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Abstract 

A new numerical algorithm is proposed for solving ordinary differential equations. The 

algorithm is names as Residue Annihilation Method (RAM). The method does not require 

transfer of the equation into a first order system of equations. For a k’th order nonlinear 

ordinary differential equation, a parametric solution containing k+2 parameters are assumed 

as an initial step. By imposing the compatibility conditions together with the annihilation of 

the residue and its first derivative, a nonlinear system with k+2 equations are obtained. 

Solving the system yields a recursive relation for the parameters. The assumed parameter 

values therefore vary at each integration step. Evaluating the parametric solution at each 

integration step yields the discrete numerical solution. A continuous approximate solution 

valid throughout the whole domain can also be expressed in terms of the Gamma Interval 

Functions. Sample ordinary differential equations up to third order derivatives are treated with 

the new method. The method can be applied to initial value problems directly and to boundary 

value problems when combined with shooting techniques. Depending on the assumed 

parametric solution, better convergence can be achieved to the real solution. The convergence 

rate for the algorithm is O(h2), h being the step size. By including higher order derivatives of 

the residue, convergence rate can be increased. 
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1. Introduction 

Most of the nonlinear ordinary differential equations and even the linear ones with variable 

coefficients do not possess closed form functional solutions. Lie Group Theory is a systematic 

way of producing exact closed form solutions for especially nonlinear differential equations 

[1-3]. The method relies on the symmetry properties of the differential equations with respect 

to the Lie Group transformations. Although the method is intended to produce purely 

analytical solutions, the transformed equations may need numerical techniques for retrieving 

the final solutions.  Approximate analytical or numerical solutions are inevitable if the 

equation does not possess an exact analytical solution. One of the oldest and most common 

analytical techniques is to solve the equations with a perturbation series which is asymptotic 

in nature and depends on the small parameter assumption [4]. To overcome the limitations of 

the small parameter assumption, perturbation-iteration techniques were developed in the last 

decades [5-7] and successfully applied to many mathematical physics problems [8-15] with a 

conclusion that the method is effective, straightforward and produced convergent solutions to 

the real problems.  

The alternative to the analytical and semi-analytical techniques is the purely numerical 

techniques in search of discrete solutions of the differential equations. The Euler, modified 

Euler and Runge Kutta methods are well established and discussed in standard textbooks [16]. 

An excellent handbook discussing briefly both analytical and numerical methods for 

differential equations is due to Zwillinger [17]. A class of solutions which have been treated 

in the literature extensively is the collocation methods [17-26]. The method can be considered 

as a semi-analytical method in which the assumed form of the solution is required to satisfy 

the conditions and the original equation at some discrete points called collocation points [17]. 

Usually, some base functions are selected with parameters being their coefficients. The 

coefficients are determined by the requirement that the approximate solution satisfies the 

equation at some collocation points and convergence is achieved by taking more terms for the 

base functions. The parameters which are calculated from the linear system of equations are 

constants and do not vary within the domain of interest. Variations of the method and 

adaptation to specific equations exist extensively in the literature. Yahaya and Badmus [18] 

used polynomial type base functions to treat second order differential equations with a self-

starting hybrid block method. For the implementation of the method to boundary value 

problems, see Russell and Shampine [19]. A new Tau method was presented to solve 

differential equations of polynomial form with respect to the solution function and its 

derivatives [20]. A block hybrid collocation method was developed for third order ordinary 

differential equations [21]. Daşcıoğlu & İşler [22] developed a collocation method based on 

Bernstein polynomials. Chebyshev series were used as base functions in the collocation 

method [23]. Legendre-Gauss interpolation was incorporated into the collocation methods 

[24]. Morgan-Voyce polynomials were employed for solving nonlinear differential equations 

with quadratic and cubic terms [25]. Stiff initial value problems and Fredholm integral 

equations were solved with a special local collocation method [26].  

In this work, a new version of the collocation method is presented and the method is named 

as “Residue Annihilation Method” (RAM) to distinguish the method from the previous ones. 

