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Abstract

This research aims to evaluate the efficiency of a two-stage network structure by examining the impact
of contextual variables on its performance. To accomplish this, a two-stage approach is implemented,
which involves network data envelopment analysis (NDEA) in the first step and ordinary least squares
(OLS) analysis in the second step. In the first step, a non-cooperative (Leader-Follower) model is
employed to assess the efficiency of each sub-section within the two-stage process based on their inputs
and outputs. In the second step, the logarithm of the estimated efficiency scores is regressed on the
contextual variables to refine the network-specific efficiency. The performance of various Spanish
airports is analyzed to demonstrate the effectiveness of this approach.

Keywords : Network data envelopment analysis; Two-stage network; Non-cooperative; Contextual
variable; Undesirable output.
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1 Introduction

I
n data envelopment analysis (DEA), a firm’s

performance is evaluated based on its inputs

and outputs. However, other factors, such as con-

textual or explanatory variables, can also have a

significant impact on firm performance. There-

fore, it is important to examine the effects of

these variables on efficiency, even if they are not

directly observable, as they can provide valuable
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insights to managers. Researchers have proposed

various methods over the years to estimate the ef-

fects of contextual variables. In an early attempt,

Ray [17] employed a two-stage DEA method. In

the first step, efficiency scores were calculated,

and in the second step, the estimated efficiency

scores were subjected to regression analysis with

contextual variables. Subsequently, Wang and

Schmidt [20] and Simar and Wilson [18] intro-

duced one-step and two-step approaches, respec-

tively, to estimate the effects of contextual vari-

ables on efficiency levels. Banker and Natarajan

[1, 2] demonstrated in their work that a two-step

process can consistently estimate the parameters

of contextual variables. The initial step involves

evaluating efficiency scores using the DEA ap-

proach. In the subsequent stage, the computed

scores are subjected to regression analysis along
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with contextual factors, utilizing ordinary least

squares (OLS). However, it is crucial to acknowl-

edge that this methodology can only provide re-

liable estimates when the input and output data

conform to a production function that exhibits

monotonic increasing and concave properties.

The main objective of this paper is to enhance

the accuracy of firm-specific efficiency estimates

in two-stage network structures. To achieve this,

we propose a non-cooperative approach. In this

approach, we calculate the efficiency of the first

stage (referred to as the leader) for each firm

based on specific inputs and outputs. In the

second step, we regress the logarithm of the ef-

ficiency scores obtained from the leader stage

on contextual variables. This regression analy-

sis helps refine the efficiency estimates. Once we

have refined the leader stage efficiency, we pro-

ceed to compute the efficiency of the second stage

(referred to as the follower) while maintaining

the efficiency of the previous stage. Similarly,

we regress the logarithm of the estimated effi-

ciency on contextual variables to further enhance

the accuracy of the estimates. By employing this

approach, we aim to provide a more precise and

comprehensive understanding of the efficiency of

two-stage structures while considering the influ-

ence of contextual factors on this system.

The rest of this paper is organized as follows: Sec-

tion 2 provides a brief review of current research

on NDEA. In Section 3, we introduce our pro-

posed technique for evaluating the performance

of two-stage network processes. Section 4 applies

the proposed method to assess the performance of

various Spanish airports, demonstrating the prac-

tical usefulness of the methodology. Finally, Sec-

tion 5 summarizes our findings and conclusions.

2 A review of studies on two-
stage structures

DEA is a commonly employed method for eval-

uating the relative efficiency of decision-making

units (DMUs). However, traditional DEA models

exhibit limitations as they solely focus on primary

inputs and final outputs when assessing DMU

performance. These models treat each process as

a black box, disregarding the internal structures

within the DMUs. Consequently, the impact of

internal performance on overall efficiency is over-

looked in certain cases. To tackle this issue, Fre

and Grosskopf [7] introduced the concept of net-

work DEA (NDEA), which takes into account the

internal structure of processes. By incorporat-

ing these internal factors, NDEA provides a more

comprehensive framework for assessing DMU ef-

ficiency.

