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Abstract
In this paper, we present a method for solving the �rst kind Abel integral equation. In this
method, the �rst kind Abel integral equation is transformed to the second kind Volterra
integral equation with a continuous kernel and a smooth deriving term expressed by weakly
singular integrals. By using Sidi's sinm - transformation and modi�ed Navot-Simpson's
integration rule, an algorithm for solving this kind of integral equation is proposed, then
the convergence of algorithm is derived. Some numerical results show the e�ciency of the
mentioned method.
Keywords : The �rst kind Abel integral equation, Simpson's rule, Sidi's sinm- transformation, Zeta
function, Navot's quadrature.
|||||||||||||||||||||||||||||||||{

1 Introduction

The �rst kind Abel integral equationZ x

0

H(x; y)
(x� y)�

f(y)dy = g(x) (0 � x � 1; 0 < � < 1); (1.1)

frequently appears in many physical and engineering problems, e.g., semi-conductors, scat-
tering theory, seismology, heat conduction, metallurgy, 
uid 
ow, chemical reactions and
population dynamics, etc.

There are many classes of numerical methods for the approximate solution of Eq. (1.1)
such as product-integration methods, collocation methods, fractional multistep methods,
etc.
�Corresponding author. Email address: mafa i@yahoo.com , m fariborzi@iauctb.ac.ir

1



Ya-Ping Liu and Lu Tao in [1] proposed quadrature methods and their extrapolation
for solving Eq. (1.1). In [2], a method in order to solve the second kind singular Volterra
integral equations by modi�ed Navot-Simpson's quadrature rule was proposed. In this
paper, we propose a similar approach for solving (1.1) based on the method presented in
[1].

Since solving the �rst kind Abel integral equation is an ill-posed problem we transform
that into the second kind. For this purpose, in (1.1) we replace x by s, multiply both sides
by 1

(x�s)1�� and integrate both sides in [0; x] with respect to s then the following relation
is obtained: Z x

0

Z s

0

H(s; y)
(x� s)1��(s� y)�

f(y)dyds =
Z x

0

g(s)
(x� s)1��ds:

The double integral in above relation can be written as
R x

0 (
R x
y

H(s;y)
(x�s)1��(s�y)�ds)f(y)dy.

Let
L(x; y) =

Z x

y

H(s; y)
(x� s)1��(s� y)�

ds ; G(x) =
Z x

0

g(s)
(x� s)1��ds:

If we apply the change of variables s = y+ �(x� y) for L(x; y) and s = �x for G(x) then,

L(x; y) =
Z 1

0

H(y + �(x� y); y)
(1� �)1���� d�; (1.2)

and

G(x) = x�
Z 1

0

g(x�)
(1� �)1��d�: (1.3)

Therefore, (1.1) can be written asZ x

0
L(x; y)f(y)dy = G(x): (1.4)

By di�erentiating (1.4) with respect to x, we get

d
dx

Z x

0
L(x; y)f(y)dy = G0(x) =) L(x; x)f(x) +

Z x

0

@
@x
L(x; y)f(y)dy = G0(x):

Since L(x; x) = H(x;x)
sin(��) 6= 0 for 0 � x � 1 and G(0) = 0, then we can write,

f(x) +
Z x

0
~L(x; y)f(y)dy = V (x); 0 � x � 1; (1.5)

where ~L(x; y) = Lx(x; y)=L(x; x) and V (x) = G0(x)=L(x; x). The Eq. (1.5) is the second
kind Volterra integral equation whose kernel and deriving term are expressed by weakly
singular integrals.

Since the solution f(x) of (1.5) or its derivative f 0(x) may be unbounded at the origin,
Baratella and Orsi [3] proposed to take the change of variable x = 
(t) = tq, (0 � t � 1)
in (1.5), where q is an undetermined positive constant. Then (1.5) is written as

f(
(t)) +
Z 
(t)

0
~L(
(t); y)f(y)dy = V (
(t)); (0 � t � 1):
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Letting y = 
(s), we have

f(
(t)) +
Z t

0
~L(
(t); 
(s))f(
(s))
0(s)ds = V (
(t)) (0 � t � 1): (1.6)

Multiply (1.6) by 
0(t) and set

u(t) = 
0(t)f(
(t)); �(t) = 
0(t)V (
(t)); �L(t; s) = 
0(t)~L(
(t); 
(s)):

Consequently the Eq. (1.6) is simpli�ed as

u(t) +
Z t

0
�L(t; s)u(s)ds = �(t); (0 � t � 1): (1.7)

With a suitable choice of the parameter q we can ensure that the solution u(t) and
�(t) of (1.7) are su�ciently smooth [1].