A form of solution is assumed as an initial guess with sufficient number of parameters. If the 

equation is k’th order, then k+2 parameters are needed in the assumed solution. Imposing the 

compatibility conditions at each integration step together with annihilation of the residue and 

its first derivative, a nonlinear algebraic system of equations for parameters are derived and 

the solutions lead to recursive expressions for the parameters. Since parameters alter at each 
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integration step, a simpler assumed solution is sufficient to determine the approximate 

solution. The differences between the standard collocation method (CM) and the new method 

are: 1) Parameters are coefficients of base functions in CM whereas one does not require such 

a condition in RAM. The parameters may be coefficients or implicit arguments of the 

functions. 2) Base functions are selected and convergence is achieved by increasing the 

number of base functions whereas in RAM relatively simpler functions can be selected and 

convergence is achieved locally through variation of the parameters, not the base functions. 

3) Collocation methods are more suitable for boundary value problems whereas RAM is a 

solver of initial value problems. 4) Parameters are solved for given collocation points once 

and they are not altered in the solution whereas in RAM, piecewise continuous solutions are 

obtained with parameters changing at each integration step.  

The Local Annihilation Method [26] (LAM) proposed by Abdollahi and Babolian is closer to 

our work in the sense that they also used piecewise continuous functions and allowed variation 

of the parameters. However, the parameters are coefficients of base functions whereas one 

does not require such condition in RAM. Depending on the assumed form of solution, 

nonlinear algebraic equations appear for the parameters in RAM whereas in LAM, linear 

systems of equations are retrieved. One of the advantages of the method is that by defining a 

Gamma Interval Function (GIF), the solutions can be expressed as continuous solutions not 

as discrete solutions as in the case of standard numerical techniques.   

 

2. Residue Annihilation Method 

The essential steps of the algorithm are outlined in this section. Consider a k’th order nonlinear 

ordinary differential equation  

 𝐹(𝑥, 𝑦, 𝑦′, 𝑦′′, … , 𝑦(𝑘)) = 0       (2.1) 

having initial conditions  

 𝑦(𝑗)(0) = 𝛼𝑗 , 𝑗 = 0,1,2 … 𝑘 − 1     (2.2) 

with 𝑦(0) = 𝑦 and 𝑦(𝑗) =
𝑑𝑗𝑦

𝑑𝑥𝑗. The algorithm is: 

A1) Assume a solution of the form 

 𝑦 = 𝑢(𝑥, 𝑎𝑗), 𝑗 = 0,1,2, … , 𝑘 + 1      (2.3) 

possessing totally k+2 parameters. The parameters need not be coefficients of some base 

functions rather, they may appear as arguments inside the functions.  

A2) At each integration step i, the compatibility conditions, annihilation of the residue 

and its first derivative yields 

𝑢𝑖
(𝑗)(𝑥𝑖) = 𝑢𝑖−1

(𝑗) (𝑥𝑖) , 𝑗 = 0,1,2 … 𝑘 − 1;    𝑖 = 0,1,2, … 𝑛 (2.4) 

𝑅𝑖
(𝑗)(𝑥𝑖) = 0 , 𝑗 = 0,1;    𝑖 = 0,1,2, … 𝑛   (2.5) 

where 𝑥𝑖 = 𝑖ℎ for a constant step size h. Therefore, for each integration step i, one has k+2 

nonlinear algebraic equations to be solved in terms of the parameters.  

A3) Solve the system (2.4) and (2.5) as a recursive relation  

𝑎𝑖𝑗 = 𝑔(𝑎𝑖−1𝑚), 𝑖 = 1,2, … 𝑛;  𝑗 = 0,1,2 … 𝑘 + 1;   𝑚 = 0,1,2 … 𝑘 + 1  (2.6) 
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A4) Determine 𝑎0𝑗 from the initial conditions, Residue equation and its first derivative.  

A5) The approximate discrete solution at each point 𝑥𝑖 is  

𝑢𝑖(𝑥𝑖, 𝑎𝑖𝑗), 𝑖 = 0,1,2, … 𝑛;   𝑗 = 0,2, … , 𝑘 + 1     (2.7) 

A6) The continuous solution over the whole domain of interest in terms of the Gamma 

Interval Function is  

𝑢 = ∑ 𝑢𝑖(𝑥)𝛾[𝑥𝑖, 𝑥𝑖+1)(𝑥)𝑛
𝑖=0      (2.8) 

where GIF is defined as 

𝛾[𝑎, 𝑏)(𝑥) = {
1 𝑎 ≤ 𝑥 < 𝑏
0 𝑥 < 𝑎, 𝑥 ≥ 𝑏

         (2.9) 

If one needs to increase the rate of convergence, then higher order derivatives of the residue 

may be included with each inclusion increasing the number of parameters in the assumed 

solution by one for consistency. The rate of convergence is more specifically discussed in the 

subsequent sections.  

