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Abstract

In this paper, the capacitated location-routing problem with fuzzy demands (CLRP-FD) is considered.
The CLRP-FD is composed of two well-known problems: facility location problem and vehicle routing
problem. The problem has many real-life applications of which some have been addressed in the
literature such as management of hazardous wastes and food and drink distribution. In CLRP-FD, a
set of customers with fuzzy demands should be supplied by a fleet of vehicles that start and end their
tours at a single depot. Moreover, the vehicles and the depots have a limited capacity. To model
this problem, a fuzzy chance-constrained programming is designed based on fuzzy credibility theory.
To solve the CLRP-FD, a hybrid heuristic algorithm (HHA) including two main phases is proposed.
In the first phase, an initial population of solutions is generated by the greedy clustering method
(GCM) obtained from the literature of the problem, while in the second phase, a genetic algorithm
is applied for further improvement of the solutions of first phase. While the first phase of the HHA
consists of four steps, the second phase includes two main steps. To achieve the best value of the
major parameter of the model, named dispatcher preference index, and to analyze its influence on the
changes of the final solution, numerical experiments with different sizes on the number of customers
and candidate depots are carried out. The computational results show that the HHA is efficient so
that it has improved all solutions that obtained from the GCM. Finally, performance of the proposed
model to the similar model exists in the literature is evaluated by several standard test problems of
the CLRP.

Keywords : Capacitated location-routing problem; Fuzzy demand; Credibility theory; Stochastic sim-
ulation; Fuzzy-chance constrained programming; Genetic algorithm.
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1 Introduction

E
ver increasing demand of customers to receive
their desired products with less waiting time
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and competitive prices, make the logistics as the
main problem in supply chain management. In
recent years, efficient, reliable, and flexible de-
cisions on location of depots and vehicle rout-
ings are of vital importance to managers [23, 57].
Many researchers indicated that if the routes are
ignored while locating the depots, the costs of dis-
tribution systems might be immoderate [22, 42].
At the first attempt, Salhi and Rand [44] showed
that solving the location problem without route
consideration may lead to a sub-optimal solution.
The location-routing problem (LRP) overcomes
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this drawback through making the location and
routing decisions, simultaneously. The LRP is
defined as a facility location problem (FLP) that
solves the vehicle routing problem (VRP), simul-
taneously [26, 47]. Since both problems belong
to the class of NP-hard problem, the LRP is
also an NP-hard problem [4, 6, 60]. The LRP
is applicable for a wide variety of fields such as
food and drink distribution, newspapers delivery,
waste collection, bill delivery, military applica-
tions, parcel delivery and various consumer goods
distribution, etc. [29, 45]. In the capacitated
location-routing problem (CLRP), the problem
is limited with the vehicles and the depots’ ca-
pacities to supply the customers. Furthermore,
the customers must only be supplied by a single
vehicle which means that the vehicle meets ev-
ery customer in a tour only once. A homogenous
fleet of vehicles transports the products with spe-
cific capacity from depots to the customers and
returns there as soon as finishing the entire tour.
The objectives in the CLRP are to determine the
location of depots and a set of customers to be
assigned to each depot as well as the distribution
routes [9, 32, 38]. Since the CLRP is an NP-
hard problem, some authors have employed ap-
proximation heuristic algorithms for solving that
[30, 54]. In this kind of problems, the solution
time increases exponentially as with an increase
in the size of the problem, while an exact algo-
rithm is applied to solve them. For this reason,
most papers in the field of CLRP have only fo-
cused on new solution methods that are often
based on heuristic or meta-heuristic approaches
[36]. Some reviews on solution methods of the
CLRP exist in literature that can be found in
[12, 13, 34, 43].

Nagy and Salhi [34] classified the heuristics
into four different types as follows: sequential,
clustering-based, iterative, and hierarchical. Se-
quential methods solve the location problem by
minimizing the sum of facility to customer dis-
tance and the routing problem based on the
selected depots sequentially. Clustering-based
methods partition the customers into clusters
and then find a depot for each cluster [46, 4].
The VRP is then solved for each cluster. It-
erative methods decompose the LRP into two
sub-problems. Then, sub-problems are solved it-
eratively by feeding information from one sub-
problem to the other [53, 40, 13]. Hierarchical

methods consider the location problem as the
main problem and the VRP as a subordinated
problem [33, 1].

Many heuristics that hybrid two different
heuristic approaches are proposed in the litera-
ture of the LRP. Since this study uses a two-phase
approach to solve the problem, the similar works
are summarized as follows:

Tuzun and Burke [50] proposed a two-phase
tabu search (TS) approach for the LRP. One
phase seeks a good facility configuration while the
other one obtains a good routing for this config-
uration. Wu et al. [53] presented a combined
TS and simulated annealing (SA) decomposition
approach to solve the multi-depot location rout-
ing problem with multiple fleet types and lim-
ited number of vehicles for each vehicle type. Lin
et al. [27] developed a meta-heuristic approach
based on threshold accepting (TA) and SA to as-
sist in making decisions of facility location, vehi-
cle routing and loading decision for bill delivery
services in Hong Kong. Albareda-Sambola et al.
[1] proposed another two-phase TS heuristic for
the LRP which incurs not capacity constraints on
vehicles. Wang et al. [52] proposed a two-phase
hybrid heuristic which decomposes the LRP into
location–allocation problem and vehicle routing
problem. In the location phase, the TS was ap-
plied to obtain the configuration of facility loca-
tions. For each selected facility location, a vehicle
routing problem was solved by ant colony opti-
mization (ACO) in the routing phase. Bouhafs et
al. [7] proposed a hybrid algorithm which com-
bined the SA and ant colony system (ACS) to
solve the CLRP. A good configuration of facilities
was first found by the SA, and then the ACS was
applied to construct the routings based on the
configuration. These two ACO-related heuristics
construct the routing problem and feedback the
information for the facility selection phase.

Prins and his coworkers conducted different
heuristic methods to the LRP [38]. They com-
bined greedy randomized adaptive search proce-
dures (GRASP) and path relinking to develop a
two-phase algorithm for the CLRP. In the first
phase, the GRASP and a learning process were
implemented to select depots. The second phase
was to generate new solutions using a path re-
linking. Later, Prins et al. [39] presented a
memetic algorithm with population management
(MA) to solve the same problem. Prins et al.
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[40] proposed a cooperative approach, which com-
bines the Lagrangean relaxation and granular
tabu search (GTS), to solve the CLRP. The algo-
rithm alternates between a location sub-problem,
solved by Lagrangean relaxation, and a multi-
depot VRP, solved by the GTS. Duhamel et al.
[13] presented a GRASP with evolutionary lo-
cation search (GRASP-ELS) approach for the
CLRP. Barreto et al. [4] integrated several hi-
erarchical and non-hierarchical clustering tech-
niques in a sequential heuristic algorithm. Mari-
nakis and Marinaki [30] developed a hybrid al-
gorithm, which combined the particle swarm op-
timization (PSO), multiple phase neighborhood
search-greedy randomized adaptive search proce-
dure (MPNS-GRASP), the expanding neighbor-
hood search (ENS) and path relinking, to solve
the LRP. Yu et al. [54] proposed a simulated an-
nealing algorithm to solve the LRP. The LRP is
generally considered as a deterministic case in the
literature. A few researches have addressed fuzzy
versions of the LRP [12]. Recently, fuzzy logic has
been used to model many different problems. The
need to use fuzzy logic in problems arises when-
ever there are some vague or uncertain param-
eters. Credibility theory has already been used
in many problems with fuzzy parameters, in par-
allel with some meta-heuristics. In the CLRP,
some papers have been done with fuzzy vari-
ables and credibility theory so far. The work of
Zarandi et al. [58] was the first attempt to model
the CLRP with fuzzy variables, using credibil-
ity theory. They investigated a CLRP in which
the travel time between every pair of nodes was
a fuzzy variable. A simulation-embedded simu-
lated annealing (SA) procedure was proposed in
order to solve the problem. They tested the pro-
posed method using standard test problems of the
CLRP, and the results showed that their method
was robust and could be used in real-world appli-
cations. In the second work, Fazel Zarandi et al.
[57] considered the LRP with time windows un-
der uncertainty. It was assumed that demands of
customers and travel times are fuzzy variables.
In their work, a fuzzy chance-constrained pro-
gramming model was designed using credibility
theory and a simulation-embedded SA algorithm
was presented in order to solve the problem.
To initialize solutions of SA, a heuristic method
based on fuzzy c-means clustering with Maha-
lanobis distance and a sweep method were em-