3 The numerical method

Since the kernel and the deriving term of the integral equation (1.7) are expressed by
weakly singular integrals, we must use a numerical method which is able to compute these
integrals with weak singularity at the end points. For this purpose, Navot's quadrature
rule is used. This special quadrature is applied for functions having a singularity of any
type on or near the integration interval.

We recall that, in the interval [0,1], the trapezoidal rule is de�ned as, Tf = 1
N
PN�1

j=1 f( jN )+
1

2N [f(0) + f(1)]; and for the midpoint rule, Mf = 1
N
PN

j=1 f(2j�1
2N ). So, if N is even then

the Simpson's integration rule can be de�ned as [4,5], Sf = 2
3Mf + 1

3Tf . Now, we can
imply the following lemma in the interval [a,b] for introducing the modi�ed Simpson's rule
by Navot's Quadrature. This lemma is an improvement of the asymptotic expansion of
the trapezoidal rule which has been presented in [1].

Lemma 3.1. Let g(x) 2 C2l+1[a; b](l 2 Z+), G(x) = (b � x)�g(x), h = (b � a)=N , N is
even and xi = a+ ih, i = 0; 1; : : : ; N , then the modi�ed Simpson's integration rule SN (G)
has an asymptotic expansion as follows,

SN (G) =
h
3
G(x0) +

4
3
h

N
2X
i=1

G(x2i�1) +
2
3
h
bN�1

2 cX
i=1

G(x2i)

� g(b)
�

2
3
�(��; 1

2
) +

1
3
�(��)

�
h1+� (2.1)

=
Z b

a
(b� x)�g(x)dx+

lX
j=1

PjG(2j�1)(a)h2j

+
2lX
j=1

(�1)j
g(j)(b)hj+�+1

j!

�
1
3

+
2
3

(2���j � 1)
�
�(��� j) +O(h2l+1);

where �1 < � < 0, �(��; 1
2) = (2�� � 1)�(��), �(x) is the Riemann-Zeta function and

Pj (j = 1; : : : ; l) are all constants independent of h.
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Proof. In [1,4] the modi�ed trapezoidal rule Th0(G) has been introduced by using Navot's
quadrature as follows:

Th0(G) =
h0
2
G(x00) + h0

M�1X
j=1

G(x0j) + �(��)g(b)h01+�

=
Z b

a
(b� x)�g(x)dx+

lX
j=1

B2j

(2j)!
G(2j�1)(a)h02j (2.1)

+
2lX
j=1

(�1)j
g(j)(b)h0j+�+1

j!
�(��� j) +O(h02l+1);

where, �(x) is the Riemann-Zeta function and B2j ; j = 1; :::; l, are the Bernoulli num-
bers and x0j = a+ jh0; j = 0; :::;M � 1; h0 = b�a

M . The similar formula can be written for
the modi�ed mid-point rule as follows [5]:

Mh0(G) = h0
MX
j=1

G(x0j � h0
2

)� (2�� � 1)�(��)g(b)h01+�:

Since the number of the points when we combine the modi�ed trapezoidal and mid-
point rules is N = 2M which is even, hence bN�1

2 c = N
2 � 1 and bN2 c = N

2 . If h = b�a
N

then, x2j�1 = x0j�h; j = 1; 2; :::;M and x2j = x0j ; j = 1; 2; :::;M�1; hence we can compute
SN (G) in the interval [a; b] as follows:

SN (G) =
2
3
Mh0(G) +

1
3
Th0(G) =

2
3

[h0
MX
j=1

G(x0j�h
0

2
)�(2���1)�(��)g(b)h01+�]+

1
3

[
h0
2
G(x00)+h0

M�1X
j=1

G(x0j)��(��)g(b)h01+�] =

h
3
G(x0) +

4
3
h

N
2X
j=1

G(x2j�1) +
2
3
h

N
2 �1X
j=1

G(x2j)� [
2
3
�(��; 1

2
) +

1
3
�(��)]g(b)h1+�:

Also, if Pj ; j = 1; 2; :::; l; are the constant values independent of h, the following relation
can be proved similarly by using (2.1).

SN (G) =
Z b

a
(b� x)�g(x)dx+

lX
j=1

PjG(2j�1)(a)h2j

+
2lX
j=1

(�1)j
g(j)(b)hj+�+1

j!

