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Abstract

The meshless local radial point interpolation (MLRPI) method is applied to examine the magneto-
hydrodynamic (MHD) flow of third grade fluid in a porous medium. The fluid saturates the porous
space between the two boundaries. Several limiting cases of fundamental flows can be obtained as the
special cases of present analysis. The variations of pertinent parameters are addressed.
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1 Introduction

T
he flow inside porous space encounters in sev-
eral systems, ranging from natural to Man-

manufactured technological ones. Examples of
porous space include rye bread, lime stone, oil
wells, chemical catalysts, underground aquifers,
wood etc. The flows of non-Newtonian fluids
[1, 2, 3, 4]) are also significant in many engi-
neering applications. Recently, the flows of one-
dimensional second grade [5]) and Oldroyd-B [6])
fluids are discussed. Mathematical formulation in
these articles has been presented employing the
modified Darcy’s law and the mathematical prob-
lems were linear. However, the one-dimensional
flow of third grade fluid even in steady situation
constructs nonlinear differential equation. This
equation for flow in porous space through Mod-
ified Darcy’s law is more nonlinear. Also, the
consideration of grade fluid predicts the shear
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thinning/shear thickening effects even in steady
flows. Thus, the objective of present article is to
consider some fundamental flows of third grade
fluid in a porous space. The magnetohydrody-
namic (MHD) fluid fills the porous space be-
tween the two boundaries. The fluid is electrically
conducting in the presence of applied magnetic
field. Constant pressure gradient is also consid-
ered. Hence we investigate the more general dif-
ferential system in usual notation satisfying

d2u

dy2
+ 2β

d

dy

(
du

dy

)3

− 1

K

[
1 + 2β

(
du

dy

)2
]
u−Mu = C, (1.1)

u(a) = c u(b) = d, (1.2)

where β,M,K,C are the third grade parame-
ter, permeability parameter, magnetic parameter
and pressure gradient parameter. Here u is the
velocity in the x-direction.

The main shortcoming of mesh-based meth-
ods such as the finite element method (FEM),
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the finite volume method (FVM) and the bound-
ary element method (BEM) is that these numer-
ical methods rely on meshes or elements. In the
last two decades, in order to overcome the men-
tioned difficulties some techniques the so-called
meshless methods have been proposed [7]. This
method is used to establish system of algebraic
equations for the whole domain of the problem
without the use of predefined mesh for the do-
main discretization so that set of nodes scattered
within the domain of the problem as well as sets
of nodes on the boundaries of the domain to rep-
resent (but not to discretize) the domain of the
problem and its boundaries is used. These sets
of scattered nodes are usually called field nodes.
There are three types of meshless methods: mesh-
less methods based on weak forms such as the ele-
ment free Galerkin (EFG) method [8, 9], meshless
methods based on collocation techniques (strong
forms) such as the meshless collocation method
based on radial basis functions (RBFs) [10, 11]
and meshless methods based on the combina-
tion of weak forms and collocation technique.
Due to the ill-conditioning of the resultant lin-
ear systems in RBF-collocation method, various
approaches are proposed to circumvent this prob-
lem, Refs. [12, 13, 14, 15] being among them.
The weak forms are used to derive a set of alge-
braic equations through a numerical integration
process using a set of quadrature domain that
may be constructed globally or locally in the do-
main of the problem. In the global weak form
methods, global background cells are needed for
numerical integration in computing the algebraic
equations. To avoid the use of global background
cells, a so-called local weak form is used to de-
velop the meshless local Petrov-Galerkin (MLPG)
method [16, 17, 18, 19, 20, 21, 23]. When a lo-
cal weak form is used for a field node, the nu-
merical integrations are carried out over a local
quadrature domain defined for the node, which
can also be the local domain where the test
(weight) function is defined. The local domain
usually has a regular and simple shape for an in-
ternal node (such as sphere, rectangular, etc.),
and the integration is done numerically within
the local domain. Hence the domain and bound-
ary integrals in the weak form methods can eas-
ily be evaluated over the regularly shaped sub-
domains(spheres in 3D or circles in 2D) and
their boundaries. In the literature, several mesh-

