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Abstract

Our aim at this paper is to estimate the parameters of extended Burr XII (EBXII) based on k-
records with corrected bias. To get this goal maximum likelihood estimator (MLE) is applied and
bias correction for ML estimation is considered to get better and improved estimator. Numerical
results for comparison of performances of estimators are also presented.
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1 Introduction

Et X1, Xs,--- be a sequence of identically
L and independently random variables having
cumulative distribution function (CDF), F(x,#),
and probability density function (PDF), f(x,0),
where 6 could be a vector parameter. Record
values have been lots of attention since 1952 [5].
There are many references which have pointed
out record values such as [1], [2] and [3]. In some
special situations, second or third largest values
are needed, so usual upper record values are
inadequate. Upper k-record values are extension
of ordinary upper record values. There are some
papers and books which have introduced and
investigated k-records such as [3] and [12]. Let
Ty =k, Ry(x) = X1, and for n > 2 and let
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Tok) =
min{j : j > T 1), Xj > X1, )~ k41T 10 |

where X;.,, indicates ¢ — th order statistics in a
sample of size n. For n > 1, the sequence of upper
k-records is defined by R, ;) = XTn(k)—k+1:Tn<k)‘
Note that for £ = 1 the ordinary upper record
values can be recovered. The PDF of n — th
upper k-record value R, for n > 1 is given by

TG [T EO]T P =0
(1.1)

and joint pdf of Ry, Ro(ky, ---» Rp(r) 18 given by
f(ri,r, coyrm) = K™ F*(2,,))
7 f()
1L
i1 F@)

(1.2)

T < Ty < e < T
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Extended Burr XII has introduced by Shao [10] as
generalization of some well-known distributions.
Its PDF is as follows

o = () poa ()] k0 ]
= 56 -0} e=0 -
(13w |

also CDF of EBXII is given by
T\ %
F(zla,\e) = 1—{1—a<x)} , a#0

_ 1—exp{— (%)} a=0.

(1.4)

EBXII distribution has some interesting proper-
ties. As shown in figures 1 and 2, the mentioned
distribution has different shapes when parameters
take different values, so it yields a wide range of
skewness and kurtosis values. Detailed informa-
tion and surveys are included in [10], also [11]
studied different estimation methods for EBXII
distribution.

Estimation of unknown parameters is one of
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Figure 1: Density Function 1.1.

the important branches of statistics that contains
several methods, such as the method of moments,
MLE, Bayesian estimations, and etc. Among
these methods, an ML estimator is very common.
In many situations, ML estimator cannot be ex-
pressed in closed form and its expectation is dif-
ferent from real population parameter and bias
appears. Bias correction is a part of improving
estimator, and [4] considered analytic approxima-
tions to the bias of MLE of a one-dimensional pa-
rameter. In 1968 [8] introduced O(n~!) bias for-
mula in order to obtain analytic expression, and
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Figure 2: Density Function 1.2.

hence bias-corrected MLE in the multi-parameter
case. [7] re-expressed the bias-correction of [8].
More details can be found [6].

The structure of the paper is as follows. Section
(2) obtains MLE of EBXII and discusses its prop-
erties. Section (3) applies the bias correction of
MLE based on k-record values and enables us to
get the bias-corrected ML estimator. Section (4)
uses simulation studies to report the results in
the paper and compares them. Also, the appen-
dices contained in the paper included the neces-
sary computational expressions.

2 Maximum Likelihood Estima-
tion

Consider x = {x1,z2,...xm} be a vector of m
upper k-record values from sample of size n of
EBXII, then log-likelihood function is obtained
as follows:

L(x;a, A\, ¢) = mIn(k) + mIn(c) — meln()\)
+(c—1) Em:ln(mi) — zmjln <1 -« (%)3
i=1 i=1
+ gln (1 —a <x7m)c) . (25)

with a limit,

L(x;0,\,¢) =mln(k) + mIn(c) — mecln(N)
+ (c—1) Zln(mi) —k (me)c
1=1

Theorem 2.1. Let L be log-likelihood function of
m upper k-record values from EBXII (2.5), with