ployed. They attested that the proposed solution
approach was effective and robust. In third work,
Zare Mehrjerdi and Nadizadeh [59] considered
the CLRP with fuzzy demands. They modeled
the problem with a fuzzy chance-constrained pro-
gramming based on the fuzzy credibility theory.
To solve this problem, a greedy clustering method
(GCM) including the stochastic simulation was
proposed. In the GCM, iterative and clustering-
based approaches were used to solve the problem.
To obtain the best value of the dispatcher pref-
erence index of the model numerical experiments
were carried out. Consequently, to show the per-
formance of their proposed method, associated
results were compared with the lower bound of
the solutions. In work of Nadizadeh and Hosseini
Nasab [31], the dynamic capacitated location-
routing problem with fuzzy demands (DCLRP-
FD) was considered. In the DCLRP-FD, facility
location problem and vehicle routing problem are
solved on a time horizon. Decisions concerning
facility locations are permitted to be made only
in the first time period of the planning horizon
but, the routing decisions may be changed in each
time period. It was assumed that the demands
of customers were fuzzy variables. To model
the DCLRP-FD, a fuzzy chance-constrained pro-
gramming was designed based upon the fuzzy
credibility theory. To solve this problem, a hy-
brid heuristic algorithm (HHA) with four phases
including the stochastic simulation and a local
search method were proposed. The efficiency of
the HHA was demonstrated via comparing with
the lower bound of solutions and by using a stan-
dard benchmark set of test problems. The nu-
merical examples showed that the proposed algo-
rithm was robust and could be used in real world
problems. In this paper, the CLRP with fuzzy de-
mands (CLRP-FD) is considered. Since the infor-
mation about demand of each customer is often
not precise enough, customer demand is assumed
as a fuzzy number. As an example, based on
business experience, it can be concluded that de-
mand of a customer is “around 50 units”, usually
“between 20 and 60 units”, etc. For this reason,
there is not enough data to be used to fit a prob-
ability distribution on the demand of customers
in most real applications. On the other hand,
based on the expert’s judgment, one can easily
estimate the demand of customers. Therefore,
while using probability theory is cumbersome and
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costly, fuzzy logic is worthwhile in these prob-
lems. As a result, the fuzzy set theory provides
a convenient alternative framework for modeling
real-world systems mathematically and offers sev-
eral advantages to the use of heuristic approaches
[3]. More precisely, some reasons for choosing
fuzzy variables instead of probabilistic function
in the customers’ demands are as follows:

1. The stochastic-probabilistic theory requires
significant knowledge about the statistical
distribution of the uncertain parameters. In
contrast, fuzzy theory provides an efficient
way to model imprecision even when no his-
torical information is available.

2. The use of stochastic-probabilistic theory in-
volves extensive computation and requires
complete knowledge on the statistical distri-
bution of the uncertain time-varying param-
eters.

3. Fuzzy theory enables the use of fuzzy rules
in heuristic algorithms.

4. Instead of optimizing the average behaviors,
as in stochastic-probabilistic theory, fuzzy
theory rather aims to find solutions where
all constraints are satisfied to some extent
with a sufficient level of confidence.

This paper contributes to the CLRP-FD in
the following directions: (a) a fuzzy-chance con-
strained programming (FCCP) is proposed based
on credibility theory to model the problem which
is slightly different from what previously investi-
gated by researchers; (b) a hybrid heuristic algo-
rithm (HHA) is integrated with stochastic sim-
ulation to solve the problem; (c) the sensitivity
analysis on the dispatcher preference index of the
model is carried out; (d) the performance of the
proposed model and the efficiency of the HHA
are compared with both a commercial solver and
a conventional approach by some numerical ex-
amples. It is of interest to notice that, the HHA
consists of two main phases and uses two well-
known algorithms, ant colony system and genetic
algorithm, which their efficiency have shown in
solving the location-routing problems [10, 48].

The remainder of this paper is organized as fol-
lows: In Section 2, some basic concepts of the
fuzzy theory are given. Section 3 introduces the
CLRP-FD and presents a FCCP model using the

credibility theory. Details of the HHA to solve
CLRP-FD are presented in Section 4. In Section
5, some numerical experiments are given to re-
veal the performance of the model and proposed
HHA. In the final section, the conclusion remarks
of the paper are presented.

2 Fuzzy credibility theory

The concept of the fuzzy set was initiated by
Zadeh [55] via the membership function. Then
it has been well developed and applied in a wide
variety of real problems. In order to measure a
fuzzy event, the term fuzzy variable was intro-
duced by Kaufmann [24], and then Zadeh [56]
proposed the possibility measure theory of fuzzy
variable. Although, possibility measure has been
widely used, it has no self-duality property. How-
ever, a self-dual measure is absolutely necessary
in both theory and practice. In order to define a
self-dual measure, a modified form of the possi-
bility theory called credibility theory was founded
by Liu [28] and has been recently applied by many
scholars all around the world. Before proceed-
ing with development of a fuzzy model for CLRP
with credibility theory, a brief introduction to ba-
sic concepts and definitions used in this paper is
presented as follows:

Let Θ be a non-empty set, and P the power
set of Θ. Each element in P is called an event,
and ϕ is an empty set. In order to present an
axiomatic definition of possibility, it is necessary
to assign a number Pos{A} to each event A,
which indicates the possibility that A will occur.
To ensure that the number Pos{A} has certain
mathematical properties, the following four
axioms are approved [28]:

Axiom 2.1. Pos{Θ} = 1;

Axiom 2.2. Pos{ϕ} = 0;

Axiom 2.3. For each Ai ∈ p(Θ), Pos{
∨
Ai} =

supremumi Pos{Ai};
Axiom 2.4. If Θi is a non-empty set, and the
set function Posi{}; i = 1, 2, . . . , n, satisfies
above three axioms, and Θ = Θ 1 × Θ 2× ...

× Θ n, then for each A ∈ p(Θ), Pos{A} =
supremum(θ1,θ2,...,θn)∈A Pos1 {θ1}

∧
Pos2{θ2}

∧
... Posn{θn}.

The above four axioms form the basis of cred-
ibility measure theory such that all concepts of
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credibility theory can be obtained from them [28].

Definition 2.1 Let (Θ, P(Θ), Pos) be a possi-
bility space, and A be a set in p(Θ), then the ne-
cessity measure of A is defined by Nec{A} = 1 –
Pos{Ac}, that Ac is the complement of event A.

Definition 2.2 Let (Θ, P(Θ), Pos) be a possi-
bility space, and A be a set in p(Θ), then the
credibility measure of A is defined by Cr{A} = 1

2
(Pos{A} + Nes{A}).

Considering definition 2.2, the credibility of a
fuzzy event is de?ned as the average of its pos-
sibility and necessity. The credibility measure is
self-dual. A fuzzy event may fail even though
its possibility achieves 1, and holds even though
its necessity is 0. However, the fuzzy event must
hold if its credibility is 1, and fails if its credi-
bility is 0. In fact, the law of credibility plays a
role similar to what plays the role of probability
in measurement theory for ordinary sets [15].

