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Abstract

This study proposes a method for solving mixed integer multi-objective fractional signomial geometric
programming (MIMOFSGP) problems.In this paper we firstly convert a multi-objective fractional
signomial programming into a non-fractional problem by a new convenient reformulation strategy.
Then the fuzzy programming technique is applied to find the optimal compromise solution and a
convex relaxation is used to reach a global solution. A mixed integer compromise optimal solution
of the convex programming problem can finally be found by use of nonlinear branch and bound
algorithm. Then on using the Spacial branch and bound algorithm, we obtain a solution that has
the shortest distance from the solution of the original problem. Finally two examples are included to
demonstrate the correctness and efficiency of the proposed approach.

Keywords : Multi-objective programming; Geometric programming; Fractional programming; Mixed
integer programming; Spacial branch and bound algorithm.
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1 Introduction

F
ractional geometric programming problems

(FGP) is used to solve a class of geometric

programming problems to minimize a fractional
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objective function under certain constraints. A

few methods have been applied in the recent

past to convert a fractional signomial objective

function into a non-fractional signomial objective

function to find the optimal solution by use of

some common mathematical programming tech-

niques. The mixed integer fractional signomial

geometric programming problems(MIFSGP) in

which the objective function appears as a quo-

tient of two signomial functions subject to cer-

tain constraints with integer and continuous de-

cision variables is an important part of geomet-

ric programming problems in the wide scope

of engineering design, management and finance

problems. For instance, Ray and Saini (2001)

[18], Arora (1989) [2] addressed a few meth-
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ods to solve some real (FGP) problems of de-

sign engineering. Ching Ter Chang (2002) [10],

Jung-Fa Tsai (2007) [19] and Saraj and Bazikar

[3] proposed some reformulation techniques to

convert geometric fractional functions to geo-

metric non-fractional functions. In practice,

some of the (FGP) problems are formulated as

multi-objective fractional programming problems

(MOFGP). Usually a multi objective optimiza-

tion problem doesnt have any single optimal so-

lution which optimizes all the objective functions

simultaneously. Anyway the decision makers look

for the most compromise solution for all objec-

tives. In the recent past a few approaches have

been used to find global compromise solutions

namely weighting methods, goal programming

and fuzzy techniques. Although these approaches

are applied in multi objective nonlinear program-

ming [17], there is no absolutely successful exten-

sion to find a global lower bound for multi objec-

tive fractional geometric programming (MOFGP)

problems. In this paper, we first define a

new variable for every fractional objective func-

tion.This technique reformulates (MOFGP) prob-

lem to a non-convex mixed integer multi objec-

tive geometric programming (MOGP) problem

by adding some constraints. Reformulated non-

convex (MOGP) problem poses additional chal-

lenges, because it contains non- convex terms in

the objective functions or in the constraints. In

addition, existence of the integer variables gener-

ally makes the feasible region non- convex. So

applying convex relaxation will yield the best

lower bound for objectives and the yield optimal

compromise solution is infeasible for the original

(MOFGP) problem.Therefore by using the spa-

tial branch and bound algorithm, we find both

a feasible solution for the (MIGP) problems and

the tightest global lower bound to the (local) orig-

inal lower bound for multi objective functions[6].

The rest of the paper is organized as follows: for-

mulation of multi-objective mixed integer frac-

tional geometric programming problems for (MI-

MOFGP) are discussed in Section 2 and 3, re-

spectively. In section 4, Fuzzy notations and the

formulation of a crisp model for the fuzzy geo-

metric programming problem is used. The con-

vexification strategies discussed in Section 5. And

also, the spatial branch and bound algorithm [9]

is expressed to assess lower bound of convex re-

laxation of (MIGP). An illustrative example has

been incorporated in Section 6. Finally, some

conclusions are brought from the obtained results

in Section 7.

2 Mixed integer multi-
objective signomial geomet-
ric fractional programming
(MOMISGFP) problems.

a signomial function is a sum of positive or neg-

ative signomial terms consisting of a product of

power functions,ie.,

p(x) = f(x1, x2, . . . , xn) = ΣT
t=1σtctΠ

n
j=1x

αtj

j

Where x is a vector of real or integer positive

variables. T and n are the number of terms and

variables respectively in every signomial function.

ct is absolute value of coefficients, and σt is sign

of coefficients (+1 or −1). If all the terms in

a signomial function are positive, ie, all coeffi-

cients σt = +1, then the function is called posyn-

omial. A multi-objective mixed integer fractional

signomial geometric programming problem is ex-

pressed in its normal form as follows:

Obtain x = (x1, x2, x3, . . . , xn)
T , so as to

Minimize(f1(x), f2(x), f3(x), . . . , fp(x)) (2.1)

fk(x) =
(pk(x))

