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Abstract

The main purpose of this paper is to analyze the exchange rate volatility in Iran in the time period
between 2011/11/27 and 2017/02/25 on a daily basis. As a tradable asset and as an important
and effective economic variable, exchange rate plays a decisive role in the economy of a country. In
a successful economic management, the modeling and prediction of the exchange rate volatility is
essential for economic policies. Therefore, modeling and forecasting the changes in exchange rates for
economic policies is vital. Foreign currency has the particular property of stochastic volatility, which
can be modeled as a stochastic differential equation. In order to provide the best model, first, we
studied the effectiveness of different stochastic models, drew upon the daily price of the exchange rate,
and investigated the performance of these models. Finally, the best model was achieved by taking
into account the numerical simulation and the mean square error, Akaikes (AIC), Schwarzs Bayesian
(SBIC), and the Hannan-Quinn (HQIC) criteria.

Keywords : Stochastic differential equation; Geometric Brownian motion; Volatility of exchange rate;
White noise.
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1 Introduction

F
oreign exchange is a tradable asset and as
a very important and influential macroeco-

nomic variable in different domestic sectors of the
country, exchange rate plays a decisive role in the
economic management policy in a successful man-
agement and planning. Forecasting and simulat-
ing the volatility are the key elements in finan-
cial engineering. Therefore, modeling and fore-
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casting exchange rate volatility to implement eco-
nomic policies has considerable importance. Fi-
nancial science is one of the branches of human-
ities which mathematical models have a signifi-
cant impact on. Since many financial quantities
are random variables, their variations cannot be
fully explained by nonrandom variables. Given
this feature, stochastic differential equations are
considered a branch of mathematics in the field
of finance for modeling and forecasting the finan-
cial volatility. These models were first consid-
ered by Black-Scholes and Merton (1973) with
the issue of stock price modeling. Their model
appeared in the form of a stochastic differential
equation called geometric Brownian motion in
economic discussions [3], [7].The geometric Brow-
nian motion model has a weakness in modeling
such issues [12], because several empirical studies
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have shown that the prices of some commodities
are not exactly log-normally distributed. There-
fore, different models of stochastic differential
equations such as nonlinear stochastic differential
equations, mean reversion stochastic differential
equations, differential equation with stochastic
volatility, etc., were created which can precisely
simulate the exchange rate volatility. Garman
and Kohlhagen (1983) were the first to derive the
FX European option formula by using the Black-
Scholes approach and taking into account the do-
mestic foreign interest rate. They developed an
exact model based on the assumption on the log-
normality of the underlying asset with constant
volatility [7].This article presents different models
of stochastic differential equations for modeling
exchange rate volatility in Iran and the compar-
ison between these models is based on the mean
square error criteria. Finally, using information
criteria are Akaikes information criterion (AIC),
Schwarzs Bayesian information criterion (SBIC),
and the Hannan-Quinn criterion (HQIC) are se-
lected. As a result, this article is categorized as
follows. The second part deals with the definition
of differential equations in general and in financial
markets, especially the foreign exchange market.
In the third section, we examine various models
of the available stochastic differential equations
for the exchange rate. The fourth section is ded-
icated to data analysis. Finally, the last section
compares the proposed models and presents the
best model according to the proposed criteria.

2 Mathematical modeling

In general, the definition of the stochastic differ-
ential equation is as follows:

dxt = f(xt, t)dt+ g(xt, t)dBt (2.1)

where f(xt, t) is the drift term, g(xt, t) is the dif-
fusion term according to time t and the random
process Bt are a standard wiener process [13].
Equation (2.1) is the basic form of stochastic dif-
ferential equation. This equation is used in the
field of economics, individually in modeling ex-
change rate which would be explained in more
details.

2.1 Stochastic differential equations
in financial markets

We investigate the definition of the stochastic dif-
ferential equations in the financial markets. As a
tradable asset, exchange rate volatility has risk-
free and risky changes. Therefore, the modeling
of the price behavior of this asset is started as
risk free asset, and by adding a risk element to
the model, a stochastic differential equation is
obtained. Suppose the exchange rate volatility
relative to the time is a certain function of the
price value. So if S(t) is the exchange price at
time t then

dS(t)

dt
= a(t)S(t) S(0) = S0 (2.2)

In which a(t) is a nonrandom coefficient at time
t .
By adding the noise term to the a(t) we have

a(t) = r(t) + noise

Where a(t) is divided into two parts that are con-
stant and random. Therefore

dS(t) = r(t)S(t)dt+ noise× S(t)dt (2.3)

Let us consider noise × dt = dBt, where Bt is a
standard Brownian motion. So

dSt = f(St, t)dt+ g(St, t)dBt (2.4)