Now let consider a triangular fuzzy variable d̃
= (d1, d2, d3) for demand of a customer, d̃ is
described by its left boundary d1, and its right
boundary d3. In other word, the dispatcher or
manager can subjectively estimate, based on his
experience or available data, the demand of a cus-
tomer will not be less than d1 and greater than
d3. The value of d2 corresponding to a grade
of membership of 1 can also be determined by
a subjective estimate. If the actual demand of a
customer is considered by r, the possibility, neces-
sity and credibility are easily obtained as follows
[14]:

Pos {d̃ ≥ r} =


1, if r ≤ d2
d3−r
d3−d2

, if d2 ≤ r ≤ d3
0, if r ≥ d3

(2.1)

Nec {d̃ ≥ r} =


1, if r ≤ d1

d2−r
d2−d1

, if d1 ≤ r ≤ d2
0, if r ≥ d2

(2.2)

Cr {d̃ ≥ r} =


1, if r ≤ d1
2d2−d1−r
2(d2−d1)

, if d1 ≤ r ≤ d2
d3−r

2(d3−d2)
, if d2 ≤ r ≤ d3

0. if r ≥ d3
(2.3)

3 Problem description and
FCCP model for the CLRP-
FD

In the CLRP, demand of each customer should be
supplied by a single vehicle and the total demand
of customers in each route must not exceed the
capacity of the vehicle. The vehicles start and
end to the same depot, and total demand of the
allocated customers must be less than or equal to
the capacity of the depot. The objective of the
problem is to minimize the total cost including
opening costs of depots and routing costs.

In the CLRP-FD, in addition to the above as-
sumptions, the demand of each customer is a tri-
angular fuzzy number such as d̃ = (d1, d2, d3).
To model the problem with credibility theory, the
fuzzy number representing demand of the j th cus-
tomer is denoted by d̃j = (d1j , d2j , d3j). Let the
vehicles have equal capacity denoted by Q. After
serving the first k customers, the available load of
the vehicle will equal Qk = Q−

∑k
j=1 d̃j in which

Qk is also a triangular fuzzy number by using the
rules of fuzzy arithmetic, and

Qk =

Q−
k∑

j=1

d3j , Q−
k∑

j=1

d2j , Q−
k∑

j=1

d1j

 =

(q1,k, q2,k, q3,k).

The credibility that the next customer demand
does not exceed the remaining load of the vehicle
can be obtained as follows:

Cr = Cr
{
d̃k+1 ≤ Qk

}
= (3.4)

Cr {(d1,k+1 − q3,k, d2,k+1 − q2,k, d3,k+1 − q1,k) ≤ 0}

Cr
{
d̃k+1 ≤ Qk

}
=

0, if d1,k+1 ≥ q3,k
q3,k−d1,k+1

2∗(q3,k−d1,k+1+d2,k+1−q2,k)
,

d1,k+1 ≤ q3,k, d2,k+1 ≥ q2,k

d3,k+1−q1,k−2∗(d2,k+1−q2,k)
2∗(q2,k−d2,k+1+d3,k+1−q1,k)

,

d2,k+1 ≤ q2,k, d3,k+1 ≥ q1,k
1. d3,k+1 ≤ q1,k

(3.5)

Similarly, let the capacity of candidate depots be
equal and denoted by P. After allocating k cus-
tomers to a depot, the inventory level of the depot
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will equal Pk = P −
∑k

j=1 d̃j in which Pk is also
a triangular fuzzy number by using the rules of
fuzzy arithmetic, and

Pk =

P −
k∑

j=1

d3j , P −
k∑

j=1

d2j , P −
k∑

j=1

d1j


= (p1,k, p2,k, p3,k)

The credibility that the next allocated customer
demand does not exceed the inventory level of the
depot can be shown as follows:

Cr = Cr
{
d̃k+1 ≤ Pk

}
= (3.6)

Cr{(d1,k+1−p3,k, d2,k+1−p2,k, d3,k+1−p1,k) ≤ 0}

Cr
{
d̃k+1 ≤ Pk

}
=

0, d1,k+1 ≥ p3,k
p3,k−d1,k+1

2∗(p3,k−d1,k+1+d2,k+1−p2,k)
,

d1,k+1 ≤ p3,k, d2,k+1 ≥ p2,k

d3,k+1−p1,k−2∗(d2,k+1−p2,k)
2∗(p2,k−d2,k+1+d3,k+1−p1,k)

,

d2,k+1 ≤ p2,k, d3,k+1 ≥ p1,k

1. if d3,k+1 ≤ p1,k

(3.7)

There is no doubt that if the level of remaining
goods in the vehicle is high and the demand at the
next customer is low, then the vehicle’s chance
of being able to serve the next customer become
greater. This means that the greater the differ-
ence between available goods and demand of the
next customer, the greater preference to send the
vehicle to serve the next customer. According to
formulation (3.5), the preference index denoted
by Cr, indicates the magnitude of the preference
for sending the vehicle to the next customer after
serving the current customer. It is obvious that
Cr ∈ [0, 1].When Cr = 0 driver is completely
sure that he should return to the depot. When Cr
= 1, the driver is absolutely certain that he can
serve the next customer by the remaining goods
in the vehicle. Let the dispatcher preference index
denoted by Cr∗, where Cr∗ ∈ [0,1]. So, accord-
ing to the Cr∗ and the credibility that the next
customer demand does not exceed the remaining
capacity of the vehicle, a decision must be made
either to send the vehicle to the next customer
or to return that to the depot. Thus, if relation
Cr = Cr∗ is fulfilled, then the vehicle should be

sent to the next customer; otherwise, the vehi-
cle should be returned to the depot, and send it
back again to the next customer after reloading
sufficient goods. The process does not terminate
until all the customers’ demands are fulfilled.

Similarly, in formulation (3.7) if the inventory
level of depot is high and the demand of the next
customer being low, then the depot’s chance of
being able to serve the next customer become
greater. This means that the greater the differ-
ence between the available capacity of the depot
and the demand of the next customer, the greater
the preference to allocate the next customer to
the depot for receiving service. The preference
index is denoted by Cr, and Cr ∈ [0,1]. When
Cr = 0, then the depot manager is completely
sure that he should not accept supplying the next
customer. On the other hand, when Cr = 1, the
depot manager is absolutely certain that he can
serve the next customer. Let the assignment pref-
erence index for allocating customers to a depot
denoted by Cr∗∗, Cr∗∗ ∈ [0, 1]. So, regarding to
the Cr∗∗ and the credibility that the next cus-
tomer’s demand does not exceed the remaining
capacity of the depot, a decision must be made
either to allocate the customer to the current de-
pot or to supply it by the next opened depot.
Thus, if the relation Cr = Cr∗∗ is fulfilled, then
the depot should serve the next customer; oth-
erwise, the customer should receive service from
another opened depot. This procedure does not
end until all the customers are allocated.

Furthermore, the vehicle routes (or planned
routes) are designed in advance by applying the
proposed heuristic method. But, the actual value
of demand of a customer is only known when the
vehicle reaches the customer. Due to demand un-
certainty of the customers, a vehicle might not
be able to serve a customer once it arrives there
because of insufficient capacity. When this is the
case, the vehicle returns to the depot to reload it-
self and then returns to the customer where it had
a “failure” and continues its service for the rest
of the planned route. This arises an additional
distance because of route failure. Hence, an ad-
ditional distance is considered for the vehicle due
to the “failure” happened at a customer’s loca-
tion along the route, while evaluating the planned
route [25].

Both parameters Cr∗ and Cr∗∗ which are em-
pirically determined, have an extremely great im-
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pact not only on the total length of the planned
routes but also on the additional distances. For
example, lower values of parameter Cr∗ express
the dispatcher’s desire to use vehicle capacity as
much as possible. These values result in shorter
planned distances. But lower values of param-
eter Cr∗ increase the number of circumstances
where a vehicle meets a customer but is unable
to serve that, thereby the total distance travelled
by the vehicle is increased due to the “failure”.
On the other hand, higher values of parameter
Cr∗ are characterized by less utilization of vehi-
cle capacity along the planned routes and fewer
additional distances to travel due to failures. So,
the sensitive parameters Cr∗ and Cr∗∗ signifi-
cantly influence the sum of planed route lengths
and additional distances and their proper values
should be given by the decision maker to model.
In this work, some numerical experiments were
performed to compute the Cr∗, through solving
several instances of capacitated location-routing
problem.