(qk(x))
, qk(x) > 0, k ∈ {1, 2, . . . , p}

Subject to

gi(x) ≤ ξi, ξi = ∓1, i = 1, 2, . . . ,m

Where

pk(x), qk(x) and gi(x) are signomial functions

and

x = (x1, x2, x3, . . . , xn)
T ∈ X,X ⊆ R,

x is a vector of real or integer positive variable

0 ≤ xj ≤ xj ≤ xj

j = 1, 2, . . . , n

It is assumed, the mentioned problem is feasible

and has an optimal compromise solution.
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3 Strategy of reformulation

In this article a new and convenient technique

is presented to convert a multi-objective signo-

mial geometric fractional programming (MOS-

GFP) problem to a multi-objective signomial ge-

ometric programming (MOSGP) problem with p

fractional objective functions. Consider the fol-

lowing signomial geometric fractional program-

ming problem:

Minimizefk(x) =
pk(x)

qk(x)

=
Σ
Tk
◦

t=1σ
k
◦tc

k
◦tΠ

n
j=1x

αk
◦tj

j

ΣT
′k
◦

t=1σ
′k
◦tc

′k
◦tΠ

n
j=1x

α
′k
◦tj

j

(3.1)

k ∈ {1, 2, . . . , p}

Subject to

gi(x) ≤ ξi, ξi = ∓1, i = 1, 2, . . . ,m

Where

gi(x) = ΣTi
t=1σit citΠ

n
j=1x

αitj

j

qk(x) > 0, for x ∈ X and

∀x = (x1, x2, x3, . . . , xn)
T ∈ X ⊆ R,

0 ≤ xj ≤ xj ≤ xj ,

T k
◦ = Number of terms in pk(x),

T
′k
◦ = number of terms in qk(x),

c◦t, c
′
◦t ∈ R+

0 ≤ xj ≤ xj ≤ xj , j = 1, 2, . . . , n

Suppose xn+k is a positive variable, let qk(x) =

xn+k then we have:

fk(x) = x−1
n+k ∗ p

k(x) for k ∈ {1, 2, . . . , p},

To find lower and upper bounds of every xn+k

for every k ∈ {1, 2, . . . , p} we should solve two

following subproblems:

Ln+k := min qk(x) , k ∈ {1, 2, . . . , p}

Subject to

gi(x) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

for x ∈ X

And

Un+k := max qk(x) , k ∈ {1, 2, . . . , p}

Subject to

gi(x) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

for x ∈ X

So, the problem 3.2 leads to the following signo-

mial geometric programming problem which con-

tains a new equality constraint, x−1
n+k ∗ q

k(x) = 1

Minimize x−1
n+k ∗ p

k(x) (3.2)

Subject to

x−1
n+k ∗ q

k(x) = 1 (3.3)

gi(x) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

Ln+k ≤ xn+k ≤ Un+k , k ∈ {1, 2, . . . , p} , x > 0

We can replace the equation (3.3) by two non-

equation as following:

x−1
n+k ∗ q

k(x) ≤ 1 (3.4a)

−x−1
n+k ∗ q

k(x) ≤ −1 (3.4b)

Therefore the original MOSGFP problem is re-

formulated to:

Minimize (x−1
n+1 ∗ p

1(x),

x−1
n+2 ∗ p

2(x), . . . , x−1
n+P ∗ p

P (x)) (3.5)

Subject to

x−1
n+k ∗ q

k(x) ≤ 1

−x−1
n+k ∗ q

k(x) ≤ −1 , k = 1, 2, . . . , P

gi(x) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

Ln+k ≤ xn+k ≤ Un+k, k ∈ {1, 2, . . . , P},x > 0

Where

pk(x) = Σ
Tk
◦

t=1 σk
◦t c

k
◦tΠ

n
j=1x

αk
◦tj

j ,

qk(x) = Σ
T

′k
◦

t=1 σ
′k
◦t c

′k
◦tΠ

n
j=1x

α
′k
◦tj

j

gi(x) = ΣTi
t=1 σit citΠ

n
j=1 x

αitj

j
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qk(x) > 0,

∀x = (x1, x2, x3, . . . , xn)
T ∈ X ⊆ R,

0 ≤ xj ≤ xj ≤ xj ,

j = 1, 2, . . . , n

Proposition 3.1. if 0 < qk(x∗) = x∗n+k where

x∗ is an optimal solution of (3.2) therefore it is

an optimal solution of (3.1).

∀ x ̸= x∗,

(x∗n+k)
−1 ∗ pk(x∗) ≤ (xn+k)

−1 ∗ pk(x) (3.6)

Proof. Suppose x∗ = (x∗1, x
∗
2, . . . , x

∗
n, x

∗
n+k) is an

optimal solution of (3.2), consequently

(x∗n+k)
−1 ∗ qk(x∗) = 1

gi(x
∗) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

Thus x∗ is satisfied in constraint of (3.1).