The term f(St, t) is the drift and g(St, t) is the
diffusion coefficient. Two steps must be taken to
simulate the random differential equations [9] ,[2].
(i)Estimation of the unknown parameters of the
equation.
(ii)Find the solution path of the equation.
Each of these cases is explained in the next sec-
tions. Since most of the stochastic differential
equations do not have the analytical solution, the
numerical methods have been considered by many
researchers. The simplest time discrete approxi-
mation of an Ito process is the Euler Maruyama
approximation. We shall consider an Ito pro-
cess X = {Xt, t0 ≤ t ≤ T} satisfying the scalar
stochastic differential equation

dX = f(t,Xt)dt+ g(t,Xt)dBt ;Xt0 = x0 (2.5)

For a given discretization t0 < t1 < ... < tN = T
of the time interval [to, T ], an Euler approxi-
mation is a continuous time stochastic process
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Y = {Yt, t0 ≤ T} satisfying the iterative scheme
which is considered as an approximation of X.

Yn+1 = Yn + f(tn, Yn)(tn+1 − tn)

+ g(tn, Yn)(Btn+1 −Btn) (2.6)

for n = 0, 1, 2, ..., N −1 with initial value Y0 = x0
where we have written Yn = Y (tn) for the value of
the approximation at the discretization time tn.
We shall also write △n = tn+1 − tn and δ = max

n △n Of course, △ is generally considered the
same. that’s mean

δ = △n ≡ T − t0
N

, tn = t0 + nδ

for some integerN large enough so that δ ∈ (0, 1).
So we will have

Yn+1 = Yn + a(tn, Yn)△n +b(tn, Yn)△Bn

where

△Bn ∼ N(0,△n)

3 Stochastic models

Table 1 presents some different stochastic differ-
ential equations. Using these models, we describe
the volatility of exchange rate. Model 1 is a ge-
ometric Brownian motion with expected growth
rate µ and standard deviation σ, one of the sim-
plest models in financial markets, this model as-
sumes that the percentage of expected changes in
prices and the percentage of fluctuations in prices
is constant [4]. Models 2 and 3 are considered by
Zhong et al for modeling the exchange rate of
China [14] and model 4 presented by Farnoosh
et al in the modeling of the OPEC oil price [6].
Models 5, 6 and 7 are used to model oil prices
and future prices [1]. Model 9 is considered for
the dynamics of oil price volatility.

4 Data analysis method

In this section, we set out to examine the pro-
posed models and compare them with each other.
It should be noted that the selected financial vari-
able is the foreign exchange market of Iran for the
time period 2011/11/27 to 2017/02/25, which is
obtained from the Central Bank of Iran. These
historical observations are on a daily basis. The
unknown parameters were estimated based on the
given data. Each of the steps is as follows.

4.1 Parameter estimation

In econometrics and statistics, the generalized
method of moments (GMM) is a generic method
for estimating parameters in statistical models.
It is commonly applied in the context of semi-
parametric models, where the parameter of inter-
est is finite-dimensional, whereas the full shape
of the distribution function of the data may not
be known, and therefore maximum likelihood es-
timation is not applicable. The method requires
that a certain number of moment conditions be
specified for the model. These moment condi-
tions are functions of the model parameters and
the data, such that their expectation is zero at the
true values of the parameters. The GMM method
then minimizes a certain norm of the sample av-
erages of the moment conditions [8]. The GMM
estimators are known to be consistent, asymp-
totically normal, and efficient in the class of all
estimators that do not use any extra informa-
tion aside from that contained in the moment
conditions. The GMM of Hansen (1982) is used
in this article to estimate the parameters of the
continuous-time models in Table 3 by using the
corresponding discrete-time econometric specifi-
cation:

Pn+1 − Pn = f(tn, Pn) + εn+1, (4.7)

E[εn+1] = 0, (4.8)

E[εn+1
2] = g(tn, Pn)

2 △ t (4.9)

We let θ be the parameter vector with elements
µ , κ and σ .
We used 1266 normalize data in order to estimate
the parameters in proposed models. Operation
estimating parameters µ , σ and κ has been done
by the generalized method of moment (GMM).
The estimated results are shown in Table 4,
which is used to perform the estimation of the
Eviews software [8].

4.2 Path simulation

In general, the solution of stochastic differential
equation is obtained from two analytical and nu-
merical methods. We used the Euler-Maruyama
(EM) numerical method [13]. Using the EM
scheme and MATLAB programming with mean
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Table 1: Stochastic models

Models

model 1 dSt = µStdt+ σStdBt

model 2 d lnSt = µdt+ σdBt

model 3 d lnSt = κ(µ− lnSt)dt+ σdBt

model 4 dSt = κSt(µ− St)dt+ σ
√
StdBt

model 5 dSt = µStdt+ σS
3
4
t dBt

model 6 dSt = µ
√
Stdt+ σS

3
4
t dBt

model 7 dSt = (µ
√
St + κSt)dt+ σS

3
4
t dBt

model 8 dSt = κ(µ− St)dt+ σdBt

model 9 dSt = κSt(µ− St)dt+ σS
3
2
t dBt

Table 2: Estimated parameters for models in Table 1

Models µ κ σ

model 1 0.000545 - -0.000169
model 2 3429414.007 0.004983 5.3570
model 3 10.4390974 0.005673 0.000153
model 4 -38.140547 -0.0005024 0.019430
model 5 0.000451 - 0.004146
model 6 0.081272 - -0.003267
model 7 1.821448 -0.009860 0.000188
model 8 0.000628 - 0.000178
model 9 34128.63 2.41e-07 3.79e-07