The following notations are used to represent
the mathematical programming formulation for
the CLRP-FD.
Sets and parameters:

I : Set of candidate depots indexed by i and
I = {1, 2, ...,M}, that M is the number of
candidate depots.
J : Set of customers indexed by j and
J = {1, 2, ..., N}, that N is the number of
customers.
V : Set of all points: V = I ∪ J and
V = {1, 2, ...,M,M + 1,M + 2, ...,M +N}.
K : Set of vehicles indexed by k.
E : Set of arcs (i, j ) connecting every pair of
nodes i, j ∈ V.
d̃j : Fuzzy demand of customer j.
Oi: Opening cost of the depot at candidate site
i.
Fk: Fixed cost of employing the vehicle k.
P : Capacity of depots. It is assumed that all
depots have equal capacity.
cij : Cost of traveling associated with arc (i, j ) ∈
E.
Q : Capacity of vehicles; It is assumed that all
vehicles are homogeneous.
fk: Additional distances traveled by vehicle k.

Decision variables:

Zi =

{
1 if the depot at candidate site i is opend
0 otherwise

Yij =


1 if demand at customer j is served by

the depot located at candidate site i
0 otherwise

Xijk =


1 if vehicle k goes directly from

customer i to customer j
0 otherwise

Ujk= Auxiliary variables for sub-tour elimination con-

straints in route k. The corresponding fuzzy
chance-constrained programming (FCCP) math-
ematical formulation of the CLRP-FD based on
credibility theory is given by:

Minimize
∑
i∈I

OiZi +
∑
i∈I

∑
j∈J

∑
k∈K

FkXijk

+
∑
i∈V

∑
j∈V

∑
k∈K

cijXijk

(3.8)

Minimize
∑
k∈K

fk

(3.9)
Subject to

Cr

∑
i∈V

∑
j∈J

d̃jxijk ≤ Q

 ≥ Cr∗ ∀ k ∈ K

(3.10)

Cr

∑
j∈J

d̃jYij ≤ PZi

 ≥ Cr∗∗ ∀ i ∈ I

(3.11)∑
i∈V

∑
k∈K

Xijk = 1 ∀ j ∈ J

(3.12)

Ulk−Ujk+Nxljk ≤ N−1 ∀ l, j ∈ J ; ∀ k ∈ K
(3.13)∑

j∈V
Xijk−

∑
j∈V

Xjik = 0 ∀ i ∈ V ; ∀ k ∈ K

(3.14)∑
i∈I

∑
j∈J

Xijk ≤ 1 ∀ k ∈ K

(3.15)∑
u∈J

Xiuk +
∑

u∈V \{j}

Xujk ≤ 1 + Yij

∀ i ∈ I; ∀ j ∈ J ; ∀ k ∈ K (3.16)

Zi ∈ {0, 1} ∀ i ∈ I
(3.17)

Yij ∈ {0, 1} ∀ i ∈ I; ∀ j ∈ J
(3.18)

Xijk ∈ {0, 1} ∀ i ∈ V ; ∀ j ∈ V ; ∀ k ∈ K
(3.19)
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Table 1: The relative values of two test instances.

No. of No. of potential sites Vehicle capacity Depot capacity Fixed cost Fixed cost
customers of depots of vehicles

30 5 300 900 50 10

100 7 800 10000 50 10

Table 2: The average of results with different Cr∗ when the number of customers is 30.

Cr* Planned Additional Routing Depot Vehicle Total CPU Time (second)

routes distances costs costs costs costs

0.1 643.8 215 858.8 150 30 1038.8 790

0.2 655 201.7 856.7 150 30 1036.7 736

0.3 686.1 180.5 866.6 150 40 1056.6 620

0.4 699.9 150.4 850.3 200 40 1090.3 451

0.5 760.8 101.3 862 200 50 1112 400

0.6 750.1 60.4 810.5 150 50 1010.5 477

0.7 810.4 13.1 823.5 150 60 1033.5 370

0.8 868.2 2.7 870.9 150 70 1090.9 372

0.9 890.6 0 890.6 150 80 1120.6 342

1 905.9 0 905.9 150 80 1135.9 274

Table 3: The average of results with different Cr∗ when the number of customers is 100.

Cr* Planned Additional Routing Depot Vehicle Total CPU Time (second)

routes distances costs costs costs costs

0.1 951.8 299.3 1251.1 50 50 1351.1 13019

0.2 954 320.1 1274.4 50 50 1374.4 10019

0.3 987.7 323.7 1311.4 50 60 1421.4 9243

0.4 1000.3 319.7 1320 50 60 1430 7649

0.5 1091.4 235 1326.8 50 70 1446.8 6530

0.6 1145 60.7 1206 50 80 1336 5738

0.7 1215.4 14.6 1230 50 90 1370 4865

0.8 1243.4 0.4 1243.8 50 100 1393.8 4559

0.9 1300.5 0 1300.5 50 110 1460.5 4415

1 1397.5 0 1397.5 50 110 1557.5 3633

U t
jk

∈ {N ∪ 0} ∀ j ∈ J ; ∀ k ∈ K; ∀ t ∈ T
(3.20)

The objective function (3.8) represents sum of
the fixed depot location costs, fixed costs of em-
ploying vehicles, and travel costs, respectively.
The objective function (3.9) seeks to minimize
total additional travel distance due to routes’ fail-

ure. Note that, the second objective function
value is computed by stochastic simulation algo-
rithm described in section 4.1.1. Chance con-
straints (3.10) and (3.11) assure that all cus-
tomers are visited in accordance with the ve-
hicle capacity and are allocated within the de-
pot capacity with credibility of Cr* and Cr**,
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Table 4: Comparison of results between two solving approaches for the CLRP-FD.

Cr* 30 customers 100 customers

GCM HHA Gap (%) GCM HHA Gap (%)

0.1 1044.1 1038.8 -0.5 1373.5 1351.1 -1.6

0.2 1048.6 1036.7 -1.1 1411.9 1374.4 -2.7

0.3 1074.2 1056.6 -1.6 1475.1 1421.4 -3.6

0.4 1105.7 1090.3 -1.4 1483.6 1430 -3.6

0.5 1131 1112 -1.7 1479.4 1446.8 -2.2

0.6 1023.9 1010.5 -1.3 1362.3 1336 -1.9

0.7 1048.3 1033.5 -1.4 1384.9 1370 -1.1

0.8 1107.3 1090.9 -1.5 1413.3 1393.8 -1.4

0.9 1128.4 1120.6 -0.7 1484.3 1460.5 -1.6

1 1148.3 1135.9 -1.1 1579.7 1557.5 -1.4

Ave. -1.2 -2.1

Table 5: The summarized results of two test instances with their lower bounds.

Quality of solutions CPU Time (second)

Instance HHA solution Lower bound Gap (%) HHA solution Lower bound Gap (%)

30 customers 1010.5 620.4 62.9 477 420 13.6

100 customers 1336 969 37.9 5738 2980 25.8

Table 6: The summarized results of LINGO 11 on lower bounds.

Lower bound CPU Time (second)

Instance HHA Lingo 11 Gap (%) HHA Lingo 11 Gap (%)

30 customers 620.4 728 17.3 420 2880 585.7

100 customers 969 infeasible - 4560 28800 531.6

respectively. Each customer should be served
within one route only and the customers should
have only one predecessor, which is stated by
constraint (3.12). The sub-tour elimination con-
straints are assured in (3.13). The continuity of
the routes and return to the original depot are
guaranteed through constraints (3.14) and (3.15).
Constraints (3.16) ensure that a customer must
be assigned to a depot if there is a route connect-
ing them. Constraints (3.17), (3.18), and (3.19)
specify the binary variables used in the formula-
tion and finally, auxiliary variables taking posi-
tive values are declared in (3.20).

4 Proposed hybrid heuristic al-
gorithm for the CLRP-FD

A hybrid heuristic algorithm, named HHA, is pre-
sented in this section to solve the CLRP-FD. In
general, HHA is composed of two major phases.
In the first phase, an initial population of solu-
tions based on greedy clustering method (GCM)
is generated within four steps, which is illustrated
in Fig. 1 [59]. In the first step of GCM, cus-
tomers are clustered using a greedy search algo-
rithm (Fig. 1(a)). In the second step, the gravity
center of each cluster is calculated, which is used
to select the depot(s) (Fig. 1(b)). The clusters
are allocated to the opened depot(s) in the third
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Table 7: Performance of HHA on some CLRP-FD instances obtained from standard test sets of CLRP.