Various studies have proposed models with multi-

plicative and additive objective functions to ana-

lyze two-stage processes [3, 4, 9]. However, these

models have limitations in that improving the

performance of one sub-process in a two-stage

process may result in inefficiency in another sub-

process. To address this issue, Liang et al. [12]

developed non-cooperative and centralized mod-

els that overcome the shortcomings of previous

approaches. These newly proposed models deter-

mine the optimal efficiency of each sub-process

within a two-stage process and provide a com-

prehensive evaluation of the overall system effi-

ciency. They offer a more accurate assessment

of units with complex structures, taking into ac-

count their internal processes. Building upon the

method initially introduced by Liang et al. [12],

Li et al. [11] expanded the approach by incorpo-

rating additional inputs for the second stage. To

measure the efficiency of two-stage processes with

freely shared flows, Zha and Liang [28] utilized a

non-cooperative model. In contrast, Du et al. [6]

assessed the efficiency of two-stage networks us-

ing the Nash bargaining game theory. Yu and Shi

[25] proposed a non-cooperative model for a two-

stage process with additional inputs in the second

stage, where intermediate products were treated

as final inputs. Evaluating a two-stage network

configuration with additional inputs for the sec-

ond stage, Chen and Zhu [5] applied an additive

slack-based measure.

Previous models for evaluating the efficiency of

two-stage processes did not account for the in-

fluence of undesirable factors. However, the sig-

nificance of these factors in the manufacturing

industry has motivated researchers to propose

new models. These novel models utilize differ-
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ent methodologies to address undesirable inputs,

intermediate variables, or final outputs, allowing

for a more comprehensive evaluation of two-stage

process performance. By incorporating the im-

pact of undesirable factors, this improved mod-

elling framework offers a more holistic assessment

of efficiency. In light of this, we will conduct a lit-

erature review of selected studies in the field to

explore the advancements made in addressing the

impact of undesirable factors on the efficiency of

two-stage processes.

Fukuyama and Weber [8] introduced a slack-

based measure approach model, while Lozano et

al. [14] presented a directional model specifically

designed for evaluating two-stage structures with

undesirable outputs. Maghbouli et al. [15] in-

corporated the weak disposability assumption to

handle these outputs effectively. Wu et al. [22]

made a valuable contribution to the literature

by developing an additive DEA model suitable

for network structures, which they applied to as-

sess Chinese industrial production. Furthermore,

they extended their model to propose a cen-

tralized approach for evaluating the efficiency of

two-stage structures with shared inputs, success-

fully employed to assess industrial performance

in China [23]. Finally, Wu et al. [24] introduced

a model based on the Nash bargaining game to

evaluate sustainable manufacturing in Chinese in-

dustries.

In addition to the previously mentioned studies,

Nematizadeh et al. [16] developed a two-stage

network model that incorporated return flows us-

ing the directional distance function. Similarly,

Zeng et al. [27] introduced a novel two-stage

model to assess the environmental efficiency of

firms. Wang et al. [21] investigated the Chinese

high-tech industry, building upon previous mod-

els proposed by [12]. Li et al. [13] applied a

two-stage DEA methodology to evaluate the effi-

ciency of China’s Internet banking industry, with

a specific focus on the growing significance of In-

ternet banking in enhancing competitiveness. Fi-

nally, Yu and See [26] adopted the SBM-NDEA

approach to assess the technical efficiency of 29

global airlines in 2018, considering the presence

of undesirable factors.

3 Analyzing the impact of con-
textual variables on the two-
stage network efficiency

This paper aims to examine the efficiency of sub-

section units (sub-DMUs) within two-stage struc-

tures through an analysis of contextual variables

that may influence their performance. To achieve

this objective, we adopt a two-step approach.

First, we assess the sub-DMUs’ efficiency under

non-cooperative conditions by examining their in-

puts and outputs. Second, we employ the OLS

method to determine the influence of contextual

variables on efficiency, based on the estimated ef-

ficiencies from the first step. The algorithm for

our proposed approach is presented in Figure 1.

In this section, we will provide a detailed descrip-

tion of the proposed method. Our scenario in-

volves DMUs, with each DMUj : j = 1, , J hav-

ing a two-stage structure as illustrated in Figure

2.