�
1
3

+
2
3

(2���j � 1)
�
�(��� j) +O(h2l+1):

This completes the proof.
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Since the periodization methods play an important roles in increasing accuracy of
quadrature rules, we will use a Sidi's sinm- transformation [6], which is constructed by

 m(y) =
�m(y)
�m(1)

with �m(y) =
Z y

0
(sin(�t))mdt; m = 1; 2; : : : :

 m(y) has the following asymptotic expansions(
 m(y) � "mym+1 +

P1
i=1 "m;iy

m+1+2i as y �! 0+;
 m(y) � 1� "̂m(1� y)m+1 �P1i=1 "̂m;i(1� y)m+1+2i as y �! 1�; (2.2)

where "m 6= 0, "̂m 6= 0, "m;i and "̂m;i, (i = 1; 2; : : : ) are all constants.
From (1.2),

Lx(x; y) =
@
@x
L(x; y) =

Z 1

0
H 0(y + �(x� y); y)

�1��
(1� �)1��d�;

where H 0(x; y) = @
@xH(x; y). By Letting � =  m(t), then

Lx(x; y) =
Z 1

0
�(x; y; t)dt; (2.3)

with
�(x; y; t) = H 0(y +  m(t)(x� y); y)

( m(t))1��
(1�  m(t))1�� 

0
m(t): (2.4)

By (2.2), there are functions B(t) and C(t) such that

 0m(t)
(1�  m(t))1�� = (m+ 1)("̂m)�(1� t)(m+1)��1 1� C(t)(1� t)2

(1�B(t)(1� t)2=("̂m)�)1�� ;

which has a zero or pole of �th order at t = 1, where � = (m+ 1)�� 1. Then, we have

�(x; y; t) = (1� t)��(x; y; t);

where,

�(x; y; t) = (m+ 1)("̂m)�H 0(y +  m(t)(x� y); y)
( m(t))1��(1� C(t)(1� t)2)
(1�B(t)(1� t)2=("̂m)�)1�� :

We observe that � is nonsingular at t = 1.
From lemma 2.1, since  m(0) = 0 and  m(1) = 1, we may derive an approximation

Lhx(x; y) of Lx(x; y) as follows:

Lhx(x; y) =
4
3

N
2X
j=1

h�(x; y; t2j�1) +
2
3

bN�1
2 cX
j=1

h�(x; y; t2j)

� (m+ 1)("̂m)�h�+1H 0(x; y)
�

2
3
�(��; 1

2
) +

1
3
�(��)

�
: (2.5)

where tj = jh, j = 0; 1; : : : ; N , h = 1
N .

5

M. A. Fariborzi Araghi, S. Yazdani / IJIM Vol. 1, No. 1  (2009) 1-11 5

MathDepartment
Text Box



For the kernel �L(x; y) of (1.7) the corresponding approximate expression is

�Lh(t; s) = 
0(t)L
h
x(
(t); 
(s))
L(
(t); 
(t))

; (2.6)

where L(
(t); 
(t)) = �H(
(t);
(t))
sin(��) 6= 0.

On the other hand by (1.3),

G0(x) = �x��1
Z 1

0

g(x�)
(1� �)1��d� + x�

Z 1

0

g0(x�)�
(1� �)1��d�

= �x��1
Z 1

0
G1(x; �)d� + x�

Z 1

0
G2(x; �)d�;

where,

G1(x; t) =
g(x m(t))

(1�  m(t))1�� 
0
m(t); G2(x; t) =

g0(x m(t))
(1�  m(t))1�� m(t) 0m(t):

In (1.7),

�(t) =

0(t)G0(
(t))
L(
(t); 
(t))

=
�
0(t)(
(t))��1

L(
(t); 
(t))

Z 1

0
G1(
(t); �)d� +


0(t)(
(t))�

L(
(t); 
(t))

Z 1

0
G2(
(t); �)d�:

We put

I1(t) =
�
0(t)(
(t))��1

L(
(t); 
(t))

Z 1

0
G1(
(t); �)d�;

and

I2(t) =

0(t)(
(t))�

L(
(t); 
(t))

Z 1

0
G2(
(t); �)d�:

We have G0(x) = O(x��1), as x �! 0, and since 
(t) = tq we have that I1(t) =
O(tq��1) and I2(t) = O(tq�+q�1), as t �! 0. Choosing q > 1

� , we get I1(0) = I2(0) = 0.
Similar to above discussion, we can obtain approximate expressions for I1(t) and I2(t) as
follows:

Ih1 (t) =
�
0(t)(
(t))��1

L(
(t); 
(t))