 

3. Differential Equations up to Second Order 

Three sample problems will be treated numerically by the method. All problems possess exact 

solutions for the intent of testing the algorithm.  

Sample Problem 1 

Consider the first order differential equation 

 𝑦′ − 2𝑥𝑦 = 0 , 𝑦(0) = 1      (3.1) 

which has an exact solution for the given initial condition 

 𝑦𝑒(𝑥) = 𝑒𝑥2
         (3.2) 

To apply the algorithm, the assumed form of solution requires three parameters  

𝑢𝑖(𝑥) = 𝑎𝑖𝑒
𝑏𝑖𝑥 + 𝑐𝑖  ,    𝑖 = 0,1,2, … 𝑛   (3.3) 

Equations (2.4) and (2.5) lead to  

  𝑎𝑖𝑒
𝑏𝑖𝑥𝑖 + 𝑐𝑖 = 𝑎𝑖−1𝑒𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1          (3.4) 

  𝑎𝑖𝑒
𝑏𝑖𝑥𝑖(𝑏𝑖 − 2𝑥𝑖) − 2𝑥𝑖𝑐𝑖 = 0          (3.5) 

  𝑎𝑖𝑒
𝑏𝑖𝑥𝑖(𝑏𝑖

2 − 2 − 2𝑥𝑖𝑏𝑖) − 2𝑐𝑖 = 0          (3.6) 

where 𝑥𝑖 = 𝑖ℎ for a constant step size h. Solving the nonlinear algebraic equations by 

elimination method, the recursive relations are 

𝑏𝑖 =
1+2𝑥𝑖

2

𝑥𝑖
        (3.7) 

𝑎𝑖 =
2𝑥𝑖

𝑏𝑖
𝑒−𝑏𝑖𝑥𝑖(𝑎𝑖−1𝑒𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1)     (3.8) 

𝑐𝑖 = −𝑎𝑖𝑒
𝑏𝑖𝑥𝑖 + 𝑎𝑖−1𝑒𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1     (3.9) 
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The initial condition, the Residue equation and its first derivative require 

𝑎0 = 0,     𝑏0 = 0,    𝑐0 = 1          (3.10) 

Note that (3.7), (3.9) must be calculated in order. The discrete solution at each station 𝑥𝑖 is 

then 

𝑢𝑖(𝑥𝑖 ) = 𝑎𝑖𝑒
𝑏𝑖𝑥𝑖 + 𝑐𝑖 ,    𝑖 = 0,1,2, … 𝑛      (3.11) 

The continuous approximate solution valid throughout the whole domain of interest is  

𝑢(𝑥) = ∑ (𝑎𝑖𝑒
𝑏𝑖𝑥 + 𝑐𝑖)𝛾[𝑥𝑖, 𝑥𝑖+1)(𝑥)𝑛

𝑖=0         (3.12) 

To identify the differences between the exact and approximate solution visually, a fairly large 

step size is chosen, i.e., ℎ = 0.1, in Figure 1.  

 
Figure 1. Comparison of approximate and exact results for sample problem 1 (ℎ = 0.1) 

The maximum error is defined as 

𝑒𝑚 = max
0≤𝑖≤𝑛

|𝑦𝑒(𝑥𝑖) − 𝑢𝑖(𝑥𝑖)|          (3.13) 

For various step sizes, the maximum errors are listed in Table 1.  

Table 1. Maximum Errors for Sample Problem 1 

h 𝑒𝑚 

0.1 0.0101 

0.01 1.4947 10-4 

0.001 3.5929 10-6 

The maximum errors are approximately proportional to 𝑂(ℎ2).  