less weak form methods have been reported such
as diffuse element method (DEM) [24], smooth
particle hydrodynamic (SPH) [25, 26], the re-
producing kernel particle method (RKPM) [27],
boundary node method (BNM) [28], partition of
unity finite element method (PUFEM) [29], fi-
nite sphere method (FSM) [30], boundary point
interpolation method (BPIM) [31] and bound-
ary radial point interpolation method (BRPIM)
[32]. Liu applied the concept of MLPG and de-
veloped meshless local radial point interpolation
(MLRPI) method [33, 34, 35]. In this paper, the
problem (1.1)-(1.2) will be solved by meshless lo-
cal radial point interpolation (MLRPI) method
[36]. It is noticed that for plane Couette flow we
have C = c = 0; Plug flow corresponds to C = 0;
Poiseuille flow when c = d = 0 and generalized
Couette flow when c = 0. Graphical results for
different parameters are given and examined.

2 The modified radial point in-
terpolation scheme

In the conventional point interpolation method
(PIM) there is a main difficulty that inverse of
the polynomial moment matrix (it will be de-
fined later) does not often exist. This condition
could always be possible depending on the loca-
tions of the nodes in the support domain and the
terms of monomials used in the basis. If an inap-
propriate polynomial basis is chosen for a given
set of nodes, it may yield in a badly conditioned
or even singular moment matrix [7]. In order to
avoid the singularity problem in the polynomial
point interpolation method (PIM), the radial ba-
sis function (RBF)is used to develop the radial
point interpolation method (RPIM) for meshless
weak form techniques [34, 37, 38]. The combina-
tion of RPIM and polynomial PIM is described
as follows: consider a continuous function u(x)
defined in a domain Ω, which is represented by a
set of field nodes. The u(x) at a point of interest
x is approximated in the form of

u(x) =
n∑

i= 1

Ri(x) ai +
m∑

j = 1

pj(x) bj

= RT (x) a + PT (x) b , (2.3)

where Ri(x) is a radial basis function (RBF), n
is the number of RBFs, pj(x) is monomial in the
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space coordinate x and m is the number of poly-
nomial basis functions. The pj(x) in Eq. (2.3) is,
in general, chosen in a top-down approach from
the Pascal triangle, so that the basis is complete
to a desired order and a complete basis is usually
preferred. For 1-D problems, we use

PT (x) =
{
1, x, x2, x3, ..., xm

}
, (2.4)

For 2-D problems, we shall have

PT (x) = PT (x, y)

=
{
1, x, y, xy, x2, y2, . . . , xm, ym

}
, (2.5)

and etc. When m = 0, only RBFs are used, oth-
erwise the RBF is augmented with m polynomial
basis functions. Coefficients ai and bj are un-
known which should be determined. There are
some types of RBFs, and the characteristics of
RBFs have been widely investigated [10, 39, 40].
In the current work, we have chosen the thin
plate spline (TPS) as radial basis functions in Eq.
(2.3). This RBF is defined as follows:

R(x) = r2m ln(r) , m = 1 , 2 , 3 , ... . (2.6)

Since R(x) in Eq. (2.6) belongs to C2m−1

(all continuous function to the order 2m − 1),
so higher-order thin plate splines must be used
for higher-order partial differential operators.
For the second-order partial differential equation
(1.1), m = 2 is used for thin plate splines (i.e.,
second-order thin plate splines). In the radial
basis function Ri(x), the variable is only the
distance between the point of interest x and a
node at xi, i.e., r = | x − xi | for 1-D and
r =

√
(x − xi)2 + (y − yi)2 for 2-D. In order

to determine ai and bj in Eq. (2.3), a support
domain is formed for the point of interest at x,
and n field nodes are included in the support do-
main. Coefficients ai and bj in Eq. (2.3) can
be determined by enforcing Eq. (2.3) to be sat-
isfied at these n nodes surrounding the point of
interest x. This leads to the system of n linear
equations, one for each node. The matrix form of
these equations can be expressed as

Us = Rn a + Pm b , (2.7)

where the vector of function values Us is

Us = { u1 , u2 , u3 , ... , un }T , (2.8)

the RBFs moment matrix is

Rn =


R1(r1) R2(r1) ... Rn(r1)
R1(r2) R2(r2) ... Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) ... Rn(rn)


n× n

,

(2.9)
and the polynomial moment matrix is

Pm =


1 x1 ... xm1
1 x2 ... xm2
...