Figure 2 illustrates the first stage of the sys-

tem, where an input vector xj = (x1j , ..., xIj) ≥
0 is used to generate two sets of outputs:

the final undesirable output vector wj =

(w1j , ..., wMj) ≥ 0 and the desirable output vec-

tor vj = (v1j , ..., vRj) ≥ 0. In the second step,

the desirable output vectorvj is employed as in-

put, along with an additional input vectorzj =

(z1j , ..., zSj) ≥ 0, to produce the desirable out-

put vector yj = (y1j , ..., yTj) ≥ 0. It is impor-

tant to recognize that the desirable intermediate

measure, vj , plays a dual role in the two-stage

process. It serves as both an output in the ini-

tial stage and an input in the subsequent stage

simultaneously. Furthermore, each stage of the

system incorporates a distinct set of contextual

variables, denoted as cnj∀n, j, in addition to the

specific inputs and outputs.

3.1 Efficiency evaluation of sub-DMUs

Based on the assumption that stage 1 (i.e. the

leader) holds greater significance than stage 2 (i.e.

the follower), this section introduces a method

for evaluating the efficiency of sub-sections within

decision-making units.
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Figure 1: The proposed approach algorithm.

Figure 2: The configuration of a two-stage pro-
cess.

Stage 1

In accordance with Shephard’s weak disposabil-

ity assumption [19], the production possibility set

of Stage 1 can be mathematically expressed un-

der the assumption of variable returns to scale as

follows

TStage1 = {(x, v, w) :
J∑

j=1

ξjxij ≤ xio, i = 1, , I,

J∑
j=1

δjξjvrj ≥ vro, r = 1, , R,

J∑
j=1

δjξjwmj = wmo,m = 1, ,M,

J∑
j=1

ξj = 1,

0 ≤ δj ≤ 1, ξj ≥ 0, j = 1, , J}

(3.1)

The δj in the production technology set represent

a contraction coefficient assigned to each DMU ,

as postulated by Kuosmanen [10], resulting in the

nonlinearity of the technology set. When consid-

ering ξj = τj + κj as a composite of τj = δjξj
and κj = (1 − δj)ξj , it can be mathematically

expressed in the following linear form

TNew
Stage1 = {(x, v, w) :
J∑

j=1

(τj + j)xij ≤ xio, i = 1, , I,

J∑
j=1

τjvrj ≥ vro, r = 1, , R,

J∑
j=1

τjwmj = wmo,m = 1, ,M,

J∑
j=1

(τj + κj) = 1,

τj , µj ≥ 0, j = 1, , J}.

(3.2)

To evaluate the efficiency score of Stage 1 for

DMUo, the following model is utilized to mini-

mize the level of undesirable outputs

min φ0

s.t.

J∑
j=1

(τj + j)xij ≤ xio, i = 1, , I,

J∑
j=1

τjvrj ≥ vro, r = 1, , R,

J∑
j=1

τjwmj = φowmo,m = 1, ,M,

J∑
j=1

(τj + κj) = 1,

τj , µj ≥ 0, j = 1, , J,

φ0 is free.

(3.3)

Therefore, the linear programming model or the

dual form of Model (3.3) computes the efficiency
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of Stage 1 for DMUo, as depicted below:

E⋆Stage1
o = max

R∑
r=1

frvro+ u(1)o

s.t.

M∑
m=1

gmwmo +

I∑
i=1

hixio = 1,

I∑
i=1

hixij + u
(1)
0 ≤ 0, j = 1, , J,

R∑
r=1

frvrj −
M∑

m=1

gmwmj −
I∑

i=1

hixij

+ u
(1)
0 ≤ 0, j = 1, , J,

f (1)
r , hi ≥ 0, gm are free in sign ∀r, i,m.

(3.4)

In the aforementioned model, the optimal ob-

jective value 0 < E⋆Stage1
o ≤ 1 indicates the

optimal efficiency score of Stage 1, whereas

h⋆i , f
⋆
r , g

⋆
m ∀i, r,m represent the corresponding

optimal weights.

Definition 3.1. The first sub-section of DMUo

is said to be efficient if and only if E⋆Stage
o = 1;

Otherwise, it is considered inefficient.