Sample Problem 2 

Consider the nonlinear first order differential equation 

 𝑦′ + 𝑦2 = 0 ,  𝑦(0) = 1         (3.14) 

with an exact solution  
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 𝑦𝑒(𝑥) =
1

1+𝑥
             (3.15) 

The three-parameter solution   

𝑢𝑖(𝑥) = 𝑎𝑖𝑒
𝑏𝑖𝑥 + 𝑐𝑖  ,    𝑖 = 0,1,2, … 𝑛       (3.16) 

is selected as our approximate solution. Equations (2.4) and (2.5) lead to  

  𝑎𝑖𝑒
𝑏𝑖𝑥𝑖 + 𝑐𝑖 = 𝑎𝑖−1𝑒𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1        (3.17) 

  𝑎𝑖𝑏𝑖𝑒
𝑏𝑖𝑥𝑖 + (𝑎𝑖𝑒

𝑏𝑖𝑥𝑖 + 𝑐𝑖)
2 = 0        (3.18) 

  𝑏𝑖 + 2𝑎𝑖𝑒
𝑏𝑖𝑥𝑖 + 2𝑐𝑖 = 0              (3.19) 

where 𝑥𝑖 = 𝑖ℎ for a constant step size h. Solving the nonlinear algebraic equations by 

elimination method, the recursive relations are 

𝑏𝑖 = −2(𝑎𝑖−1𝑒𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1)          (3.20) 

𝑐𝑖 = −
𝑏𝑖

4
            (3.21) 

𝑎𝑖 = − (𝑐𝑖 +
𝑏𝑖

2
) 𝑒−𝑏𝑖𝑥𝑖          (3.22) 

The initial condition, the Residue equation and its first derivative require 

𝑎0 =
1

2
,     𝑏0 = −2,    𝑐0 =

1

2
          (3.23) 

The discrete solution is then 

𝑢𝑖(𝑥𝑖 ) = 𝑎𝑖𝑒
𝑏𝑖𝑥𝑖 + 𝑐𝑖  ,    𝑖 = 0,1,2, … 𝑛     (3.24) 

with the corresponding continuous approximate solution being 

𝑢(𝑥) = ∑ (𝑎𝑖𝑒
𝑏𝑖𝑥 + 𝑐𝑖)𝛾[𝑥𝑖, 𝑥𝑖+1)(𝑥)𝑛

𝑖=0        (3.25) 

To distinguish the curves from each other, the step size is chosen as ℎ = 0.5 in Figure 2.  

 
Figure 2. Comparison of approximate and exact results for sample problem 2 (ℎ = 0.5) 
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For various step sizes, the maximum errors are listed in Table 2.  

Table 2. Maximum Errors for Sample Problem 2 

h 𝑒𝑚 

0.5 0.0173 

0.1 5.3590 10-4 

0.01 4.9795 10-6 

The maximum errors are approximately proportional to 𝑂(ℎ2).  
Sample Problem 3 

Consider the second order differential equation 

 (1 + 𝑥)𝑦′′ + 𝑦′ = 0 , 𝑦(0) = 0,    𝑦′(0) = 1      (3.26) 

with an exact solution  

 𝑦𝑒(𝑥) = 𝑙𝑛 (1 + 𝑥)            (3.27) 

Since the equation is second order, one needs four parameters in the assumed solution  

𝑢𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑒
𝑑𝑖𝑥  ,    𝑖 = 0,1,2, … 𝑛      (3.28) 

The algebraic equations to be solved are 

  𝑎𝑖 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑒
𝑑𝑖𝑥𝑖 = 𝑎𝑖−1 + 𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1𝑒𝑑𝑖−1𝑥𝑖      (3.29) 

  𝑏𝑖 + 𝑐𝑖𝑑𝑖𝑒𝑑𝑖𝑥𝑖 = 𝑏𝑖−1 + 𝑐𝑖−1𝑑𝑖−1𝑒𝑑𝑖−1𝑥𝑖       (3.30) 

  𝑏𝑖 + ((1 + 𝑥𝑖)𝑑𝑖 + 1)𝑐𝑖𝑑𝑖𝑒𝑑𝑖𝑥𝑖 = 0        (3.31) 

  (1 + 𝑥𝑖)𝑑𝑖 + 2 = 0          (3.32) 

The solutions are  

𝑑𝑖 = −
2

1+𝑥𝑖
            (3.33) 