...
. . .

...
1 xn ... xmn


n×m

. (2.10)

Also, the vector of unknown coefficients for RBFs
is

aT = { a1 , a2 , a3 , ... , an } , (2.11)

and the vector of unknown coefficients for poly-
nomial is

bT = { b1 , b2 , b3 , ... , bm } . (2.12)

We notify that, in Eq. (2.9), rk in Ri(rk) is de-
fined as

rk = | xk − xi | . (2.13)

We mention that there are m+ n variables in Eq.
(2.7). The additional m equations can be added
using the following m constraint conditions:

n∑
i= 1

pj(xi)ai = PT
ma = 0 , , j = 1 , 2 , ... , m.

(2.14)
Combining Eqs. (2.7) and (2.14) yields the fol-
lowing system of equations in the matrix form:

Ũs =

[
Us

0

]
=

[
Rn Pm

PT
m 0

] [
a
b

]
= G ã ,

(2.15)
where

Ũs = { u1 u2 ... un 0 0 ... 0 } ,

ãT = { a1 a2 ... an b1 ... bm } . (2.16)

Because the matrix Rn is symmetric, the matrix
G will also be symmetric. Solving Eq. (2.15), we
obtain

ã =

[
a
b

]
= G−1 Ũs . (2.17)

Eq. (2.3) can be rewritten as

u(x) = RT (x) a + PT (x) b

=
{
RT (x) , PT (x)

} [
a
b

]
.

(2.18)
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Now using Eq. (2.17), we obtain

u(x) =
{
RT (x) , PT (x)

}
G−1 Ũs

= Φ̃T (x) Ũs , (2.19)

where Φ̃T (x) can be rewritten as

Φ̃T (x) =
{
RT (x) , PT (x)

}
G−1

= { ϕ1(x) ϕ2(x) ... ϕn(x) ϕn+1(x)

... ϕn+m(x) } . (2.20)

The first n functions of the above vector function
are called the RPIM shape functions correspond-
ing to the nodal displacements. We show by the
vector Φ̃T (x) so that it is

Φ̃T (x) = { ϕ1(x) ϕ2(x) ... ϕn(x) } , (2.21)

then Eq. (2.19) is converted to the following one:

u(x) = Φ̃T (x)Us =
n∑

i=1

ϕi(x) ui . (2.22)

The derivatives of u(x) are easily obtained as

∂u(x)

∂x
=

n∑
i= 1

∂ϕi(x)

∂x
ui ,

∂2u(x)

∂x2
=

n∑
i= 1

∂2ϕi(x)

∂x2
ui . (2.23)

Note that R−1
n usually exists for arbitrary scat-

tered nodes and therefore the augmented matrix
G is theoretically non-singular [41, 42]. In addi-
tion, the order of polynomial used in Eq. (2.3)
is relatively low. We add that the RPIM shape
functions have the Kronecker delta function prop-
erty, that is

ϕi(xj) =

{
1 , i = j , j = 1 , 2, ... , n ,
0 , i ̸= j , j = 1 , 2, ... , n .

(2.24)
This is be cause the RPIM shape functions are
created to pass through nodal values.

3 The meshless local weak form
formulation

Instead of giving the global weak form, the ML-
RPI method constructs the weak form over local
quadrature cell such as Ωq, which is a small re-
gion taken for each node in the global domain Ω.