Instance name Optimal solution
of the LRP in-
stance

HHA solution of the
CLRP-FD instance
with Cr* = 0.6

Gap(%)

Cost No. of No. of Cost No. of No. of
depots vehicles depots vehicles

Gaskell67-21 × 5 (Barreto, 2004) 424.9 2 4 522.9 2 8 23.1

Gaskell67-22 × 5 (Barreto, 2004) 585.1 1 3 718.8 1 4 22.8

Gaskell67-32 × 5a (Barreto, 2004) 567.2 1 4 783.4 1 6 38.1

Gaskell67-32 × 5b (Barreto, 2004) 504.3 1 3 712.4 1 5 41.3

20-5-1a (Prins & Prodhon, 2014) 54793 3 5 73289 3 14 33.8

20-5-1b (Prins & Prodhon, 2014) 39104 2 3 50394 2 5 28.9

20-5-2a (Prins & Prodhon, 2014) 48908 3 5 51198 3 5 4.7

20-5-2b (Prins & Prodhon, 2014) 37542 2 3 48129 2 5 28.2

50-5-1a (Prins & Prodhon, 2014) 90111 3 12 116617 3 13 29.4

Figure 1: Illustrative example of the first phase
of the HHA

step, considering the distance between the depot
and the gravity center of the clusters as well as the
capacity of the depot (Fig. 1(c)). Finally, in the
fourth step, ant colony system (ACS) forms an
admissible tour among each cluster and relevant
depot (Fig. 1(d)). In this step, the stochastic
simulation is also used to determine the demand
of customers. This helps to evaluate the planned
routes and calculate additional distances due to
route failures.

In the second phase of the HHA, a genetic al-
gorithm (GA) is used to improve the initial pop-
ulation generated through the first phase. In the
first step of this phase, a generation of offspring
is produced by crossover and mutation operators.
Then, the population of solutions is evaluated by
using a proper fitness function. In the next step,

Figure 2: Illustration of two instances with chro-
mosome representation.

the best solutions are applied to form the next
generation of offspring. This improvement pro-
cedure will be continued until the termination
condition is matched. When a better solution is
obtained, the new best solution will be replaced
with the past best-known solution. The problem
is initialized by defining a plane comprising the
set of depots, M, customers, N, and their coor-
dinate points. Details of the HHA’s phases are
described in following sub-sections.

4.1 Creating the initial population

As pointed out earlier, the initial population of
solutions is created through the first phase of the
HHA, named as GCM. To do this, all steps of this
phase are repeated for pop-size times. Indeed,
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Figure 3: Crossover operator employed in the
customers’ genes of each segment

Figure 4: Mutation operator employed in the sec-
tion of the depots’ genes.

the obtained solutions are considered as an ini-
tial population of GA to be applied in the second
phase. First phase includes four steps as follows:

4.1.1 Clustering the customers

The first step for creating the initial population in
GCM is clustering the customers. The customers
are grouped considering their distances and their
fuzzy demands in addition to the capacity of the
vehicles. A greedy search algorithm is used to
select a set of customers. At first, to form a clus-
ter, a customer is selected randomly from a set
of non-clustered customers belongs to N. The al-
gorithm searches for the closest customer to the
last added customer of the current cluster. Note
that, the greedy selection of the next customer
may cause a shorter tour and then lower routing
costs. The closest customer is not assigned to the
cluster if its demand exceeds the remaining ca-
pacity of the vehicle, considering the dispatcher
preference index value and the credibility of the
customer. When a new customer is selected to
be assigned to a cluster, total fuzzy demand of

Figure 5: Flowchart of the hybrid heuristic algo-
rithm (HHA).

current members of the cluster is calculated and
compared to the capacity of the vehicle. If the re-
lation Cr = Cr∗ is fulfilled (according to the for-
mulation (3.5)), then the new customer is allowed
to assign to the current cluster. Otherwise, last
selected customer is withdrawn from the cluster.
The greedy search algorithm seeks for a new cus-
tomer close to the last added member of the clus-
ter among the ungrouped customers. This proce-
dure helps to use the maximum capacity of vehi-
cles. The algorithm forms a new cluster if there
is no customer to be assigned to current cluster
considering the capacity of vehicles and fuzzy de-
mand of customers. When there is no unassigned
customer, the process of clustering stops.

4.1.2 Establishing the depot(s)

This step of the GCM searches among potential
sites to establish the depot(s). Firstly, the gravity
center of each cluster is calculated according to
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Figure 6: The changes of costs with different of
Cr∗ when the number of customers is 30.

Figure 7: The changes of costs with different of
Cr∗ when the number of customers is 100.

equation (4.21), in which (x (C ),y(C )) is the coor-
dinates of the gravity center of cluster C, (xj,yj)
is the coordinates of customer j, and nC is the
number of customers assigned to cluster C.

(
x(C), y(C)

)
=

(∑
j∈C xj

nC
,

∑
j∈C yj

nC

)
(4.21)

Secondly, the sum of distances of each poten-
tial site from all gravity centers of the clusters
is calculated. The potential sites are sorted in
an ascending order and ranked from 1 to M ac-
cording to their Euclidean distance from the grav-
ity centers of clusters. The Euclidean distance is
calculated by equation (4.22). In this equation,
(x∗,y∗) is the coordinates of the desired potential
site among all potential sites. Moreover, wi is
the total Euclidean distance of the potential site
j from all gravity centers of the clusters, (xi,yi) is
the coordinates of the potential site i, (x (C ),y(C ))
is the coordinates of the gravity center of cluster
C, m is the number of clusters, and M is the

number of potential sites.

(x∗, y∗) : Mininmize wi

=

m∑
C=1

[
(xi − x(C))

2 + (yi − y(C))
2
]1/2

∀ i = 1, ...,M (4.22)

The top-ranked potential site is selected to be
established. As it will be mentioned in next step,
if the capacity of the current opened depot is un-
able to fulfill all clusters considering total demand
of each cluster and the Cr∗∗ value, the next poten-
tial site in the sorted list is selected to serve the
remaining clusters. This procedure (i.e., estab-
lishing the depot(s)) is repeated until all clusters
can be served.

4.1.3 Allocating clusters to depots

In third step of GCM, the clusters are respec-
tively allocated to the ranked depots. Each de-
pot serves clusters as many as possible, based on
the value of Cr∗∗ and the credibility that the next
cluster demand does not exceed the remaining ca-
pacity of the depot. To allocate the clusters, the
Euclidian distance of the gravity center of each
cluster to the top-ranked depot is calculated. Af-
terwards, the clusters are ranked in an ascend-
ing order based on the distance of their gravity
centers to the top-ranked depot. The top-ranked
cluster is allocated to the top-ranked depot, if
the relation Cr = Cr∗∗ is fulfilled. If there is
an empty capacity for the top-ranked depot, the
second-ranked cluster is allocated to the depot
considering the above relation. The allocation of
clusters to the top-ranked depot is finished when
there is not enough capacity to serve another clus-
ter. In this situation, the allocation procedure is
repeated for next-ranked depots until all clusters
are allocated.

4.1.4 Routing

In this step of GCM, the routing problem is solved
for each cluster that starts and ends to the rel-
evant depot. The routing problem in CLRP-
FD is the same as traveling salesman problem
(TSP), which is solved by using ant colony sys-
tem (ACS). ACS is referred to ants’ treatment to
find food [11]. The ants spread a material called
pheromone and put it on their ways in such a way
that other ants can pass the same route. The
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pheromone of shorter route increases and there-
fore, more ants move along that way. Artificial
ants construct a solution by selecting a customer
to visit sequentially until all customers are vis-
ited. In fact, ants select the next customer to visit
using a combination of heuristic and pheromone
information. A local updating rule is applied to
modify the pheromone on the selected route, dur-
ing the construction of a route. When all ants
construct their tours, the amount of pheromone
of the best selected route and the global best so-
lution, are updated according to the global up-
dating rule. More details on ACS can be found
in [7, 49, 17].