𝑐𝑖 =
𝑒−𝑑𝑖𝑥𝑖

2𝑑𝑖
 (𝑏𝑖−1 + 𝑐𝑖−1𝑑𝑖−1𝑒𝑑𝑖−1𝑥𝑖)        (3.34) 

𝑏𝑖 = −𝑐𝑖𝑑𝑖𝑒
𝑑𝑖𝑥𝑖 + 𝑏𝑖−1 + 𝑐𝑖−1𝑑𝑖−1𝑒𝑑𝑖−1𝑥𝑖         (3.35) 

𝑎𝑖 = −𝑏𝑖𝑥𝑖 − 𝑐𝑖𝑒
𝑑𝑖𝑥𝑖 + 𝑎𝑖−1 + 𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1𝑒𝑑𝑖−1𝑥𝑖       (3.36) 

The initial values for the parameters are 

𝑎0 =
1

4
,     𝑏0 =

1

2
,    𝑐0 = −

1

4
 ,   𝑑0 = −2        (3.37) 

The discrete solution is then 

𝑢𝑖(𝑥𝑖 ) = 𝑎𝑖 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑒
𝑑𝑖𝑥𝑖   ,    𝑖 = 0,1,2, … 𝑛     (3.38) 

with the corresponding continuous solution being 

𝑢(𝑥) = ∑ (𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑒
𝑑𝑖𝑥 )𝛾[𝑥𝑖, 𝑥𝑖+1)(𝑥)𝑛

𝑖=0       (3.39) 

To distinguish the curves from each other, the step size is chosen as ℎ = 0.2 in Figure 3.  
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Figure 3. Comparison of approximate and exact results for sample problem 3 (ℎ = 0.2) 

For various step sizes, the maximum errors are listed in Table 3.  

Table 3. Maximum Errors for Sample Problem 3 

h 𝑒𝑚 

0.2 0.0132 

0.02 1.2749 10-4 

0.002 1.2687 10-6 

The maximum errors are proportional to 𝑂(ℎ2). Note that the functional value of any 

intermediate point not calculated numerically can be evaluated with the aid of the continuous 

function (3.39). 

 

4. Blasius Equation 

Blasius equation is one of the most famous equations in fluid dynamics derived from the 

boundary layer equations of a fluid flowing over a plate. The equation is third order and the 

problem is essentially a boundary value problem, not an initial value problem. The equation 

will be solved with the new numerical technique 

 𝑓′′′ +
1

2
𝑓𝑓′′ = 0 , 𝑓(0) = 0,    𝑓′(0) = 0,𝑓′(∞) = 1  (4.1) 

The problem can be converted into an initial value problem by replacing  

 𝑓′′(0) = 𝛼        (4.2) 

with the last condition at infinity. 𝛼 is determined by trial and error (Shooting technique) so 

that the last condition is satisfied at a fairly large value. The method requires an initial solution 

with five parameters. One of the simplest choices is to try a polynomial function 

 𝑓𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥
2 + 𝑑𝑖𝑥3 + 𝑒𝑖𝑥

4    (4.3) 

The coefficients are found as 
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 𝑒𝑖 =
𝑓𝑖

′′

96
(𝑓𝑖

2 − 2𝑓𝑖
′)       (4.4) 

 𝑑𝑖 = −4𝑒𝑖𝑥𝑖 −
1

12
𝑓𝑖𝑓𝑖

′′       (4.5) 

 𝑐𝑖 = −3𝑑𝑖𝑥𝑖 − 6𝑒𝑖𝑥𝑖
2 +

1

2
𝑓𝑖

′′      (4.6) 

 𝑏𝑖 = −2𝑐𝑖𝑥𝑖 − 3𝑑𝑖𝑥𝑖
2 − 4𝑒𝑖𝑥𝑖

3 + 𝑓𝑖
′     (4.7) 

 𝑎𝑖 = −𝑏𝑖𝑥𝑖 − 𝑐𝑖𝑥𝑖
2 − 𝑑𝑖𝑥𝑖

3 − 𝑒𝑖𝑥𝑖
4 + 𝑓𝑖    (4.8) 

where 𝑓𝑖, 𝑓𝑖
′ and 𝑓𝑖

′′ are all known functions defined by 

 𝑓𝑖 = 𝑎𝑖−1 + 𝑏𝑖−1𝑥𝑖 + 𝑐𝑖−1𝑥𝑖
2 + 𝑑𝑖−1𝑥𝑖

3 + 𝑒𝑖−1𝑥𝑖
4       (4.9) 