The local quadrature cells overlap with each other
and cover the whole global domain Ω. The local
quadrature cells could be of any geometric shape
and size. In one dimensional problems, they are
lines (intervals). The local weak form of Eq. (1.1)
for yi ∈ Ωi

q = (yi − rq, yi + rq), can be written as

∫
Ωi

q

d2u

dy2
ν(y)dy

−
(

1

K
+M

)∫
Ωi

q

uν(y)dy =

2β

K

∫
Ωi

q

ũ

(
dũ

dy

)2

ν(y)dy

− 6β

∫
Ωi

q

d2ũ

dy2

(
dũ

dy

)2

ν(y)dy

+ C

∫
Ωi

q

ν(y)dy, (3.25)

where Ωi
q is the local quadrature domain associ-

ated with the point i, and ν(y) is the Heaviside
step function

ν(y) =

{
1 , y ∈ Ωq ,
0 , y /∈ Ωq ,

(3.26)

as the test function in each local quadrature do-
main. Also, ũ is the latest available approxima-
tion of u to treat the nonlinearity of the problem
by a simple predictor-corrector method. Using
integration by parts, one has

∫
Ωi

q

d2u(y)

dy2
ν(y)dx

= ν(y)
du(y)

dy

∣∣∣y=yi+rq

y=yi−rq

−
∫
Ωi

q

du(y)

dy

dν(y)

dy
dy

=
du(y)

dy

∣∣∣y=yi+rq

y=yi−rq
, (3.27)

and using the test function the following local
weak equation will be obtained

du(y)

dy

∣∣∣y=yi+rq

y=yi−rq
−

(
1

K
+M

)∫
Ωi

q

udy =

4rqβ

K
ũ

(
dũ

dy

)2

− 12rqβ
d2ũ

dy2

(
dũ

dy

)2

+ 2rqC.

(3.28)
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Applying the radial point interpolation method
(RPIM) for the unknown functions, the local inte-
gral equation (4.29) is transformed in to a system
of algebraic equations with used unknown quan-
tities, as described in the next section.

Figure 1: Variation of M on u when K = 1
and β = 1.

Figure 2: Variation of K on u when M = 1
and β = 1.

4 Discretization for MLRPI
method

In this section, we consider Eq. (4.29) to see
how to obtain discrete equations and apply a sim-
ple predictor-corrector procedure to overcome the
nonlinearity of the problem. Consider N regu-
larly located points on the boundary and domain
of the problem so that the distance between two
consecutive nodes is constant and equal to h. As-
suming that u(k)(yi), i = 1, 2, ..., N are known,

Figure 3: Variation of β on u when M = 1
and K = 1.

Figure 4: Variation of M on u when K = 1
and β = 1.

our aim is to compute u(k+1)(yi), i = 1, 2, ..., N .
So, we have N unknowns and to compute these
unknowns, we need N equations. As it will be
described, corresponding to each node we obtain
one equation.
For nodes which are located in the interior of
the domain, i.e., for yi ∈ interior Ω, to ob-
tain the discrete equations from the locally weak
forms (4.29), substituting approximation formu-
las (2.22) and (2.23) in to local integral equations
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Figure 5: Variation of K on u when M = 1
and β = 1.

Figure 6: Variation of β on u when M = 1
and K = 1.

(4.29) yields

N∑
j=1

u
(k+1)
j

dϕj(y)

dy

∣∣∣y=yi+rq

y=yi−rq

− (
1

K
+M)

N∑
j=1

(

∫
Ωi

q

ϕj(y)dy)u
(k+1)
j =

[
4rqβ

K
(

N∑
j=1

ϕj(y)u
(k)
j )(

N∑
j=1

dϕj(y)

dy
u
(k)
j )2]y=yi

− [12rqβ(
N∑
j=1

d2ϕj(y)

dy2
u
(k)
j )(

N∑
j=1

dϕj(y)

dy
u
(k)
j )2]y=yi

+ 2rqC, (4.29)

Figure 7: Effect of M on u when C = 1,
K = 1 and β = 1.

Figure 8: Effect of K on u when C = 1,
M = 1 and β = 1.

or equivalently

N∑
j=1

[(
dϕj(y)

dy

∣∣∣
y=yi+rq

− dϕj(y)

dy

∣∣∣
y=yi−rq

)

− (
1

K
+M)(

∫ yi+rq

yi−rq

ϕj(y)dy)]u
(k+1)
j =

[
4rqβ

K
(

N∑
j=1

ϕj(y)u
(k)
j )×

(
N∑
j=1

dϕj(y)

dy
u
(k)
j )2]y=yi

− [12rqβ(

N∑
j=1

d2ϕj(y)

dy2
u
(k)
j )×

(

N∑
j=1

dϕj(y)

dy
u
(k)
j )2]y=yi

+ 2rqC. (4.30)
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Figure 9: Effect of C on u when β = 1,
M = 1 and K = 1.