As mentioned before, in this paper the demand
of each customer is a triangular fuzzy number, so
it cannot be directly considered as a deterministic
number like other methods that tackle the deter-
ministic CLRP. Since the real value of demand
is identified as the vehicle reaches the customer,
the simulation experiment is used to estimate the
deterministic value of each customer’s demand.
For each feasible planned route that the solution
of the HHA stands for, additional distances (fk)
due to route failures are obtained by a stochas-
tic simulation algorithm. The steps of stochastic
simulation are summarized as follows:

Step 1: Estimate the “actual” demand of each
customer by following processes: (2.1) randomly
generate a real number D in the interval between
the left and right bounds of the triangular fuzzy
demand of the customer, and compute its mem-
bership m; (2.2) generate a random number r in
the interval of [0,1]; (2.3) compare r and m, if r
= m, then “actual” demand of the customer is
adopted to D ; otherwise, it is not accepted that
the demand of the customer is considered D. In
this case, random numbers D and r are generated
repeatedly until random numbers D and r are
found such that relation r = m is satisfied; (3.4)
check and repeat (2.1) till (2.3), and terminate
the process when each customer has a simulated
“actual” demand quantity.

Step 2: Move vehicles along the routes de-
signed using credibility theory. Apply ACS to
the routes and calculate the additional distance
due to route failures in terms of “actual” demand.

Step 3: Repeat Steps 1 and 2 M times. In
this work, the proper value of M was considered
300 after some computational experiments.

Step 4: Compute the average additional dis-

tances that come out of stochastic simulation,
and return it as the additional distance (fk).

Note that, the routing cost in the CLRP-FD,
denoted by f (S ) in which S is a solution among
pop-size solutions, consists of two parts: ad-
ditional distances and planned route distances.
The additional distances are calculated by the
stochastic simulation. Instead, prior to calculat-
ing the additional distance the planned route dis-
tances between the depots and allocated clusters
are computed by ACS without considering the
fuzzy demands of customers.

4.2 Improving the solutions

In the second phase of the HHA, a genetic algo-
rithm (GA), firstly introduced by Holland [21], is
used to improve the solutions that come out of
the first phase. As mentioned before, the CLRP
belongs to the class of NP-hard problems. For
this reason, the exact solution methods become
highly time-consuming as the problem instances
increase in size. Therefore, due to the combina-
torial nature of the CLRP-FD and the efficiency
of population-based algorithms in solving combi-
natorial problems, GA is applied to improve the
initial solutions. In fact, the main motivation for
this selection is that in recent years, a large num-
ber of GAs have developed by researchers with
considerable success in solving routing-like prob-
lems [18, 19, 20, 51].

The idea behind a GA is to model the natural
evolution by using genetic inheritance together
with Darwin’s theory. A population of individu-
als representing tentative solutions is maintained
over many generations. New individuals are pro-
duced by combining members of the population
via crossover and mutation operators, and then
replace existing individuals based on their fitness
functions [35].

The critical issues in developing a GA are chro-
mosome representation, population initialization,
fitness function, evaluation process, selection pro-
cess, and crossover and mutation operators. Fur-
thermore, the GA parameters such as number of
generation, population size, crossover and mu-
tation probability needs to be determined be-
fore the execution due to their great impacts on
the performance [2]. At first, the representation
scheme of the solutions created in the first phase
is described. Afterwards, the selection operation
of two individuals is explained and then crossover
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and mutation methods are shown by an exam-
ple. Finally, the evaluation process to produce
the next generation is described.

4.2.1 Chromosome representation

The GA requires a string representation scheme
(chromosome) to encode solutions of the prob-
lem. In this work, each chromosome consists of
several segments directly related to the number
of clusters. Moreover, each segment is a string of
binary values. An example of solution obtained
from the first phase along with its encoded chro-
mosome is shown in Fig. 2. Each segment of the
chromosome is made up of some genes such that
it displays the opened depot and the customers
who assigned to the depot. The value of the first
gene of a segment represents the depot’s num-
ber (integers between 1 and M ). The position of
other genes of a segment represents customers’
numbers in which binary value of each gene de-
termines whether the customer assigned to the
depot or not.

4.2.2 Selection operator

The selection operation is a process to select two
individuals from the current population. In this
study, the roulette wheel selection procedure is
employed in such a way that the selection prob-
ability of each chromosome is proportional to its
fitness value. Moreover, based on the fitness val-
ues, a tentative set of solutions (selected among
current population) is stored and passed directly
to the new population for elite protection. Other
chromosomes of the new population are gener-
ated through an evolutionary loop applying the
crossover and mutation operators. More pre-
cisely, the selection probability of chromosome
S denoted by pselection (S) is expressed by Eq.
(4.23) in which fit (S) is the fitness of chromo-
some S. Recall that, S is a given solution among
pop-size solutions obtained from first phase of
HHA.

pselection(S) =
fit(S)∑pop−size

S=1 fit(S)
(4.23)

Fitness of chromosome S is defined by Eq. (4.24)
as follows:

fit(S) =
1

f(S)
(4.24)

In which f (S) is routing cost associated with the
solution S. Since, the routing cost should be min-
imized, the inverse of routing cost of a solution
is considered as fitness value. Meanwhile, the
value of f (S) for each solution is obtained by the
method explained in section 4.1.4.

4.2.3 Crossover operator

In the proposed GA, crossover operator is only
used in the customers’ genes. To do so, a ran-
dom number, say n, is generated based on a dis-
crete uniform distribution in {1,2,3, . . . , N }. In
the crossover operator, in children, the content
of the customers’ genes until n will remain the
same as the first parent. The genes from n+1
to N are filled by the order that remaining genes
appear in the second parent. This work continues
for remaining segments of the chromosome while
the crossover point is fixed. In this step, regard-
ing the crossover rate, say pc, the new solutions
(offspring) are generated. Fig. 3 exemplifies the
crossover operator applied in the second phase.

4.2.4 Mutation operator

To make the search more diversified and to escape
from local optima, mutation operator is used on
the depots’ genes. To do so, a random number,
say m, is generated based on a discrete uniform
distribution in {1, 2, 3, . . . , M }. In the mutation
operator, in children, the content of the depot’s
gene takes the value of m. Note that, the mu-
tation of depots’ genes on remaining segments of
the chromosome can be changed by selecting an-
other random number in {1, 2, 3, . . . , M }. Fig. 4
shows a swap mutation done at the depots’ gene
of each segment. In this step, pm is considered as
mutation rate such that new mutated solutions
(offspring) are generated based on this value.

4.2.5 Reproduction

After producing offspring, their feasibility is
checked. The generated offspring is infeasible if
the capacity of depot or vehicle or both of them
are not met. For example, after the crossover op-
erator, if total demand of all the customers who
assigned to a depot be more than its capacity,
the offspring is infeasible. When this is the case,
the value of f (S) will increase by adding the pe-
nalization. After considering the feasibility and
the penalization of infeasible offspring, the new
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generation is selected from among the old gen-
eration and the new generated offspring. Two
mechanisms, namely elitism policy and roulette
wheel selection, are used in the proposed algo-
rithm to select the new generation. Indeed, the
former empowers the intensification capability of
the algorithm, and the latter enhances its diver-
sification. To build the new generation, a pre-
determined percentage, say pe, of the chromo-
somes are selected based on the elitism policy and
the roulette wheel selection technique is used to
select the rest. It is notable that after some com-
putational experiments, the proper values of pc,
pmand pewere considered 0.8, 0.2 and 0.6, respec-
tively. The general structure of the HHA is given
by Fig. 5.