(2.6)
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Table 1: MLE and Corrected MLE.
MLE ‘ CMLE ‘
n k r - = ~ =
& A c & A ¢
(MSE) (MSE) (MSE) (MSE) (MSE) (MSE)
9 2.5837 1.9225 3.5786 2.4347 1.7817 4.2383
2 (0.5362) (0.4111) (0.4675) (0.0261) (0.1091) (0.2109)
10 5 2.5368 2.0223 3.485 2.6067 2.0302 3.4845
(0.5138) (0.5413) (0.5357) (0.0427) (0.0151) (0.0044)
9 2.4779 1.9944 3.3714 2.9521 3.6673 4.3135
6 (0.7462) (0.4519) (0.4599) (0.7808) (0.8336) (0.2324)
5 2.3883 2.0029 3.447 2.0383 1.9134 3.4506
(1.1132) (0.4098) (0.8005) (0.1846) (0.0432) (0.014)
9 2.4958 1.9936 3.4697 2.4307 1.9607 3.635
2 (0.2214) (0.1215) (0.2638) (0.0277) (0.0196) (0.0385)
50 5 2.4658 1.9923 3.501 2.4693 1.993 3.4968
(0.234) (0.1382) (0.2988) (0.0122) (0.0034) (0.0009)
9 2.5164 2.0056 3.5031 3.6747 2.2919 3.1888
6 (0.2278) (0.1194) (0.3101) (0.4699) (0.1459) (0.0888)
5 2.5173 2.0024 3.5602 2.5289 2.7247 3.3901
(0.2371) (0.1443) (0.3376) (0.8115) (0.8623) (0.8257)
9 2.5195 1.999 3.4916 2.4619 1.9709 3.6291
2 (0.0465) (0.0242) (0.0492) (0.0152) (0.0145) (0.0369)
1000 5 2.5008 1.9976 3.5118 2.5036 1.9983 3.5076
(0.0533) (0.0322) (0.0689) (0.0014) (0.0008) (0.0021)
9 2.4856 2.0013 3.4935 3.2636 2.1986 3.2309
6 (0.0548) (0.0298) (0.0635) (0.3054) (0.0993) (0.0768)
5 2.4987 2.004 3.5094 2.9119 2.1602 3.9501
(0.0594) (0.0337) (0.0645) (0.7647) (0.0801) (0.7003)

CDF (1.]) then as a — 0 we get,

g2 (3) 5 ()"

1=

Proof. The proof is available at the appendix (A).
O

L(x;0, ), ¢) is log-likelihood function of Weibull
distribution from k-records. As we have seen the
range of X varies according to the sign of «, so it
is important to determine the sign of it. In order
to set the sign, a criterion defined by [9] and [13]
is being used. The Maclaurin expansion of (2.5)
is also applied to get this goal as follows. Let

L(X;0) = L(z;0,\,¢) + Az, A, c)a + O{k?},

where, Az X 0) = Y (5)° = § (50) . As-
suming that (), é) be ML estimates of Weibull
distribution, defining A(x;\,¢) = A, it can be

concluded, if A > 0, then & > 0, and if A < 0,
then & < 0, however in the case of A = 0, indi-
cates the Weibull fitting.

Using (B.14-B.16) from appendix (B) and
equating them to the zero, ML estimators will
be obtained. However exact solutions are not
reachable so we apply Newton-Raphson as nu-
merical method. Also using expressions (B.17-
B.22) in the appendix (B) expected Fisher infor-
mation matrix is given by

(B.17)
(B.20)
(B.21)

(B.20)
(B.18)
(B.22)

(B.21)
(B.22)
(B.19)

1(Olr) = n @

ML estimations well behaved for sample sizes
sufficiently large, but in the case of smaller sam-
ple size, we will faced with biased estimator. To
reduce the bias of estimator a biased-correction
method is employed.



3 Biased Correction of MLE

Let 1(©) be log-likelihood function of p-
dimensional unknown parameters © =
(01,02,---,01,)/ based on n observations. As-

suming E be expectation operator, the joint
cumulants of the derivatives of [(©) are as
follows

0?1 o
EZJ_E|:80280]:|7 fOT Z7]_1727"'7p7 (38)
E—EL fori,j,v=1,2
1Jv 80z80J801; ) yJ, U= 1,24, » Dy

(3.9)

0?1 ol .
Eijﬂ} =E [(89189]> <89v>:| ) fOT 1,7,V = 1727"'

and the derivatives of cumulates are given by

E}; = a;;j, fori,j,v=1,2,---,p.
All the F expressions are assumed to be
O(n).  Fisher information matrix of © for
i,j =1,2,---,p are indicated as K = [-Ej;]. [§]
showed that for independent observations but
not necessarily identically distributed, the bias
of s — th element of MLE of O, (@) could be

written as

(3.11)