Also by replacing

qk(x∗) = x∗n+k,q
k(x) = xn+k

in the objective function (3.2) we have :

x∗−1
n+k ∗ Σ

Tk
◦

t=1 σk
◦t c

k
◦tΠ

n
j=1 x

∗αk
◦tj

j ≤

x−1
n+k ∗ Σ

Tk
◦

t=1 σk
◦t c

k
◦tΠ

n
j=1 x

αk
◦tj

j

Σ
Tk
◦

t=1 σk
◦t c

k
◦tΠ

n
j=1 x

αk
◦tj

j

ΣT
′k
◦

t=1 σ
′k
◦t c

′k
◦tΠ

n
j=1 x

∗α′k
◦tj

j

≤

Σj∈Jk cjΠj∈Ik x
αji

i

Σ
j∈J ′

k
c
′
jΠj∈Ik x

αji

i

(3.7)

Hence, x∗ is an optimal solution of (3.1).

Then it is possible for every fractional objective

function fk(x) = pk(x)
qk(x)

in any MOSGFP problem

using p new positive variables, xn+k where k =

1, . . . , P and letting qk(x) = xn+k , therefore the

MOGFP problem (2.1) , leads to the following

multi objective geometric programming problem

which is reformulated as fk(x) = x−1
n+k ∗ p

k(x)

for k ∈ {1, 2, . . . , P} and contains of P new equal

constraints:

Minimize (x−1
n+1 ∗ p

1(x),

x−1
n+2 ∗ p

2(x), . . . , x−1
n+P ∗ p

P (x)) (3.8)

Subject to

x−1
n+k ∗ q

k(x) ≤ 1

−x−1
n+k ∗ q

k(x) ≤ −1 , k = 1, 2, . . . , P

gi(x) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

Ln+k ≤ xn+k ≤ Un+k , k ∈ {1, 2, . . . , P} , x > 0

Where

pk(x) = Σ
Tk
◦

t=1 σk
◦t c

k
◦tΠ

n
j=1 x

αk
◦tj

j ,

qk(x) = Σ
T

′k
◦

t=1 σ
′k
◦t c

′k
◦tΠ

n
j=1 x

α
′k
◦tj

j

gi(x) = ΣTi
t=1 σit citΠ

n
j=1 x

αitj

j

qk(x), xn+k > 0

∀x = (x1, x2, x3, . . . , xn)
T ∈ X ⊆ R,

0 ≤ xj ≤ xj ≤ xj , j = 1, 2, . . . , n

4 Convexification strategies

A convex relaxation is an efficient tool to reach a

global solution in non-convex (MIGP) problems.

It is used to enlarge the feasible set of (3.2) and

compute a lower bound on the optimal solution

of MIGP problem.Since the nonlinear functions

in constraints and objective of (3.2) are signo-

mial functions, obviously each signomial function

is convex if all the terms are convex [14]. Convex-

ity requirements for signomial terms are provided

with the following Theorem, [See 15].

Theorem 4.1. (Maranas and Floudas 1995). A

positive signomial term

f(x) = cΠn
i=1 xαi

i is convex if one of the following

conditions hold:

(i) αi ≤ 0(for i = 1, . . . , n).

(ii) ∃ k ̸= i , αk > 0 , αi ≤ 0, Σn
i=1 αi ≥ 1.

And a negative signomial term

f(x) = cΠn
i=1 xαi

i is convex if αi > 0, (for

i = 1, . . . , n) and Σn
i=1 αi ≤ 1

∀c < 0, Then αi ≥ 0, (for i = 1, . . . , n) and

Σn
i=1 αi ≤ 1.

From theorem 1 it can be deduced that it is pos-

sible to convexify positive and negative signomial

terms by using power transformations, so this fact
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is applied in this paper to convexify non-convex

signomial functions.

After utilizing power transformations to convex-

ify a signomial term, the power transformation

functions require to be approximated by piece-

wise linear functions. This study uses a common

piecewise linear approximation, special order set

type 2 (SOS2) (Beale and Tomlin) [12].

The fuzzy technique programming generates the

compromise solution of a multi-objective opti-

mization problem.It is applicable to the multi-

objective signomial programming problems that

presented in the past section. It is assumed that

the offered problem in (3.8) is feasible and it has

an optimal compromise solution.