5 Computational results

5.1 Sensitivity analysis of the parame-
ters of the model CLRP-FD

In this section, some numerical experiments are
given to show the performance of the CLRP-FD’s
model and the efficiency of the HHA. In the first
experiment, to evaluate the sensitivity of the pa-
rameters of the model, different size of instances
is considered to conduct computational experi-
ments. It is assumed that there are 30 customers
and 5 candidate depots for a small-size instance,
and 100 customers and 7 candidate depots for
a large-size instance. In each instance, the co-
ordinates of all customers and depots are gen-
erated randomly in [100×100]. Moreover, the
fuzzy demands of customers, which are triangu-
lar fuzzy numbers like d̃ = (d1, d2, d3), are se-
lected randomly. More precisely, d1, d2and d3 are
randomly generated within [10,35], [36,60] and
[61,110], respectively. The relative data for two
test instances are listed in Table 1. Note that, the
generated test instances are similar to the real-
world cases and entirely consistent with the real
data. Thus, the obtained results can be applied
for real-world application.
The HHA is coded in MATLAB 7.10.0 on a com-
puter, holding Intel CoreTM Duo CPU T2450
2.00 GHz. To find the proper value of dispatcher
preference index (Cr* ), its value is changed in the
interval of 0.1 to 1 by a step of 0.1. In this work,
the value of assignment preference index (Cr∗∗) is
set to 1 due to convenience and reducing the num-
ber of different investigative statues. The average

computational results of 10 times are given in Ta-
bles 2 and 3 for small and large-size instances, re-
spectively. The columns of the tables respectively
labeled: the dispatcher preference index denoted
by Cr∗, the cost of planned routes, the cost of ad-
ditional distances, routing cost that include the
planned routes and additional distances, depot
cost, vehicle cost, total cost that consist of rout-
ing cost as well as depot and vehicle’s costs and
finally, the CPU time of solutions. For more con-
venience, summary of the results are depicted in
Figs. 6 and 7. As it is shown in Tables 2-3 and
also in Figs. 6-7, when the value of dispatcher
preference index equals 0.6, the total cost has its
own minimum value.
According to Figs. 6 and 7, lower values of pa-
rameter Cr∗ denote a tendency to use total ve-
hicle capacity. These values are associated with
the routes with the shorter planned distances. On
the other hand, lower values of parameter Cr∗ in-
crease the number of cases in which vehicles visit
customers but are unable to serve them, thereby
lead to increase the total additional distance due
to the “failure”. Higher values of parameter Cr∗

are characterized by less utilization of vehicle ca-
pacity along the planned routes and fewer addi-
tional distances. Therefore, the proper value of
Cr∗ is approximately around 0.6 based on the to-
tal cost.

5.2 Performance of the proposed hy-
brid heuristic algorithm

In this section, the efficiency of the HHA is com-
pared with the conventional approach developed
for solving the CLRP-FD. To evaluate the effi-
ciency of the proposed HHA, the results of Ta-
bles 2-3 are compared with the greedy clustering
method (GCM) that is similar to the first phase of
the HHA. Table 4 indicates the summary of com-
putations on instances described in section 5.1.
First column of the table shows the dispatcher
preference index (Cr* ). The next three columns
along with the last three columns show the com-
parison of results between the GCM proposed by
Zare Mehrjerdi and Nadizadeh [59] and the HHA
developed in this work for small and large-size
instances, respectively. Note that, the column la-
beled ”Gap” reports the gap percentage that is
computed for each instance as 100 × [(OFVHHA

– OFVGCM )/ OFVGCM ] where OFVHHA and
OFVGCM are denoted as objective function value
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of HHA and GCM, respectively. As shown in Ta-
ble 4, the HHA has improved solutions of two
instances for all Cr∗ values. So, the HHA is
more efficient than the GCM in terms of solu-
tion quality. Further performance assessment of
the HHA is the comparison of the results with
the lower bound of solutions that obtained from
an exact algorithm. A simple method for cre-
ating a lower bound is through the relaxation of
some assumptions that the problem is based on or
the constraint(s) used in modeling the problem.
To obtain the lower bound of CLRP-FD, the as-
sumption of fuzzy demand of customers is ignored
and the demand of each customer is set to its left
boundary. In other words, the problem of CLRP-
FD changes to CLRP in such a way that the left
boundary of the triangular fuzzy demand is con-
sidered as the demand of each customer (i.e., d1j

instead of d̃j = (d1j , d2j , d3j)). To do so, the
constraints (3.10) in the model changes as follows:∑

i∈V

∑
j∈J

d1jxijk ≤ Q ∀ k ∈ K (5.25)

Clearly, when the left boundary of fuzzy de-
mands are considered as the deterministic de-
mands of customers, the total demand of cus-
tomers is decreased in compare to a case in which
the demands are fuzzy. Moreover, fewer total de-
mands result in less utilization of depots and ve-
hicles and then less total cost. Thus, considering
the d1j as the demand of customer j provides a
lower bound for the CLRP-FD’s solution. Tables
5 and 6 show the lower bound of the instances
described in section 5.1 as well as a summary of
the results in terms of the quality of solutions and
the computational solutions times.

Table 5 indicates the lower bound of two in-
stances explained in section 5.1. The first column
of the table is the name of instances and the next
three columns summarize the quality of solutions
consists of HHA solution, lower bound and the
gap between them. Note that, the column named
HHA solution is obtained from the total cost of
Table 2 and 3 with credibility of 0.6, which have
the minimum total costs among other credibility
values. The gap percentage for each instance is
also computed as 100 × [(HHA solution – Lower
bound)/ Lower bound]. Three last columns of the
Table 5 indicate the CPU time of HHA solutions
and lower bound and the gap between them. Re-
garding the results presented in Table 5, fixing

the demand of all customers to their left bound-
aries has significant effects on both quality and
CPU time of solutions. As shown in Table 5, if
the assumption of the fuzzy demands is omitted,
the quality of solutions will be improved by 62.9%
and 37.9% for small and large-size instances, re-
spectively. Argue is that, the less utilization of
vehicles and depots cause the additional distance
omission when the customer demand is determin-
istic. This is the sort of situation that reduces the
lower bound values to 620.4 and 969 for small and
large-size instances, respectively. Similarly, if the
assumption of fuzzy demand of customers is re-
laxed, the average CPU time is reduced by 13.6%
and 25.8% for small and large-size instances, re-
spectively.
It is of interest to notice that, to obtain the lower
bound, commercial solver of LINGO 11 was also
applied in addition to the HHA. However, it was
unable to solve large-size instance and the solu-
tion was infeasible after 8 hours of running time.
Table 6 shows the lower bound and CPU time
of the instances that solved by both LINGO 11
and HHA. Consequently, as seen in Table 6, the
proposed HHA is more efficient in compare to
LINGO solver in terms of not only quality of
lower bounds, but also CPU times of solutions.

Further results of the numerical experiment for
evaluating the efficiency of HHA and the perfor-
mance of CLRP-FD’s model is shown in Table
7. Table 7 consists of 9 standard test instances
that exist in the literature of CLRP [41]. To use
the standard test instances of CLRP in case of
CLRP-FD, some changes on CLRP instances are
required. The following heuristic steps show the
process of changing a CLRP instance to a CLRP-
FD one.

Step 1: At first, the determinist demand of
each customer transforms to a triangular fuzzy
demand as follows: (2.1) consider the determin-
istic demand of each customer in the CLRP as
the left boundary of fuzzy demand in CLRP-FD;
(2.2) calculate the right boundary of fuzzy de-
mand by triple the left boundary obtained from
(2.1); (2.3) consider a random number in the
range of 1.5 to 2.5 times of the left boundary as
the middle number of triangular fuzzy demand.

Step 2: Consider the maximum right bound-
aries of fuzzy demands of all customers as D3j

(i.e. D3j = max
j∈J

{d3j}. Compare D3j with the ve-

hicle capacity of the CLRP instance denoted by
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Q. If the relation D3j ≤ Qis satisfied, then con-
sider Q as the vehicle capacity of the CLRP-FD
instance. Otherwise, consider D3j as the vehicle
capacity of the CLRP-FD instance.

Step 3: Triple the depot’s capacity of the
LRP instance and consider that as the depot’s
capacity of CLRP-FD instance.