Stage 2

The production technology set for Stage 2 can

be expressed based on the structure depicted in

Figure 1 as follows:

TStage2 = {(v, z, y) :
J∑

j=1

µjvrj ≥ vro, r = 1, , R,

J∑
j=1

µjzsj ≤ zso, s = 1, , S,

J∑
j=1

µjytj ≥ yto, t = 1, , T,

J∑
j=1

µj = 1,

µj ≥ 0, j = 1, , J}

(3.5)

In the above technology, µj is an unknown vari-

able. It is noteworthy that the two stages of this

technology are interconnected through an inter-

mediate measure, denoted as vj which is deemed

desirable. As vj is a useful indicator that can be

employed by the system, it is reasonable to in-

crease its value system-wide.

To assess the efficiency of Stage 2, we retain the

efficiency score achieved in Stage 1 (E⋆Stage1
o )

while striving to enhance the desirable final out-

puts. Furthermore, we assume that the weights

assigned to the desirable intermediate measure vj
in Stage 1 correspond to those utilized in Stage

2. Consequently, we ascertain the efficiency score

of Stage 2 for DMUo by employing the following

linear programming model:

maxβ0

s.t.

J∑
j=1

µjvrj ≥ vro, r = 1, , R,

J∑
j=1

µjzsj ≤ zso, s = 1, , S,

J∑
j=1

µjytj ≥ beta0yto, t = 1, , T,

J∑
j=1

µj = 1,

beta0 ≥ 1, µj ≥ 0, j = 1, , J

(3.6)

Likewise, the dual form of Model (6) calculates

the efficiency of Stage 2 for

E⋆Stage2
o = min

S∑
s=1

kszso+ u(2)o

s.t.

T∑
t=1

ptyto +

R∑
r=1

frvro = 1,

S∑
s=1

kszsj −
T∑
t=1

ptyti −
R∑

r=1

frvrj

+ u
(2)
0 ≥ 0, j = 1, ..., J

R∑
r=1

frvrj −
M∑

m=1

gmwmj −
I∑

i=1

hixij

+ u
(1)
0 ≤ 0, j = 1, , J,

(3.7)
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I∑
i=1

hixij + u
(1)
0 ≤ 0j = 1, , J,

R∑
r=1

frvro −
I∑

i=1

hixio + u
(1)
0 = E⋆Stage1

o

fr, ks, pt, hi ≥ 0, ∀r, s, t, i,
gmis free in sign ∀m.

In Model (7), the optimal objective value

E⋆Stage2
o ≥ 1 indicates the optimal efficiency score

of Stage 1, whereas h⋆i , f
⋆
r , g

⋆
m, p⋆t , k

⋆
s∀i, r,m, t, s

represent the corresponding optimal weights. It

is noteworthy that the fifth constraint guarantees

the maintenance of efficiency during the first

stage.

Definition 3.2. The second sub-section of

DMUo is said to be efficient if and only if

E⋆Stage2
o = 1; Otherwise, it is considered ineffi-

cient.

3.2 Estimation of the effects of contex-
tual variables

After calculating the efficiency of each sub-section

of DMUo, we employ the following regression

model to examine the influence of contextual vari-

ables on the aforementioned efficiency:

log10(E
⋆Sub−DMU
j ) =

β0 +

N∑
n=1

βncnj + ϵo; j = 1, , J
(3.8)

In the aforementioned regression model, the in-

tercept and error terms are represented by βn :

n = 1, , N and ϵo, respectively. The coefficients

βn are associated with the contextual variables

(cnj : n = 1, , N), which can have positive or

negative values. The positive or negative coeffi-

cients of βn in Equation 3.8 indicate the direct

or inverse effect of the contextual variable on the

performance of the unit under evaluation. This

model performs regression analysis by regressing

the base-10 logarithm of the efficiency of each

component of DMUj : j = 1, , J on the contex-

tual variables.

In practical application, the efficiency score of

each sub-section is measured by considering its

inputs and outputs, and any contextual factors

that may affect performance are removed from

the estimated efficiency. The resulting modified

efficiency score is then used to determine the ef-

ficiency of subsequent stages. The modified effi-

ciencies of both stages are denoted as Ẽ⋆Stage1
o ,

and Ẽ⋆Stage2
o . It should be noted that in Model

(7), the efficiency of Stage 2 of DMUo is op-

timized while keeping the modified efficiency of

Stage 1 (Ẽ⋆Stage1
o ) unchanged.

