical

dual of F .
Let W = {(Wi, ωi)}i∈I be a standard Bessel fu-
sion sequence with upper bound B and V =
{(Vi, υi)}i∈I be a (C,D) standard fusion frame
for E. Since S−2

V ≤ 1
C2 .IdE , by Lemma 4.1 in

[16] and the fact that υi ∈ Z(A), for each i ∈ I,
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we have

⟨miυiS
−1
V πVix,miυiS

−1
V πVix⟩

= mim
∗
i υ

2
i ⟨S−2

V πVix, πVix⟩

≤ ∥m∥2∞
C2

.⟨υiπVix, υiπVix⟩.

Now for each finite subset Ω ⊆ I, us-
ing the Cauchy-Schwarz inequality for Hilbert
C∗−modules, we obtain that∥∥∥∑

i∈Ω
miυiωiπWiS

−1
V πVix

∥∥∥
= sup

∥y∥=1

∥∥∥∑
i∈Ω

⟨miυiωiπWiS
−1
V πVix, y⟩

∥∥∥
= sup

∥y∥=1

∥∥∥∑
i∈Ω

⟨miυiS
−1
V πVix, ωiπWiy⟩

∥∥∥
≤

(
∥m∥∞
C

∥∥∥∑
i∈Ω

|υiπVix|2
∥∥∥ 1

2

)
×(

sup
∥y∥=1

∥∥∥∑
i∈Ω

|ωiπWiy|2
∥∥∥ 1

2

)

≤
√
B∥m∥∞
C

∥∥∥∑
i∈Ω

⟨υiπVix, υiπVix⟩
∥∥∥ 1

2
.

Since V is standard, the series∑
i∈I miυiωiπWiS

−1
V πVix converges in E and∥∥∥∑

i∈I
miυiωiπWiS

−1
V πVix

∥∥∥
≤

√
BD∥m∥∞

C
∥x∥.

Now it is easy to see that the operator SmVW

which is defined on E by

SmVWx =
∑
i∈I

miυiωiπWiS
−1
V πVix,

is adjointable.

Proposition 3.1 Let W(k) be a Bessel fusion
sequence and V(k) be a fusion frame, for each
1 ≤ k ≤ n. Then

S(⊗n
k=1m

(k))(⊗n
k=1V(k))

(⊗n
k=1

W(k))

= ⊗n
k=1Sm(k)V(k)

W(k)

.

Proof. It follows from Corollary 3.1 that
⊗n

k=1V(k) and ⊗n
k=1W(k) are standard fusion

frame and standard Bessel fusion sequence, re-
spectively. Now it is easy to see that

S(⊗n
k=1m

(k))(⊗n
k=1V(k))

(⊗n
k=1

W(k))

=
∑

(i(1),...,i(n))∈(I1×...×In)

[
(mi(1) ⊗ . . .

⊗mi(n))(υi(1) ⊗ . . .⊗ υi(n))(ωi(1) ⊗
. . .⊗ ωi(n))π(Wi(1)⊗...⊗Wi(n))

S−1
⊗n

k=1V(k)π(Vi(1)⊗...⊗Vi(n))

]
=

( ∑
i(1)∈I1

mi(1)υi(1)ωi(1)πWi(1)
S−1
V(1)πVi(1)

)
⊗ . . .⊗∑
i(n)∈In

mi(n)υi(n)ωi(n)πWi(n)
S−1
V(n)πVi(n)

= ⊗n
k=1Sm(k)V(k)

W(k)

and the result follows.

Now we have the following definition (see also [9]):

Definition 3.3 Let V = {(Vi, υi)}i∈I be a stan-
dard fusion frame and W = {(Wi, ωi)}i∈I be a
standard Bessel fusion sequence for E. Then
W is called an alternate dual of V if x =∑

i∈I υiωiπWiS
−1
V πVix, for each x ∈ E.

The following proposition is a generalization of
[13, Corollary 3.8] and [14, Proposition 2.10] to
Hilbert C∗−modules and also generalizes the re-
sult obtained in [18, Proposition 3.6].