According to above steps, it is clear when the
left boundaries of fuzzy demands of CLRP-FD
instance are equal with the demands of CLRP
instance, the solution of CLRP instance will be
as a lower bound for the solution of CLRP-FD
instance. Table 7 shows the summary of results
on several standard test instances. First column
of the table indicates the name of standard test
instances on CLRP that can be found in [5, 37].
Three next columns show the optimal solutions
obtained from the algorithms in the literature of
CLRP. The solutions obtained by HHA with Cr∗

value of 0.6 are shown at the next three columns.
The last column of Table 7 indicates the gap of
costs between HHA and optimal solutions. As a
result of Table 7, it is concluded that the solution
of CLRP for each instance is a lower bound for
the solution of CLRP-FD.

6 Conclusion and future re-
search

Logistics costs often represent a large portion of
the expenses of companies. In order to reduce
them, facility location and vehicle routing are
crucial. In the management decision of the logis-
tics, facility location problems and vehicle routing
problems are interdependent. But most of time,
they are considered separately. This cannot re-
duce company’s total cost in reality and will also
increase the total cost sometimes. The location-
routing problem (LRP) overcomes above draw-
back by simultaneously tackling facility location
problem and vehicle routing problem. Nowadays,
there are many literatures to research LRP, but
most of them have only studied the LRPs with
deterministic demands. This paper contributes
to the capacitated location-routing problem with
fuzzy demands that is closer to reality in the real-
world. A fuzzy chance-constrained programming
formulation has been developed for the problem.
To solve the problem, a hybrid heuristic algo-
rithm (HHA) with two main phases was proposed

in which greedy search algorithm was applied to
generate initial population of solutions at the first
phase and genetic algorithm was used for further
improvement of the solutions at the second. The
additional distances due to fuzzy demands and
route failures were estimated by stochastic sim-
ulation for each planned route. For performance
evaluation of the model and the proposed HHA,
different numerical experiments were carried out.
The computational experiments have shown that
the dispatcher preference index (Cr∗) greatly in-
fluences the planned routes’ length, additional
distance, and fixed cost of depots and vehicles.
So, the best value of this sensitive parameter of
the model was obtained via conducting compu-
tational experiments. Comparison of the results
between HHA and GCM (i.e., the developed al-
gorithm in the literature of CLRP-FD) has indi-
cated that the HHA is more efficient than GCM.
Moreover, the lower bound of solutions was com-
puted by the HHA and the commercial solver of
LINGO 11. Finally, numerical experiments with
standard test instances of CLRP have carried
out to show the performance of the CLRP-FD’s
model.

This paper has some limitation that is capable
for future researches: (a) investigating the effect
of another major parameter of the model, named
assignment preference index (Cr∗∗), on the length
of the planned routes and the additional distances
traveled by vehicles due to route failures by statis-
tical methods like design of experiments, (b) con-
sidering the CLRP-FD with pickup and delivery,
(c) given the demand of customers as trapezoidal
fuzzy instead of triangular fuzzy, (d) developing
other solution algorithms, e.g. hybrid evolution-
ary algorithms, (e) proposing new stochastic sim-
ulation for estimating both actual demand of cus-
tomers and additional distances, and (f) develop-
ing the model under more realistic assumptions,
e.g. heterogeneous fleet.

References

[1] M. Albareda-Sambola, J. A Diaz, E. Fernan-
dez, Computers & Operations Research, 32,
407-428 (2005).

[2] S. Anbuudayasankar, K. Ganesh, S. L. Koh,
Y. Ducq, Expert Systems with Applications,
39, 2296-2305 (2012).



18 A. Nadizadeh et al. /IJIM Vol. 9, No. 1 (2017) 1-20

[3] S. Balin, Information Sciences, 181, 3551-
3569 (2011).

[4] S. Barreto, C. Ferreira, J. Paixao, B. Sousa
Santos, European Journal of Operational Re-
search, 179, 968-977 (2007).

[5] S. Barreto, Análise e Modelização de Prob-
lemas de localização-distribuição (2004).

[6] J. M. Belenguer, E. Benavent, C. Prins, C.
Prodhon, R. Wolfler-Calvo, Computers &
Operations Research, 38, 931-941 (2011).

[7] L. Bouhafs, A. Hajjam, A. Koukam, Lecture
Notes in Computer Science, 4251, 409-416
(2006).

[8] L. Bouhafs, A. Hajjam, A. Koukam, Journal
of Artificial Intelligence: Theory and Appli-
cation, 1, 31-34 (2010).

[9] C. Contardo, V. Hemmelmayr, T. G.
Crainic, Computers & Operations Research,
39, 3185-3199 (2012).

[10] H. Derbel, B. Jarboui, S. Hanafi, H. Chab-
choub, Expert Systems with Applications, 39,
2865-2871 (2012).

[11] M. Dorigo, L. M. Gambardella, PPSN
springer-Verlag Berlin, 656-665 (1996).

[12] M. Drexl, M. Schneider, European Journal of
Operational Research, 241, 283-308 (2015).

[13] C. Duhamel, P. Lacomme, C. Prins, C. Prod-
hon, Computers & Operations Research, 37,
1912-1923 (2010).

[14] C. Erbao, L. Mingyong, Journal of Compu-
tational and Applied Mathematics, 231, 302-
310 (2009).

[15] C. Erbao, L. Mingyong, Expert Systems with
Applications, 37, 2405-2411 (2010).

[16] M. H. Fazel Zarandi, A. Hemmati, S. Davari,
B. Turksen, Knowledge-Based Systems, 37,
480-489 (2013).

[17] S. Gao, Y. Wang, J. Cheng, Y. Inazumi, Z.
Tang, Applied Mathematics and Computa-
tion, 285, 149-173 (2016).

[18] M. Gen, A. Syarif, Computers & Industrial
Engineering, 48, 799-809 (2005).

[19] K. Ghoseiri, S. F. Ghannadpour, Applied
Soft Computing, 10, 1096-1107 (2010).

[20] W. Ho, G. T. Ho, P. Ji, H. C. Lau, Engineer-
ing Applications of Artificial Intelligence, 21,
548-557 (2008).

[21] J. H. Holland, U Michigan Press, (1975).s

[22] I. Karaoglan, F. Altiparmak, I. Kara, B.
Dengiz, European Journal of Operational
Research, 211, 318-332 (2011).

[23] I. Karaoglan, F. Altiparmak, I. Kara, B.
Dengiz, Omega, 40, 465-477 (2012).

[24] A. Kaufmann, Introduction to the theory of
fuzzy subsets, Vol. I. (1975).

[25] Y. F. Lan, Y. K. Liu, G. J. Sun, Journal
of Computational and Applied Mathematics,
231, 208-221 (2009).

[26] S. R. Li, B. B. Keskin, Journal of the Op-
erational Research Society, 65, 1711-1725
(2013).

[27] C. K. Y. Lin, C. K. Chow, A. Chen, Com-
puters & Industrial Engineering, 43, 5-25
(2002).

[28] B. Liu, Uncertain Theory: An introduce to
its axiomatic foundations, (2004).

[29] S. M. H. Manzour-al-Ajdad, S. A. Torabi,
S. Salhi, Computers & Operations Research,
39, 461-470 (2012).

[30] Y. Marinakis, M. Marinaki, Journal of
Mathematical Modelling and Algorithms, 7,
59-78 (2008).

[31] A. Nadizadeh, H. Hosseini Nasab, European
Journal of Operational Research, 238, 458-
470 (2014).

[32] A. Nadizadeh, R. Sahraeian, A. Sabzevari
Zadeh, S. M. Homayouni, African Journal of
Business Management, 5, 7499-7506 (2011).

[33] G. Nagy, S. Salhi, Journal of the Operational
Research Society, 47, 1166-1174 (1996).

[34] G. Nagy, S. Salhi, European Journal of Op-
erational Research, 177, 649-672, (2007).

[35] H. Nazif, L. S. Lee, Applied Mathematical
Modelling, 36, 2110-2117 (2012).



A. Nadizadeh et al. /IJIM Vol. 9, No. 1 (2017) 1-20 19

[36] V. P. Nguyen, C. Prins, C. Prodhon, Euro-
pean Journal of Operational Research, 216,
113-126 (2012).

[37] C. Prins, C.Prodhon, Nouveaux algorithmes
pour le problème de localisationet routage
sous contraintes de capacité, (2004).
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