Table 3: The amount of MSE values for models

Models MSE

model 1 0.02329297
model 2 0.00488627
model 3 0.00449501
model 4 0.01882939
model 5 0.01420544
model 6 0.01974035
model 7 0.00454764
model 8 0.03417456
model 9 0.00453337

Table 4: Information criteria

Models AIC SBIC HQIC

model 1 −3.7571 −3.7504 −3.7546
model 2 −5.3176 −5.3075 −5.3139
model 3 −5.4010 −5.3910 −5.3973
model 4 −3.9686 −3.9585 −3.9649
model 5 −4.2516 −4.2449 −4.2491
model 6 −3.9226 −3.9159 −3.9201
model 7 −5.3894 −5.3794 −5.3857
model 8 −3.3738 −3.3671 −3.3713
model 9 −5.3926 −5.3825 −5.3888
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of 1000 iteration, we simulate and plot the path
of proposed models. The comparisons between
the exact and simulated values are presented in
figure 1.
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Figure 1: Compare numerical simulation of
model 1 with real data
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Figure 2: Compare numerical simulation of
model 2 with real data
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Figure 3: Compare numerical simulation of
model 9 with real data
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Figure 4: Compare numerical simulation of
model 4 with real data
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Figure 5: Compare numerical simulation of
model 5 with real data
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Figure 6: Compare numerical simulation of
model 6 with real data
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Figure 7: Compare numerical simulation of
model 7 with real data
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Figure 8: Compare numerical simulation of
model 8 with real data
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Figure 9: Compare numerical simulation of
model 3 with real data

5 Comparision the models

After simulating the 9 models as presented in Ta-
ble 1, we compared them with each other. The
method of comparing the models with each other
is considered to be the criterion MSE , and the
results obtained for this criterion are presented in
Table 4. Finally, the top model should be intro-
duced. To select the best model, there are various
criteria that are presented in the following three
criteria of information.
In statistical modelling, the MSE can repre-
sent the difference between the actual observa-
tions and the observation values predicted by the
model. In this context, it is used to determine the
extent to which the model fits the data as well as
whether removing some explanatory variables is
possible without significantly harming the mod-
els predictive ability[10].
If Ŷ is a vector of n predictions, and Y is the vec-
tor of observed values corresponding to the inputs
to the function which generated the predictions,
then the MSE of the predictor can be estimated
by

MSE =
1

n

n∑
i=1

(Ŷi − Y )
2

(5.10)

Also, we used the metrics to choose the best
model. Information criteria embody two factors:
a term which is a function of the residual sum of
squares (RSS or MSE), and some penalty for the
loss of degrees of freedom as a result of adding
extra parameters. Hence, adding a new variable
or an additional lag to a model will have two
competing effects on the information criteria: the
residual sum of squares will fall but the value of
the penalty term will increase.
The objective is to choose a number of param-
eters which minimise the value of the informa-
tion criteria. Consequently, adding an extra term
will reduce the value of the criteria only if the
fall in the residual sum of squares is sufficient to
more than outweigh the increased value of the
penalty term. There are several different crite-
ria, which vary according to how stiff the penalty
term is. The three most popular information
criteria are Akaikes (1974) information criterion
(AIC), Schwarzs (1978) Bayesian information cri-
terion (SBIC), and the HannanQuinn criterion
(HQIC[5].
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Algebraically, these are expressed, respectively, as

AIC = ln(δ2) +
2K

T
(5.11)

SBIC = ln(δ2) +
K

T
ln(T ) (5.12)

HQIC = ln(δ2) +
2K

T
ln ln(T ) (5.13)

where δ2 is he residual variance (also equivalent to
the residual sum of squares divided by the num-
ber of observations, T ), K is the total number
of parameters estimated and T is the sample size.
A model with lower information criterion is a su-
perior model [5].

6 Conclusion

In this paper, various models for the simulation of
exchange rate fluctuations in Iran are investigated
and the EM approximation for numerical solution
of these SDEs are presented. The parameters of
models are estimated using the GMM estimator
with the EM scheme and MATLAB programing
with mean of 1000 iteration, we simulate and plot
the path of proposed models. These simulations
are compared to the proposed criteria. According
to the results of the criteria as shown in Table
5, the third model that has a logarithmic form
could be selected as the best model because of the
lowest amount of criteria. In the future work we
plan to find the option price for this model and
simulate the exchange rate volatility with jump
noise.
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