4 An application for airports as-
sessment

The proposed methodology is implemented us-

ing a dataset consisting of 39 Spanish airports,

as documented by Lozano et al. [14]. Figure

3 presents a graphical representation illustrating

the configuration of each airport. As depicted in

Figure 3: The airport structure.

Figure 4: Stage 1 efficiency changes and its mod-
ified efficiency.

Figure 3, the structure of each of the 39 airports is

divided into two distinct stages: a primary stage

comprising the aircraft movement process (Stage
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1), and a secondary stage encompassing the air-

craft loading process (Stage 2). The correspond-

ing inputs, outputs, and contextual variables of

both stages are listed below.

• Stage 1: Aircraft movement process

Input:

Number of boarding gates (BOARDG).

Desirable output:

Aircraft Traffic Movement (ATM).

Undesirable output:

Number of delayed flights (NDF), Accumu-

lated flight delays (ADF).

Contextual variables:

Apron capacity (APROAN), Total runway

aria (RUNAREA).

• Stage 2: Aircraft loading process

Input:

Number of baggage belts (BAGB), Number

of check-in counters (CHECKIN).

Desirable output:

Annual passenger movements (APM), Cargo

handled (CARGO).

It is noteworthy that Air Traffic Management

(ATM) serves as an intermediate measure, play-

ing both input and output roles in the introduced

structure.

In the following section, the dataset, comprising

inputs, outputs, and contextual variables, is col-

lected and presented in Table 1.

4.1 Efficiency results

In the initial phase, the efficiency of the first

component of 39 airports was determined using

a single input factor (BORDAGE), one desirable

output factor (ATM), and two undesirable out-

put factors (NDF, ADF) through the utilization

of Model (4). It is important to note that the

aircraft movement process was designated as the

leader in Stage 1, while the aircraft loading pro-

cess was regarded as the follower in Stage 2. Sub-

sequently, in the second step, the logarithm in

base 10 of the efficiency scores of the first compo-

nent for all 39 airports was regressed on contex-

tual variables (APRON, RUNAREA), as speci-

fied in the following model:

Log10(E
∗Stage1) = β0 + β1(”APRON”)

+ β2(”RUNAREA”) + ϵo

According to the findings of the aforementioned

regression model, the influence of the contextual

variables mentioned was found to be eliminated

from the efficiency value of the first component.

As a result, the modified efficiencies obtained

were retained and utilized to assess the perfor-

mance of the second component in 39 airports,

using Model (7). The outcomes of these proce-

dures have been gathered in Tables 2 and 3, which

will be explained in Table 2.

Based on the findings presented in Table 2, it

becomes evident that 15 airports demonstrate ef-

ficiency in the aircraft movement process (stage

1). Nevertheless, the revised performance val-

ues in the third column signify that there have

been alterations in the performance of these units.

Specifically, certain units have exhibited an in-

crease in efficiency, whereas others have experi-

enced a decrease following the refinement. The

modified efficiency value reflects the actual per-

formance of the first component in airports. In

essence, a higher value of modified efficiency sig-

nifies a superior performance of the first compo-

nent in comparison to other airports, whereas a

lower value indicates poorer performance.

To illustrate, among the efficient airports, only

the 21st airport has demonstrated enhanced per-

formance in its first component, indicating that

it outperforms the first component of other air-

ports. On the other hand, some efficient airports

have experienced a decline in efficiency after the

correction, thereby exhibiting the weakest perfor-

mance among the efficient units. It is worth not-

ing that changes in efficiency, whether an increase

or decrease, do not solely affect efficient units; the

efficiency of inefficient units is also impacted.

After the refinement process, the performance of

the first components of Airports 1, 2, 4, 5, 6, 11,

19, 24, 25, 30, 31, 35, 37, 38, and 39 has increased,

while that of Airports 3, 8, 10, 14, 18, 20, 27, 32,

and 33 has decreased. These fluctuations in the

efficiency values indicate improvements or deteri-

orations in the actual performance of these units,
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Table 1: The inputs, outputs and contextual variables.