Proposition 3.2 (i) If Ψ(k) is a g-dual of Φ(k),
for each 1 ≤ k ≤ n, then ⊗n

k=1Ψ
(k) is a g-

dual of ⊗n
k=1Φ

(k). If ⊗n
k=1Ψ

(k) is a g-dual of
⊗n

k=1Φ
(k) and Ψ(k) is a g-dual of Φ(k), for

each k ∈ {1, . . . , n − 1}, then Ψ(n) is also a
g-dual of Φ(n).

(ii) If W(k) is an alternate dual of V(k), for each
1 ≤ k ≤ n, then ⊗n

k=1W(k) is an alternate
dual of ⊗n

k=1V(k).

(iii) If Φ(k)’s are g-frames, then ˜⊗n
k=1Φ

(k) =

⊗n
k=1Φ̃

(k).
Proof. (i) Let mi(k) = 1, for each 1 ≤ k ≤ n

and i(k) ∈ Ik. Then Theorem 3.1 implies that

S(⊗n
k=1Ψ

(k))(⊗n
k=1Φ

(k))

= S(⊗n
k=1m

(k))(⊗n
k=1Ψ

(k))(⊗n
k=1Φ

(k))

= ⊗n
k=1Sm(k)Ψ(k)Φ(k) = ⊗n

k=1SΨ(k)Φ(k)

= ⊗n
k=1IdEk

= Id⊗n
k=1Ek

.
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This shows that ⊗n
k=1Ψ

(k) is a g-dual of ⊗n
k=1Φ

(k).
For the rest, we have

Id⊗n
k=1Ek

= S(⊗n
k=1Ψ

(k))(⊗n
k=1Φ

(k))

= ⊗n
k=1SΨ(k)Φ(k)

= (⊗n−1
k=1IdEk

)⊗ SΨ(n)Φ(n) ,

so ∥IdEn − SΨ(n)Φ(n)∥= ∥IdE1 ⊗ . . . ⊗ IdEn−1 ⊗
(IdEn − SΨ(n)Φ(n))∥= 0, and this yields that
SΨ(n)Φ(n) = IdEn.
(ii) Let mi(k) = 1Ak

, for each 1 ≤ k ≤ n. Then
Proposition 3.1 implies that

S(⊗n
k=1m

(k))(⊗n
k=1V(k))

(⊗n
k=1

W(k))

= ⊗n
k=1Sm(k)V(k)

W(k)

= ⊗n
k=1IdEk

,

and the result follows.
(iii) By Theorem 3.1, ⊗n

k=1Φ
(k) is a g-frame

and by considering mi(k) = 1, for each 1 ≤
k ≤ n and i(k) ∈ Ik, similar to part (i), we
get S(⊗n

k=1Φ
(k)) = ⊗n

k=1SΦ(k). This implies that

S−1
⊗n

k=1Φ
(k) = ⊗n

k=1S
−1
Φ(k), then for each

(i(1), . . . , i(n)) ∈ I1 × . . .× In, we have

(Λi(1) ⊗ . . .⊗ Λi(n))S
−1
⊗n

k=1Φ
(k)

= (Λi(1)S
−1
Φ(1))⊗ . . .⊗ (Λi(n)S

−1
Φ(n)).

This shows that ˜⊗n
k=1Φ

(k) = ⊗n
k=1Φ̃

(k).

Now we obtain the following result which is a
generalization of Corollary 2.11 in [14] to Hilbert
C∗−modules:

Corollary 3.2 (i) Let F (k) and G(k) be Bessel
sequences for E. If G(k) is a dual of F (k), for
each 1 ≤ k ≤ n, then ⊗n

k=1G(k) is a dual of
⊗n

k=1F (k). If ⊗n
k=1G(k) is a dual of ⊗n

k=1F (k)

and G(k) is a dual of F (k), for each 1 ≤ k ≤
n− 1, then G(n) is a dual of F (n).

(ii) If F (k) is a frame, for each 1 ≤ k ≤ n, then
˜⊗n
k=1F (k) = ⊗n

k=1F̃ (k).
Proof. The result follows from the above

proposition and Corollary 3.1 by considering
Φ(k) = {Λi(k)}i(k)∈Ik and Ψ(k) = {Γi(k)}i(k)∈Ik ,
where Λi(k)x = ⟨x, fi(k)⟩ and Γi(k)x = ⟨x, gi(k)⟩,
for each x ∈ E.
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