5 Fuzzy programming to refor-
mulate multi-objective signo-
mial geometric programming
problems

Fuzzy set theory ,which is a generalization of clas-
sical set theory to understand the ambiguity and
uncertainty in the complication of the problems,
was first presented by zadeh in 1965 [5]. Specif-
ically a relatively practical introduction of fuzzy
set theory into conventional multi objective lin-
ear programming problems was first introduced
by Zimmermann in 1978 [20]. It has been suc-
cessfully applied so far to solve different types of
multi-objective decision making problems in the
presence of fuzziness.
A fuzzy set is associated with its membership
function which is defined from its elements into
the interval [0, 1] . The following procedure from
[17] is applied in solving a MOMISGP by a sig-
nomial geometric programming method with a
linear membership function to reach an optimal
compromise solution.
Define a fuzzy membership function µk(x) for the
k-th objective function x−1

n+k ∗ p
k(x) as

µk(x)=


1 , if x−1

n+k ∗ pk(x) ≤ Lk

Uk−x−1
n+k·p

k(x)

Uk−Lk
, if Lk ≤ x−1

n+k ∗ pk(x) ≤ Uk (5.1)

0 , if x−1
n+k ∗ pk(x) ≥ Uk

Where

Lk ̸= Uk , k = 1, 2, . . . , P

Then, maximize the membership function µk(x) , k =
1, 2, . . . , P subject to the constraints (3.5) and then

use max-min operator [7] to find a crisp model.
Considering a dummy variable T and formulating
a crisp model for the fuzzy geometric programming
problem as:

Max T i.e. Min : T−1 (5.2)

Subject to

Uk − x−1
n+k ∗ pk(x)

Uk − Lk
≥ T

x−1
n+k ∗ q

k(x) ≤ 1

−x−1
n+k ∗ q

k(x) ≤ −1

gi(x) ≤ ξi , ξi = ∓1 , i = 1, 2, . . . ,m

Ln+k ≤ xn+k ≤ Un+k , k ∈ {1, 2, . . . , P}

Where

pk(x) = Σ
Tk
◦

t=1 σk
◦t c

k
◦tΠ

n
j=1 x

αk
◦tj

j ,

qk(x) = Σ
T◦′k
t=1 σ

′k
◦t c

′k
◦tΠ

n
j=1 x

α
′k
◦tj

j

gi(x) = ΣTi
t=1 σit citΠ

n
j=1 x

αitj

j

x = (x1, x2, x3, . . . , xn)
T > 0

T ≥ 0

Further the inequalities in (5.1) can be reformulation
as:

x−1
n+k ∗ p

k(x) + (Uk − Lk)T ≤ Uk , k = 1, 2, . . . , P

Here, we can solve the crisp mixed integer geometric
programming problem defined in(3.5)by using geomet-
ric programming algorithm to find x∗ and estimate all
the p number of signomial objective functions in (3.5)
and consequently (3.1) at the optimal solution x∗.

Example 5.1.

Min f1(x) =
x1x

0.5
2 x1.2

3

2x2x3 + x2.1
2 + x1.3

3

Min f2(x) =
−2x−1

2 x−1
3 + 2x1x3

−x3
1x

−1.2
3 + x2

3

(6.1)

s.t 2x1 + 3x2 + x3 ≥ 8 (1)

3x1 + x2 ≥ 5 (2)

x2 + 2x3 ≥ 10 (3)

2x1 + x3 ≤ 4 (4)

0.2 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 5, 1 ≤ x3 ≤ 5 (5)

x1 is a real variable and x2, x3 are integers
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STEP1:

Replacing the denominators by x4&x5 in the objective
functions as follows:

2x2x3 + x2.1
2 x1.3

3 = x4

−x3
1x

−1.2
3 + x2

3 = x5

Which further can be written as:

2x2x3x
−1
4 + x2.1

2 x1.3
3 x−1

4 = 1

−x3
1x

−1.2
3 x−1

5 + x2
3x

−1
5 = 1

Which are converted as follows.

2x2x3x
−1
4 + x2.1

2 x1.3
3 x−1

4 ≤ 1 (6)

−2x2x3x
−1
4 − x2.1

2 x1.3
3 x−1

4 ≤ −1 (7)

−x3
1x

−1.2
3 x−1

5 + x2
3x

−1
5 ≤ 1 (8)

x3
1x

−1.2
3 x−1

5 − x2
3x

−1
5 ≤ −1 (9)

STEP2:

To find upper and lower bounds of this new variables,
its needed to solve the following subproblems:

Min l4 : 2x2x3 + x2.1
2 x1.3

3 (I)

s.t set of constraints (1) - (5)

Max u4 : 2x2x3 + x2.1
2 x1.3

3 (II)

s.t set of constraints (1)-(5)

Min l5 : −x3
1x

−1.2
3 + x2

3 (III)

s.t set of constraints (1)-(5)