Airport Boardg Ndf Adf Atm Bagb Chechin APM Cargo Apron Runarea

Airport x w1 w2 v z1 z2 y1 y2 c1 c2

1 4 1218 23783.4 17.719 3 10 1174.97 283.571 5 87300
2 2 58 1376.5 2.113 1 4 19.254 8.924 2 162000
3 16 7642 142446 81.097 9 42 9578.3 5982.313 31 135000
4 5 1114 20149.1 18.28 4 17 1024.3 21.322 15 144000
5 9 1310 23893.5 18.371 3 11 1530.25 139.465 7 99000
6 2 137 2365.4 4.033 1 4 81.01 0 1 171000
7 65 33036 645925 321.693 19 143 30272.1 103996.49 121 475000
8 12 4592 80848.2 61.682 7 36 4172.9 3178.758 21 207000
9 1 14 254.4 9.604 0 1 22.23 0 23 62100
10 2 27 641.6 4.775 1 5 195.425 171.717 3 37500
11 10 3920 72179.7 44.552 8 34 4492 2722.661 34 153000
12 7 4992 100306 49.927 3 18 5510.97 184.127 17 108000
13 38 7463 136381 116.252 19 86 10212.1 33695.248 55 139500
14 3 951 17868.8 19.279 3 12 1422.01 66.889 11 134550
15 12 6193 152840 57.233 8 48 4647.36 3928.387 25 126000
16 5 1174 19292.2 50.551 3 13 1303.82 90.428 9 103500
17 2 17 420.7 3.393 1 5 41.89 7.863 3 45000
18 5 423 8286 20.109 2 13 1151.36 1277.264 5 99000
19 16 5104 101686 53.375 8 49 5438.18 5429.589 24 108000
20 2 442 7191.5 5.705 1 3 123.183 15.979 5 94500
21 230 52526 908361 469.746 53 484 50846.5 329186.63 263 917000
22 30 15548 277664 119.821 16 85 12813.5 4800.271 43 144000
23 2 218 2979.6 10.959 1 4 314.643 386.34 5 64260
24 5 1344 24103.1 19.339 4 18 1876.26 2.73 5 138000
25 68 26038 501486 193.379 16 204 22832.9 21395.791 86 295650
26 2 666 11691.8 12.971 1 4 434.477 52.942 7 99315
27 5 943 18240.8 26.676 3 8 1278.07 119.848 5 110475
28 2 427 6626.1 12.45 2 4 60.103 0 6 150000
29 3 713 11184 12.282 2 6 403.191 63.791 6 78930
30 5 1004 17842 19.198 2 8 856.606 37.482 8 104400
31 12 2007 34322.3 21.945 5 19 1917.47 2418.798 16 144000
32 3 1095 19547.6 14.584 2 6 594.952 21438.894 12 302310
33 10 2567 51084.9 65.067 6 42 4392.15 6102.264 23 151200
34 16 1783 32637 67.8 5 37 4236.62 20781.674 16 153000
35 22 5254 110819 60.779 14 87 8251.99 8567.093 44 144000
36 18 4998 102719 96.795 8 42 5779.34 13325.799 35 144000
37 5 843 14760.6 13.002 2 8 479.689 34.65 7 180000
38 6 1535 25593.6 17.934 3 12 1278.76 1481.939 8 108000
39 3 669 11585.8 12.225 2 7 67.818 34989.727 18 157000

respectively.

Therefore, based on the aforementioned findings,

it can be inferred that Airport 21 exhibits the

best performance in the first component, while

Airport 32 displays the weakest performance.

The efficiency values of the second component for

the 39 airports are presented in the fourth col-

umn of Table 2. The results reveal that certain

airports demonstrate efficient or inefficient per-

formance in both components, while others ex-

hibit efficiency in only one component. Specifi-

cally, airports 7, 9, 12, 16, and 21 demonstrate

efficiency in both components, whereas airports

32 and 39 are only efficient in their second com-

ponent. Notably, the second airport obtains the

lowest efficiency value among all the airports’ sec-
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Table 2: The results of efficiencies.