244
3

N
2X
j=1

hG1(
(t); t2j�1) +
2
3

bN�1
2 cX
j=1

hG1(
(t); t2j)

�(m+ 1)h�+1("̂m)�g(
(t))
�

2
3
�(��; 1

2
) +

1
3
�(��)

��
(0 � t � 1); (2.7)

and

Ih2 (t) =

0(t)(
(t))�

L(
(t); 
(t))

244
3

N
2X
j=1

hG2(
(t); t2j�1) +
2
3

bN�1
2 cX
j=1

hG2(
(t); t2j)

�(m+ 1)h�+1("̂m)�g0(
(t))
�

2
3
�(��; 1

2
) +

1
3
�(��)

��
(0 � t � 1) (2.8)
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Then, the approximation of �(t) is

�h(t) = Ih1 (t) + Ih2 (t): (2.9)

By (2.6) and (2.9), the following approximate integral equation is derived:

u(t) +
Z t

0
�Lh(t; s)u(s)ds = �h(t): (2.10)

Now, we can apply the Simpson's rule to derive the numerical solution of (2.10).

Algorithm (Simpson's rule)(
us0 = �s(t0) = 0
usi = �h(ti)� h

3
Pi

j=0wij �Lh(ti; tj)usj ; i = 1; : : : ; N
(2.11)

where, wi0 = wii = 1, wij = 4 (j = 2k � 1), wij = 2(j = 2k), k � 1; 0 < j < i,
i = 0; 1; : : : ; N .

By this algorithm, fusig, i = 0; : : : ; N are found and fusi=
0(ti)g will be the approximate
of the solution ff(
(ti))g of (1.7).

4 Convergence and error estimate

Assume that the data function is not perturbed by noise, then approximations �Lh(t; s)
and �h(t) satisfy the following lemma.

Lemma 4.1. Let H(x; :), g(x) 2 C6[0; 1], then the errors �Lh(t; s)� �L(t; s) and �h(t)��(t)
have the estimates

�Lh(t; s)� �L(t; s) = O(h�); (3.1)

and
�h(t)� �(t) = O(h�); (3.2)

where � = minf� + 3; 4g.
Proof. Since H(x; :); g(x) 2 C6[0; 1], it follows that �(:; :; t), 2 C5[0; 1]. By lemma 2.1 with
l = 2,

~Lh(x; y) =
Z 1

0
(1� t)� �(x; y; t)

L(x; x)
dt+

2X
j=1

Pj
�(2j�1)(x; y; 0)

L(x; x)
h2j

+
4X
j=1

(�1)j
�(j)(x; y; 1)hj+�+1

L(x; x)j!

�
1
3

+
2
3

(2���j � 1)
�
�(�� � j) +O(h5):

Then we have,

~Lh(x; y)� ~L(x; y) = T1h2 + T2h4 + T3h2+� + T4h3+� + T5h4+� + T6h5+� +O(h5);
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with

T1 = P1
�(1)(x; y; 0)
L(x; x)

;

T2 = P2
�(3)(x; y; 0)
L(x; x)

;

T3 = ��(1)(x; y; 1)
L(x; x)

�
1
3

+
2
3

(2���1 � 1)
�
�(�� � 1);

T4 =
�(2)(x; y; 1)

2L(x; x)

�
1
3

+
2
3

(2���2 � 1)
�
�(�� � 2);

T5 = ��(3)(x; y; 1)
6L(x; x)

�
1
3

+
2
3

(2���3 � 1)
�
�(�� � 3);

T6 =
�(4)(x; y; 1)
4!L(x; x)

�
1
3

+
2
3

(2���4 � 1)
�
�(�� � 4):

By letting

R(t) =
1� C(t)(1� t)2

(1�B(t)(1� t)2=("̂m)�)1�� ;

then,

@
@t
�(x; y; t) = (m+ 1)("̂m)�(H(2)(y +  m(t)(x� y); y)

� (x� y) 0m(t)R(t)( m(t))1�� +H 0(y +  m(t)(x� y); y)( m(t))1��R0(t)
+H 0(y +  m(t)(x� y); y)R(t)( m(t))�� 0m(t)):

Since  0m(1) = 0, R0(1) = 0,  m(0) = 0,  0m(0) = 0 we get @
@t�(x; y; 1) = 0 and

@
@t�(x; y; 0) = 0. Therefore, T1(x; y) = 0, and T3(x; y) = 0. From �L(t; s) = 
0(t)~L(
(t); 
(s)),
(3.1) is proved.