Bias (@s) =

p p
)33 DI CENRE
i=1 j=1v=1

+ O(n2),s=1,2,---,p, (3.12)

where E¥ is (i, j)th element of inverse Fisher in-
formation matrix. Also [7] showed that (3.12)
continues to be valid for non-independent obser-
vations provided that all E's are O(n), and re-
constructed (3.12) up to order O(n~1) as

Bias (@5) =K L Avec (K™)+0(n?),
(3.13)
where vec (K‘l) is an operator that creates a
column vector obtained by stacking the columns

of K1 and where A = [A(1)|A(2)||A(P)]’
with A®) = [ag})} having its (i,j) — th ele-

ment defined by al(;-)) = EZ(;) — %Eijfu for i,j,v =
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1,2,---,p. The biased-corrected MLE which is
denoted by O“MLE ig given by OCMLE —  —
K-1. A.vec (K‘l), where © is the MLE of the

unknown parameter vector O, K = Klo_g» A=
Alg_g- The derivatives of log-likelihood function
with respect to unknown parameters «a, A, c are
given in appendix (B), also using (3.8-3.11) and
relations (D.35-D.37) in appendix (D), another
terms needed to obtain bias reduction expression
are presented in appendix (C).

4 Simulation Study

At this section simulation study is employed to
’cpdmpare performances of presented methods by
numerical results. Different values of sample size,
record number, K value have been used to obtain
several results for comparison of performances of
MLE and bias corrected results. Therefore sam-
ple sizes n=10, 50 , 1000 is used. Also K=2,6 and
r=2, 5 is applied as k values and record numbers.
In order to get precise results, the simulation has
replicated 10000 times. For simulation MATLAB
2019b is used. Based on the results in the table
1 corrected MLE method performs better than
MLE method. As in most cases the MSE of cor-
rected MLE is lower than the MSE of MLE.

Appendices
A  Proof of Theorem

Defining B as I’Hospital’s rule equality symbol.
By differentiating with respect to a from (2.5)
and then calculating its limit as a« — 0 we get

since,
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Using L’Hospital’s rule we get
m(ima(p)) | ()

« 1—of
lim o(3) =
a—0 «

lim 5
a—0 [

desired result provided by using L’Hospital’s rule
twice again.

B Derivatives

We define G := (\,¢), H = H(X;,)\) = i,
W = W(X;,G) = H® and D := D(X;,G,a) =
1 — oW, and suppose ¢t and s be integers. First
order derivatives of log-likelihood function with
respect to unknown parameters is calculated as

m

ol W; k k Wi,

ol me  ac~=W; ckW,,

— = —— = — —_—+ —— B.1

oA A A ; D; A D,,’ (B.15)
o m @
e o mln(\) + ; In(z;)
" Wiln(H;) Wy In(H,y,)

+a; T wa— (B.16)

Higher order partial derivatives of log-likelihood
function are also computed as follows

2 m N\ 2
ol — Z <WZ> _ %m(pm)
i=1

oo D; o3
T g&—fé(&f, (B.17)
9%l _ mc | ac W; achm
N2 N 24D, TN D
- b Sp Gw
g _:;mgwi(lng»)?
kW, <lngfn’">> : (B.19)

9%l c W, ac W; 2
Badr _AZZ-_AZ<D'>

33l
Oa3

: (B.23)

3a02mI/V,~
N L2

i=1 i=1
ac® & Wy, + aW?2 2c2k W,

X & Dj A% Dy,
3 W |k W + oW
D2 X D3

2a¢ ¢~ Wi

+ (B.24)

3
ﬂ:%+

L Ind(H) pem o (In(H;)\?
aZWi ) + 2a ZWZ (Dz —
=1

2
i=1 i
In®(H,,) o (In(H,,)

m

>3 ,(B.25)

931 _
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A = D?
_ ?ggln(fﬂ) - 20/4\%;2 ‘gg
x  In%(H;) + ifiggjl 2(Hp)
+ffﬁgl(m@+2?wg§
x  In%(H,y). (B.32)

C Cumulants

kn(_l)nfl
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£t
X [\I/(t+1)—\ll<z+t—s+1>
- ()]},

(D.36)

Wt 3 k(=1 n—1
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o1 k
amlﬁG+La‘Q
k 2
X {[\P(t+1)—\1!(—s+t+l)]
«
! ! k
+ WU+l -V <a—s+t+1>

~ 2In(a) [\If(t+1)—\1/(];—s+t+l)]

+ o n*(e)}. (D.37)

A
al/c
E(Xpu) = /0

using change of variable

1),

it can be shown that
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