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Abstract

This paper looks at the analysis of Jeffery Hamel flow. The investigation is mainly aimed to
determine an exact analytic solution for a nonlinear problem. To the best of my knowledge,
no such analysis is available in the literature which can describe the exact solution of the
Jeffrey-Hamel flow. Besides this a comparative study between the numerical and exact
solutions is presented. The effects of the various parameters intrinsic to the problems are
analyzed and depicted via graphs.
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1 Introduction

The flow between two planes which meet at an angle was first analyzed by Jeffery [7]
and Hamel [6]. Under suitable assumptions, the problem can be reduced to an ordinary
differential equation. The incompressible viscous fluid flow through convergent—divergent
channels is one of the most applicable cases in fluid mechanics, civil, environmental, me-
chanical and bio-mechanical engineering. A lot of information and references about Jeffery
Hamel flow can be found in the refs. [1, 4, 5, 13, 14]. Most scientific problems such as
Jeffery—Hamel flows are inherently of nonlinearity. Except a limited number of these
problem, most of them do not have exact analytical solution. Therefore, these nonlin-
ear equations have been solved either numerically [2, 15] or by perturbation methods
[10, 11, 12]. Very little [3, 8, 9] has been yet said in the regime of exact solutions for
nonlinear problems. The convergence of the solution and the large parameter are deficien-
cies of numerical and the perturbation methods respectively. We confine ourselves here to
present a general exact analytical solution and the comparison of numerical solution as
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well. It is also worth mentioning that our exact analytical solution is not only valid for
small but also for large values of emerging parameters.

2 Problem formulation

Consider the steady two-dimensional flow of an incompressible viscous fluid from a source
or sink at the intersection between two rigid plane walls that the angle between them is
2 as shown in Fig. 1 given below:

Fig. 1. Geometry of the problem.

We assume that the velocity is only along radial direction and depend upon r and
h, i.e., V(u(r,h),0) [10, 11]. Using continuity and the Navier—Stokes equations in polar
coordinates we have
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Equation (2.1) yields
f(0) =ru(r,0). (2.3)
Introducing
0 6
Fop=10, -2 (2.4
max @

and eliminating p in Egs. (2.2) and (2.3), we obtain the following equation for the nor-
malized function F'(n) as [11]

F" () + 2aReF (n) F' (n) + 40*F' () = 0. (2.5)
The subjected corresponding boundary conditions are
F(0)=1,F'"(0)=0,F (1) =0, (2.6)

in which Re and « are the constants. The constant a > 0 gives a divergent channel and
for convergent channel the condition a < 0 holds.
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3 Exact solution
A first integral of equation (2.5) is
F" + aReF? 4+ 40’F = ¢y, (3.7)

where ¢; is an arbitrary constant. Equation (3.7) has the translational symmetry in n and
its order can be reduced as

1dF"™ 5 5
3 dF + aReF* 4+ 4a°F = ¢;. (3.8)
Hence we have
2
F' = :t\/201F - gozReF?’ —4a?F? 4 2c¢o, (3.9)

where ¢y is a further constant. The boundary conditions ((2.6),b,c) then require that
1 2
€1+ co = gozRe + 2a”. (3.10)

Since we want F’ > 0, we omit the negative sign in (3.9). Thus

F
dFE
/ =17 (3.11)
1 \/201E — %ozReE?’ —4a2E? + %aRe + 402 — 2¢;
subject to
F(1)=0. (3.12)

is an exact solution of Jeffery Hamel flow.

4 Numerical Solution

In this section we present the numerical solution of Jeffery Hamel flow by a so called
method ”Shooting method”. To apply shooting method on Egs. (2.5) and (2.6), we write
our third order equation in three first order equations

F'(n) =wv(n) (4.13)
F"(n) =u(n) =v'(n) (4.14)
u' (n) = — (2aReF (n) v (n) + 40’v (n)) (4.15)
F(0)=1,v(0)=0,F(1)=0 (4.16)
and missing condition is

F"(0)=so0ru(0)=s (4.17)

Equations (4.13)-(4.17) can be differentiated with respect to s to obtain
F () =V () (4.18)

F* () =U(n)=V"(n) (4.19)
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U' () = = (2aRe (F* (n) v (n) + F () V (1)) + 4*V (n)) (4.20)
F*(0) =0,V (0) = 0,U (0) = 1 (4.21)

where
p*:‘z_f,v:%, :% (4.22)

and s is an initial guess and change iteratively after each step by Newton’s formula

n+1 n_F(Lasn)_A

s =5 %D (4.23)
Os
or here A=0,L =1 and 0F/0s = F* then the equation is
F(1,s™)
e 4.24
TS T Ee (4.24)

where slis taken to be —1.

5 Graphs and comparison of results

In order to illustrate the influences of R, and « on F, we have plotted the Figures 2 and
3 respectively. The obtained analytical solution is compared with numerical solution in
Figures 4 and 5 respectively.
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Fig. 2. Profiles of F for various values of a when R, is fixed.
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Variation of Re
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Fig. 3. Profiles of F for various values of R, when « is fixed.
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Fig. 4. Profiles of F for Jeffery Hamel flow in divergent channel.
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Fig. 5. Profiles of F for Jeffery Hamel flow in convergent channel.
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6 Concluding remarks

The present study contributes exact solution for the Jeffrey-Hamel flow. In addition, the
numerical analysis is also presented for the Jeffrey-Hamel flow. As a result, the following
observations are made.

e Increase in R, results in the increase of boundary layer.
e An increase in « leads to an decrease in the boundary layer thickness.
e The constant o > 0 and o < 0 give a divergent and convergent channel respectively.

e [t is also worth mentioning that our exact solutions are more general and such
solutions have been presented first time in the literature.
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