Max u5 : −x3
1x

−1.2
3 + x2

3 (IV )

s.t set of constraints (1) - (5)
The solutions of this subproblems are as follows:

l4 = 93 , u4 = 191.25 , l5 = 6.1099 , u5 = 12.9588

Therefore, the original problem is rewrite as following:

Min f1 = x1x
0.5
2 x1.2

3 x−1
4 (6.2)

Min f2 = −2x−1
2 x−1

3 x−1
5 + 2x1x3x

−1
5

s.t set of constraints (1)-(9)

93 ≤ x4 ≤ 191.25 , 6.1099 ≤ x5 ≤ 12.9617 (10)

STEP3:

Now, the multi-objective problem is reduced to sin-
gle objective problem by fuzzy programming tech-
nique as (5.3),so by obtaining upper bounds Ui and
lower bound Li for two objectives (i = 1, 2), then
0.010876211 ≤ f1 ≤ 0.04139956 and 0.013 ≤ f2 ≤
0.58
So we have:

Max T (6.3)

s.t

x1x
0.5
2 x1.2

3 x−1
4 + 0.3052335T ≤ 0.04139956

−2x−1
2 x−1

3 x−1
5 + 2x1x3x

−1
5 + 0.567T ≤ 0.58

s.t set of constraints (1) - (10)
Where x1, x4, x5 are real and x2, x3 are integer vari-
ables.
Now, base on the branch and bound algorithm by
solving this single programming problem by relaxing
x2, x3, the optimal compromised solution is obtained
as: T = 0.844123,

x1 = 0.2, x2 = 4.4, x3 = 3.6, x4 = 150.3780

and x5 = 12.9617

Then we have:

f1(x) = 0.0297521 and f2(x) = 0.1013820

To reach the optimal integer solution and the integer
compromised solution is achieved:

Table1: branching on integer variable
Case 1 : x3 ≥ 4 2 : x3 ≤ 3
T infeasible 0.81385061
x1 0.2 0.2
x2 5 5
x3 4 3

f1(x) − 0.010960338
f2(x) − 0.11854671

In this example in case 1, the problem is infea-
sible, so by comparing the solutions, it is clear that
the optimal compromised integer solution for (6.3)
and accordingly (6.1) is case 2 will be achieved.

6 Bound assessment algorithm

The best known method to find exact or at least
ε-approximate solutions to non-convex mixed integer
geometric programming problems is the spatial
Branch-and-Bound algorithm, which rests on com-
puting lower bounds to the value of the objective
function to be minimized on each region. These
lower bounds are often computed by solving convex
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relaxations of the original program .The (SBB)
algorithm works in a common application of tight
lower bounds computed through a convex relaxation.
In order to upgrade quickly evaluated quality of our
proposed method to achieve lower bounds of the
MOMIFGP problem (2.1), we implemented (using
AMPL [13]) a simplified partial SBB algorithm
[1],[16] which finds generally ε-approximate solutions
for an arbitrarily small positive ε. The SBB algorithm
works by recursively partitioning the search space
along the coordinate direction that contributes most
to the gap between lower and upper bounds on the
optimal objective function value computed in each
subproblem. For a nonlinear minimization problem,
the lower bound is usually computed by constructing
and solving a convex relaxation, and the upper bound
can simply be a local optimum found by a (local)
NLP solver.
At each branching step, registers the most reassuring
node and discards the others,.As our purpose is a
MOMIGFP problem that has both integer variables
and convexified constraints, branching may be
required on both integer and continuous decision
variables.Since this algorithm works on minimization
programming so we define a new variable S such that
S = T−1 in (5.3).

Propose Algorithm 1: The par-
tial depth-first SBB algorithm

Input P as a non-convex MIGP problem and an
iteration limit
Let count ← 0
Solve P locally to find x∗ with objective function
value S∗(incumbent)
Construct a convex relaxation R of P
Solve R to find an optimum x̄ with function value S̄
(lower bound)
Choose the branching variable i with branching point
x̄i

Let end ← false

While end do
Let P0 be defined as P with the added constraint
xL
i ≤ xi ≤ x̄i

Let P1 be defined as P with the added constraint
x̄i ≤ xi ≤ xU

i

For k ∈ {0, 1}, let Rk be the convex relaxation of Pk

For k ∈ {0, 1}, let x̄k be the optimum of Rk with
value S̄k

Let l = argmin (S̄0, S̄1) (best lower bound to S∗)
if S̄l < S∗ then

Let end← true (node cannot improve)
else if S̄l > S̄ then

Let S̄ ← S̄ (overall bound improvement)
end

if x∗ is infeasible in Pl then
Solve Pl locally to find x̂ with value Ŝ
if Ŝ < S∗ then