Using the same technique we can also prove (3.2). This completes the proof of lemma
3.1.

In order to obtain an error estimate of algorithm, we need the following discrete Gron-
wall inequality.

Lemma 4.2. [1].If a nonnegative sequence fyn; n = 0; : : : ; Ng satis�es y0 = 0, yn �
A+Bh

Pn�1
j=0 yj, 1 � n � N , h = 1

N , then

max
0�i�N yi � AeB

where A and B are positive constants independent of h.

The error of algorithm is estimated as follows.

Theorem 4.3. Assume that H(x; :); g(x) 2 C6[0; 1], H(:; y) 2 C5[0; 1] and the step size h
is su�ciently small, then the error esi = u(ti)� usi , i = 0; 1; : : : ; N of the above Algorithm
is obtained by

max
1�i�N jesi j � dMh
 (3.3)

where dM is a constant independent of h and 2 < 
 � 4.
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Proof. By Euler-Maclaurian formula of the Simpson's integration rule, (1.7) becomes the
following equality,(

�(t0) = u(t0) = 0
�(ti) = u(ti) + h

3
Pi

j=0wij �L(ti; tj)u(tj) +Q1(ti)h4 +O(h5); i = 1; 2; : : : ; N;

with
wi0 = wii = 1; wij = 2 (j = 2k); wij = 4 (j = 2k � 1); k � 1;

and,

Q1(ti) = c
d3

ds3 (�L(ti; s)u(s))
��s=ti
s=0 ; c = � 1

180
By lemma 3.2 we have,

�h(ti) = �(ti) +O(h�)

= u(ti) +
h
3

iX
j=0

wij �Lh(ti; tj)u(tj) +Q1(ti)h4 +O(h5) +O(h�); (3.4)

where, � = minf� + 3; 4g.
Subtracting (3.4) from (2.11), we get(

es0 = 0
esi = �h

3
Pi

j=0wij �Lh(ti; tj)esj +Ei;t(ti; t; u(t));

where, Ei;t(ti; t; u(t)) = Q1(ti)h4 +O(h�). Let

A = max
1�i�N max

0�t�1
jEi;t(ti; t; u(t))j;

since �1 < � < m, we can derive A = O(h
) where 2 < 
 � 4.
Now let

B = sup
h>0

max
1�i�N max

0�j�i j�Lh(ti; tj)j;
then we have

jesi j � h
3
B

iX
j=0

jesi j+A

By lemma 3.3, there is a constant dM independent of h satisfying

max
1�i�N jesi j � AeB � dMh
 ; 2 < 
 � 4:

This completes the proof.

5 Numerical examples

In this section, we apply the above algorithm to solve the following examples [1]. We use
m = 2 or let � =  2(t) = ( 1

2� ) (2�t � sin 2�t). The programs have been provided with
maple 10.
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Example 5.1. In this example, The integral equation (1.1) is considered with

� =
1
2
; H(x; y) = x2y + e; g(x) = 3x4� + 4e�x:

The exact solution of the integral equation is f(x) = 8
p
x. We use a smoothing transfor-

mation x = 
(t) = t2. The relative errors are shown in Table 1.

Table 1. The errors of the example 1 at x = 1:0
N Numerical solution error
2 8.7770128 9.71266E-2
4 8.6105208 7.63151E-2
8 8.3686739 4.60842E-2
16 8.03111328 3.88916E-3
32 8.01611856 2.01482E-3
64 8.000245921 3.07401E-5

Example 5.2. In this example, we consider the integral equation

1
�(1=2)

Z x

0

1
(x� y)1=2 f(y)dy =

p
�: (0 � x � 1)

The exact solution is f(x) = 1p
x . Since the solution is unbounded at the origin. We

applying a smoothing transformation x = 
(t) = t4. Then, the relative errors are shown
in Table 2.

Table 2. The errors of the example 2 at x = 1:0
N Numerical solution error
2 1.399561 3.99561E-1
4 1.135846 1.35846E-1
8 1.0425398 4.25398E-2
16 1.00773894 7.73894E-3
32 1.0000833910 8.33910E-5
64 1.0000198145 1.98145E-5

6 Conclusions

Many of important mechanical and physical problems are converted to a type of the �rst
kind Abel integral equations. In this work, for solving these kinds of integral equations, we
presented a numerical method to approximate the solution by using Navot's quadrature
and Simpson's rule. We apply the integral equation which has a singularity at one of the
endpoints. One can improve this technique to use the Navot's quadrature and modify it
for the case that there are singularity at both of the endpoints of the integration interval.
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