Airport E⋆Stage1 Ẽ⋆Stage1 E⋆Stage2

1 0.5016 0.6242 1.9163
2 0.523 0.5591 9.3751
3 0.8658 0.7983 1.0717
4 0.3946 0.6093 3.0418
5 0.2358 0.6835 1.8993
6 0.5537 0.5547 4.8587
7 1 0.8949 1
8 0.7301 0.6476 1.5862
9 1 0.9012 1
10 0.8577 0.78 4.3771
11 0.5216 0.6698 1.9096
12 1 0.8457 1
13 1 0.9442 1.7375
14 0.7469 0.679 2.0243
15 1 0.8575 2.1138
16 1 0.8232 1
17 1 0.8497 6.849
18 0.9318 0.7763 1.9877
19 0.3948 0.6668 2.1426
20 0.9043 0.7653 2.7863
21 1 1.0086 1
22 1 0.9018 1.4659
23 1 0.8411 1.6948
24 0.4466 0.5798 2.6732
25 0.6625 0.7635 1.1225
26 1 0.82 1.4249
27 0.706 0.662 1.1318
28 1 0.777 1.5936
29 1 0.8328 2.0596
30 0.4015 0.6171 1.5949
31 0.1918 0.7231 2.4383
32 0.7552 0.554 1
33 0.9968 0.8294 1.6151
34 1 0.8071 1.3176
35 0.491 0.7049 2.3242
36 1 0.8758 1.1471
37 0.2979 0.5805 2.4284
38 0.3954 0.6148 2.1257
39 0.534 0.6169 1

ond components.

Figure 2 provides a detailed illustration of the

modifications that have occurred in the efficiency

values of the initial component. These changes

vary in magnitude, with airports 6 and 31 expe-

riencing the least and most significant changes,

respectively. It is worth noting that the efficiency

of the first component has increased for both air-

ports after the modification. Additionally, the

28th airport exhibits the highest reduction in ef-

ficiency among all the airports.

4.2 Regression analysis

Table 3 displays the coefficients related to the

efficiency value and their corresponding contex-

tual variables. Positive coefficients indicate a di-

rect relationship between efficiency and the con-

textual variable, while negative coefficients sug-
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Table 3: Regression results of logarithm of the stage 1 efficiency on the contextual variables.

Variables Coefficients Standard Error t- Stat P-value

Intercept -0.12468394 0.05988725 -2.08197802 0.04451321
APRON 0.00324548 0.00185813 1.74663382 0.08922918
RUNAREA -0.00000079 0.00000058 -1.35258101 0.18462467
R-Square 0.0904 0.0904 0.0904 0.0904
Standard Error 0.1938 0.1938 0.1938 0.1938

gest an inverse relationship. The study’s findings

are noteworthy in that they have revealed a sta-

tistically significant positive association between

the airport’s APRON and efficiency. Addition-

ally, the study has identified a negative correla-

tion between the airport’s RUNAREA and effi-

ciency, which suggests that increasing the runway

area may result in decreased efficiency. The co-

efficient of 0.00324548 for APRON denotes that

a one-unit increase in this variable results in a

100 × (e0.00324548 − 1) = 0.325 change in effi-

ciency. This coefficient indicates that the vari-

able APRON is nearly statistically significant.

Furthermore, the coefficient of −0.000000079 for

RUNAREA suggests that a one-unit increase in

this variable leads to a −7.910−6 change in ef-

ficiency. Furthermore, the R-Square value of

approximately 0.09 suggests that the regression

model accounts for more than 9% of the observa-

tions.

5 Conclusion

This study presents a novel two-stage method-

ology for evaluating two-stage network struc-

tures that consider contextual variables along

with firm-specific inputs and outputs, which

can have a substantial impact on firm perfor-

mance. The first stage involves estimating the

efficiency values of sub-sections within the afore-

mentioned two-stage network structure using the

non-cooperative method. Subsequently, to en-

hance the network-specific relative efficiency, the

estimated efficiency scores were regressed against

the contextual variables using the OLS method.

The proposed theoretical framework was then ap-

plied to analyze the performance of 39 Spanish

airports. The results of our study indicate that

the variables APRON and RUNAREA have a sig-

nificant impact on airport efficiency. Specifically,

we found a positive association between APRON

and airport efficiency, while RUNAREA exhib-

ited a negative association.
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