Figure 10: Effect of β on u when C = 1,
M = 1 and K = 1.

The number of equations in the above system is
N − 2 because we have the number of N − 2 in-
terior nodes. For nodes which are located on the
boundary, from (1.2), we have

uk+1(a) = c, uk+1(b) = d. (4.31)

Therefore, Eqs. (4.30) and (4.31) provide us a
linear system of N equations with N unknowns
which can be solved iteratively until convergence
occurs. In the next section, we have used the cri-
teria ∥U (k+1) − U (k)∥∞≤ 10−10 to stop the pro-
cedure of solving the system iteratively.

5 Numerical experiments

In this section, we discuss the numerical results
for magnetic, porosity and third grade parame-
ters.

Figure 11: Effect of M on u when C = 1,
K = 1 and β = 1.

Figure 12: Effect of K on u when C = 1,
M = 1 and β = 1.

5.1 Plane Couette Flow Problem

We consider the flow between two boundaries
in the absence of pressure gradient. The upper
boundary is suddenly moved. Here the mathe-
matical problem is

d2u

dy2
+ 2β

d

dy

(
du

dy

)3

− 1

K

[
1 + 2β

(
du

dy

)2
]
u−Mu = 0, (5.32)

with boundary conditions

u(0) = 0 u(2) = 1. (5.33)

The Figs. 1 to 3 have been prepared to explain
the effects of plane Couette flow between two
boundaries in the absence of pressure gradient.
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Figure 13: Effect of C on u when β = 1,
M = 1 and K = 1.

Figure 14: Effect of β on u when C = 1,
M = 1 and K = 1.

5.2 Plug Flow Problem

Here we investigate the flow due to sudden motion
of two boundaries. The mathematical equation
here is

d2u

dy2
+ 2β

d

dy

(
du

dy

)3

− 1

K

[
1 + 2β

(
du

dy

)2
]
u−Mu = 0, (5.34)

with boundary conditions

u(0) = 1 u(2) = 1. (5.35)

Figs. 4 to 6 have been displayed for plug flow due
to sudden motion of two boundaries.

5.3 Fully developed plane Poiseuille
Flow Problem

This subsection deals with the flow in presence of
applied pressure gradient. The problem reduces
to

d2u

dy2
+ 2β

d

dy

(
du

dy

)3

− 1

K

[
1 + 2β

(
du

dy

)2
]
u−Mu = C, (5.36)

with boundary conditions

u(−1) = 0 u(1) = 0. (5.37)

The effects of magnetic, porosity, pressure gra-
dient and third grade parameters for fully devel-
oped plane Poiseuille flow in the presence of ap-
plied pressure gradient are shown in Figs. 7 to
10.

5.4 Generalized plane Couette Flow
Problem

Here flow is induced due to applied pressure gra-
dient and sudden motion of upper plate. Thus
the equation is

d2u

dy2
+ 2β

d

dy

(
du

dy

)3

− 1

K

[
1 + 2β

(
du

dy

)2
]
u−Mu = C, (5.38)

with boundary conditions

u(0) = 0 u(2) = 1. (5.39)

Figs. 11 to 14 illustrate the generalized plane
Couette flow due to applied pressure gradient and
sudden motion of upper plate.

6 Conclusions

In this article, four fundamental flow problems
are tested numerically through the employed
Scheme. Highly nonlinear problems are solved by
this procedure. Through comparative study of
the presented results, the following observations
are worth-mentioning.

1. The velocity is decreasing function of mag-
netic parameter M in plane Couette flow.
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2. Magnitude of velocities in Plug Poiseuille
and generalized Couette flows is qualitatively
similar to that of Couette flow.

3. Effects of permeability parameter (K) on the
velocity in all the considered flows are oppo-
site to that of the magnetic parameter.

4. The magnitude of velocity in third grade
fluid is much when compared with the vis-
cous fluid. This observation holds for all the
considered flow cases.

5. Magnitude of velocity in presence of ad-
verse pressure gradient is decreased when
Poiseuille and generalized Couette flows are
studied.
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