Let S∗ ← Ŝ and x∗ → x̂ (improve the non-convex
problem solution)
end
if |S∗ − S̄|< ε or end if > limit

then
Let end← true (global optimum)
end
if S̄l =∞ then

Let end← true (infeasible node)
end if

Let P← Pl and x̄← x̄l

Update the branching variable i and branching point
x̄i

Increase count
end while

7 Numerical example

The test results are summarized in Table 2.
In this section, the proposed approach is tested on an
example. Consider the following mixed integer multi-
objective fractional geometric programming problem:

Example 7.1. Find X = (x1, x2) so as to,

Min : f1(x) =
20x−1

1 x3
2 + 60x−1

1 x−1
2

( 13 )x1x2 + ( 13 )x2

,

Min : f2(x) =
50x−1

1 x−1
2 + 60x2

1x
−2
2

( 14 )x1x2 + ( 14 )x1

,

Subject to

1 ≤ x1, x2 ≤ 5,

x1 ∈ R, x2 ∈ Z

Ideal solutions:

Min : f1(x) = 6.9282032, x1 = 5,

x2 = 1.3160740, x3 = 2.632148,

Max : f1(x) = 753.59999, x1 = 1, x2 = 5,

x3 = 3.3333333,

Min : f2(x) = 4.8657616, x1 = 2.0274006,

x2 = 5, x4 = 3.0411010,

Max : f2(x) = 604, x1 = 5, x2 = 1,

x3 = 2.4999981,

Using the ideal solution, we can obtained the lower
bound Li and upper bound Ui of the objective func-
tions fi, i = 1, 2

L1 = 6.9282032 < f1 < 753.5999999 = U1;

and L2 = 4.8657616 < f2 < 604
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Step1:

Solving problem (P)

Using the fuzzy programming steps of ε-constraint
method in [17] which causes the programming
problem to be reformulated as:

Max : T

20x−1
1 x3

2x
−1
3 + 60x−1

1 x−1
2 x−1

3

+T (66.28606− 20.670048) ≤ 66.28606,

50x−1
1 x−2

2 x−1
4 + 60x2

1x
−2
2 x−1

4

+T (442.924839− 36.123848) ≤ 442.924839,

(
1

4
)x1x2x

−1
4 + (

1

4
)x1x

−1
4 = 1,

(
1

3
)x1x

2
2x

−1
3 + (

1

3
)x2x

−1
3 = 1,

1 ≤ x1, x2 ≤ 5,

x2 ∈ Z, x1, x3, x4 ∈ R

The optimal conciliation solution is achieved as:

T−1∗ = S∗ = 1.0337966, x∗
1 = 5, x∗

2 = 4,

x∗
3 = 7.9999999

f1(x) = 32.375

f2(x) = 15.4

Step2:

Relaxing Problem(R)

The mentioned problem has 5 non-convex terms,
to obtain a global solution, the convex relaxation
which is used is power transformation [21] and
piecewise linear approximation applied to underesti-
mate convexified terms. So the non-convex primary
programming problem is converted to:

Max : T

50x−1
1 x−1

2 x−1
4 + 60y−2

1 x−2
2 x−1

4

+T (442.924839− 36.123848) ≤ 442.924839,

20x−1
1 x3

2x
−1
3 + 60x−1

1 x−1
2 x−1

3

+T (66.28606− 20.670048) ≤ 66.28606,

(
1

4
)y−1

1 y−1
2 x−1

4 + (
1

4
)y−1

1 x−1
4 = 1,

(
1

3
)y−1

1 y−1
2 x−1

3 + (
1

3
)y−1

2 x−1
3 = 1,

Where yi = x−1
i ,

1 ≤ x1, x2 ≤ 5,

x2 ∈ Z, x1, x3, x4 ∈ R

The optimal solution is obtained as:

S̄ = 1.0303940, x̄1 = 4.44, x̄2 = 3,

x̄3 = 4.2051309, x̄4 = 3.2051313

f1(x) = 29.9933677, f2(x) = 42.17546515

Table2: the achieved optimal conciliation solutions:

Table2: non-inferior solution for multi-objective
fractional geometric programming problem
Problem Non−convex(P) Convex(R)

S S∗ = 1.033796 S̄ = 1.030394
x1 5 4.44
x2 4 3
x3 7.999999 4.2051309
x4 6.2499999 3.205131

f1(x) 32.375 29.9933677
f2(x) 15.4 26.7754

Therefore the difference between objectives of two
problem is:

|S∗ − S̄|= 1.033796− 1.030394 = 0.34026 ∗ 10−2

Suppose the maximum of difference between objec-
tives S∗ and S̄ is accepted for ε = 0.1∗10−4 it means,
we should find a tighter relaxation to implementing of
the proposed algorithm:

Step3

Choose x̄2 as the branching point,
Define P0 as P with the added constraint 1 ≤ x2 ≤ 3
and let R0 be the convex relaxation of P0,
Define P1 as P with the added constraint
3 ≤ x2 ≤ 5, now let R1 be the convex relaxation of
P1,
The optimal solutions of two relaxed problems R0 and
R1 are obtained:

Table3: comparison of relaxed problems with
different region
Problem R0 R1

S̄ 1.03039412107 1.03039412223
x1 4.44 4.44
x2 3 3
x3 3.205130 4.20513195
x4 3.205130 3.20523239

f1(x) 29.993387 29.993387
f2(x) 42.1754509 42.1754496
|S∗ − S̄| 0.34571879 ∗ 10−2 0.34025432 ∗ 10−2

Hence, l = 1, and S∗ < S̄1 < S, then node and
lower bound can improve, so S̄1 → S̄

Step4:

Since x∗ is feasible in P1, so no any change in x∗ and
S∗.
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Step5:

|S̄ − S∗|= 0.34025432 ∗ 10−2 > 0.1 ∗ 10−4

Here, in the next iteration of the algorithm, another
variable is chosen to branch.

Repeat step 3:

Define P0 as P with the added constraint
1 ≤ x1 < 4.44, and let R0 be the convex relax-
ation of P0,
Define P1 as P with the added constraint
4.44 ≤ x2 ≤ 5 ,
Now let R1 be the convex relaxation of P1,
The optimal solutions of two relaxed problems R0

and R1 are obtained:

Table4: Comparisonofrelaxedproblemswithdifferent
region

Problem problemR0 problemR1

S̄ 1.0322634 1.0337966
x1 4.1156168 5
x2 3 4
x3 4.3525059 7.9999948
x4 3.3525067 6.2499986

f1(x) 31.2618066 32.37496278
f2(x) 34.8908291 15.4
|S∗ − S̄| 0.15910−2 0.613 ∗ 10−6

Hence, l = 1, and S∗ < S̄1 < S̄, then node and lower
bound can improve, so S̄1 → S̄

Step4:

Since x∗ is feasible in P1 then x∗ and S∗ wouldnt
change.

Step5:

|S̄ − S∗|= 0.613 ∗ 10−6 < 0.1 ∗ 10−4

By performance of the mentioned algorithm, we have
so far found a lower bound for our convex relaxed
problem in such a way that, the optimal solution of
the our non convex problem is feasible over there and
more over the obtained objective functions values of
the convex problem is somehow near to the those
of primary non convex problem till some acceptable
extend. Here Table5 shows the achieved optimal
conciliation solutions:

Table5: Non-inferior solution for mixed inte-
ger
multi objective fractional geometric program-
ming problem

Problem Non−convex(P) Convex(R)
S 1.0337966653957 1.0337966044722
x1 1 1
x2 5 5
x3 4 4
x4 7.99999999 7.99999448

f1(x) 32.37496278 32.37400000
f2(x) 15.4 15.4

The result of this algorithm is the nearest opti-
mal solution to the optimal solution of a primitive
programming problem.
Obviously, the difference between every objective
value in non-convex multi-objective primary problem
and relaxed convexified problems is shown in table 6.

Table6: Comparing convex objectives and non-
convex objectives on the first and last regions

fp
1 (x)− fR0

1 (x) fp
1 (x)− fR

1 (x)
0.0009627 2.3806323

fp
2 (x)− fR0

2 (x) fp
2 (x)− fR

2 (x)
0 27.109069

In this comparison, it is clear that, R0 achieves
a closer lower bound to lower bound of p.

8 Conclusion

In this paper a mixed integer multi-objective frac-
tional geometric programming problem (MIMOFGP)
is discussed and it is demonstrated efficiently by re-
placing a new additional variable for (MOFGP) prob-
lems. Since non-convex geometric programming needs
to be converted to convex relaxation to reach a solu-
tion globally, a power transformation and piecewise
linear approximation is applied to convexify and un-
derestimate the primary nonconvex problem. To pro-
vide flexibility and for utilizing more effective relax-
ation strategies; an algorithm based on spatial branch
and bound method is used. Since this algorithm works
on an optimal solution, we applied a fuzzy strategy
to reach an optimal solution for a multi-objective ge-
ometric programming problem. The results showed
that the implementation of this algorithm on the
multi-objective programming problems can make the
lower bound of a relaxed problem closer to the lower
bound of a non-convex multi-objective programming
problem. This work can be proposed as an effective
and essential step of convex relaxation for every mixed
integer multi-objective programming problem.

References

[1] C. S. Adjiman, S. Dallwig, C. A. Floudas, A.
Neumaier, A global optimization method, BB for
general twice-differentiable constrained NLPs: I.



136 J. Shirin Nejad et al., /IJIM Vol. 15, No. 2 (2023) 127-136

Theoretical advances, Comput. Chem. Eng. 22
(1998) 1137-1158.

[2] J. S. Arora, Introduction to Optimum Design, Mc
Graw-Hill. NewYork (1989).

[3] F. Bazikar, M. Saraj, Solving fractional geometric
programming via relaxation approach, MatLAB.
J. 1 (2018) 370-383.

[4] E. M. L. Beale, J. A. Tomlin, Special facilities
in a general mathematical programming system
for nonconvex problems using ordered sets of
variables, J. Lawrence (Ed.), Proceedings of the
Fifth International Conference on Operations Re-
search, Tavistock Publications (1970) 447-454.

[5] R. E. Bellman, A. Zadeh, Decision making in a
fuzzy environment, Manage. Sci. 17 (1970) 141-
164.

[6] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J.
Luedtke, A. Mahajan, Mixed-Integer nonlinear
optimization, Acta. Nume 22 (2013) 1-131.

[7] S. J. Boyd, D. Patil, M. Horowitz, Digital circuit
sizing via geometric programming, Oper. Res. 53
(2005) 899-932.

[8] S. Boyd, L. Vandenberghe, Convex optimization,
Cambridge University press, Cambridge 2004.

[9] S. Cafieri, J. Lee, L. Liberti, On convex relax-
ations of quadrilinear terms, J. Glob.Optim 47
(2010) 661-685.

[10] C. T. Chang, On the posynomial fractional pro-
gramming problems, Eur. J. Oper. Res. 143
(2002) 42-52.

[11] A. Charnes, W. W. Cooper, An explicit general
solution in linear fractional programming, Nav.
Res. Log .Q. 20 (1973) 449-467.

[12] L. F. Escudero, An extension of the Beale-Tomlin
special ordered sets, Mathematical Programming
(1988) 113-123.

[13] R. Fourer, The AMPL Book, Duxbury Press, Pa-
cific Grove, 2002.

[14] A. Lundell, J. Westerlund, T. Westerlund, Some
transformation Techniques with applications in
global optimization, J. Glob. Optim. 43 (2009)
391-405.

[15] C. D. Maranas, C. A. Floudas, All solutions of
nonlinearly constrained systems of equations, J.
Glob. Optim. 7 (1995) 143-182.

[16] G. P. McCormick, Computability of global solu-
tions to factorable nonconvex programs: Part I
Convex underestimating problems, Math. Prog.
10 (1976) 146-175.

[17] A. K. Ojha, K. K. Biswal, Multi objective ge-
ometric programming problem with -constraint
method, Appl. Math. Model. 38 (2014) 247-758.

[18] T. Ray, Engineering design optimization using as
warm with intelligent information sharing among
individuals, Eng. Opt. 33 (2001) 735-748.

[19] J. F. Tsai, Global optimization of nonlinear frac-
tional programming problems in engineering de-
sign, Eng. Opt. 37 ( 2005) 399-409.

[20] H. J. Zimmermann, Fuzzy set theory and
its applications, Kluwer Academic, publishers
Dordrecht-Boston, 1990.

[21] T. Westerlund, Solving pseudo-convex mixed-
integer problems by cutting plane techniques,
Optim. Eny. 3 (2002) 253-280.

[22] S. Mishra, R. Ranjan, Signomial Geometric Pro-
gramming Approach to Solve Non-Liner Frac-
tional Programming Problems, Appl. Comp.
Math. 38 (2022).

[23] S. K. Das, S. A. Edalatpanah, T. Mandal, Appli-
cation of linear fractional programming problem
with fuzzy nature in industry sector, FILOMAT
22 (2020) 5073-5084.

[24] G. Yang, X. Li, L. Huo, Q. Liu, A solving ap-
proach for fuzzy multi-objective linear fractional
programming and application to an agricultural
planting structure optimization problem, Chaos
Solitons Fractals 141 (2020) 11-35.

[25] M. Saraj, S. Sadeghi, Bi-Level Multi-Objective
Absolute-Value Fractional programming Prob-
lems: A Fuzzy Goal Programming approach, In-
ternational Journal of Applied Mathematical Re-
search 3 (2012) 342-354.

[26] S. Kamaei, S. Kamaei, M. Saraj, Solving A
Posynomial Geometric Programming Problem
With Fully Fuzzy Approach, Yugoslav Journal of
Operations Research 29 (2019) 203-220.


	Introduction
	Mixed integer multi-objective signomial geometric fractional programming (MOMISGFP) problems.
	Strategy of reformulation
	Convexification strategies
	Fuzzy programming to reformulate multi-objective signomial geometric programming problems
	Bound assessment algorithm
	 Numerical example
	Conclusion