 𝑓𝑖
′  = 𝑏𝑖−1 + 2𝑐𝑖−1𝑥𝑖 + 3𝑑𝑖−1𝑥𝑖

2 + 4𝑒𝑖−1𝑥𝑖
3        (4.10) 

 𝑓𝑖
′′  = 2𝑐𝑖−1 + 6𝑑𝑖−1𝑥𝑖 + 12𝑒𝑖−1𝑥𝑖

2         (4.11) 

The initial parameter values are 

𝑎0 = 0,     𝑏0 = 0,    𝑐0 =
𝛼

2
 ,   𝑑0 = 0,   𝑒0 = 0       (4.12) 

The discrete solution is then 

𝑓𝑖(𝑥𝑖 ) = 𝑎𝑖 + 𝑏𝑖𝑥𝑖 + 𝑐𝑖𝑥𝑖
2 + 𝑑𝑖𝑥𝑖

3 + 𝑒𝑖𝑥𝑖
4  , 𝑖 = 0,1,2, … 𝑛    (4.13) 

with the corresponding continuous solution being 

𝑢(𝑥) = ∑ (𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥
2 + 𝑑𝑖𝑥3 + 𝑒𝑖𝑥

4)𝛾[𝑥𝑖 , 𝑥𝑖+1)(𝑥)𝑛
𝑖=0     (4.14) 

The shooting technique dictates an initial value for the second order derivative as 

 𝛼 = 0.3320573           (4.15) 

Results of an adaptive step size Runge-Kutta method with the constant step size Residue 

Annihilation method are contrasted in Figures 4 (f), and 5 (𝑓′). Within the domain of interest, 

both solutions agree well for a step size of ℎ = 0.1 for RAM.  

 
Figure 4. Comparison of RAM and Runge Kutta solutions (f) for the Blasius equation  

(ℎ = 0.1) 
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Figure 5. Comparison of RAM and Runge Kutta solutions (𝑓′) for the Blasius equation  

(ℎ = 0.1) 

Since both solutions are approximate, there is no point to calculate relative errors since the 

exact analytical solution is not available.  

 

5. Improvement in the Convergence Rates 

An improvement in the rate of convergence can be achieved by including higher order 

derivatives of the residues. For this task, reconsider sample problem 1 again.  

 𝑦′ − 2𝑥𝑦 = 0 , 𝑦(0) = 1      (5.1) 

and include second order derivatives of the Residue also. The compatibility equation and the 

residue equations are 

𝑢𝑖(𝑥𝑖) = 𝑢𝑖−1(𝑥𝑖), 𝑅𝑖(𝑥𝑖) = 0, 𝑅𝑖
′(𝑥𝑖) = 0, 𝑅𝑖

′′(𝑥𝑖) = 0, 𝑖 = 0,1,2, … 𝑛 (5.2) 

For simplicity, one may assume a polynomial with four parameters since the equations to be 

solved are four in number,  

𝑢𝑖(𝑥 ) = 𝑎𝑖𝑥
3 + 𝑏𝑖𝑥

2 + 𝑐𝑖𝑥 + 𝑑𝑖  , 𝑖 = 0,1,2, … 𝑛  (5.3) 

Substituting (5.3) into (5.2), the recursive relations for the coefficients are 

 𝑎𝑖 =
𝑢𝑖

′′′

6
        (5.4) 

 𝑏𝑖 =
𝑢𝑖

′′

2
− 3𝑎𝑖𝑥𝑖        (5.5) 

 𝑐𝑖 = 𝑢𝑖
′ − 3𝑎𝑖𝑥𝑖

2 − 2𝑏𝑖𝑥𝑖     (5.6) 

 𝑑𝑖 = 𝑢𝑖 − 𝑎𝑖𝑥𝑖
3 − 𝑏𝑖𝑥𝑖

2 − 𝑐𝑖𝑥𝑖      (5.7) 

Where 
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 𝑢𝑖 = 𝑎𝑖−1𝑥𝑖
3 + 𝑏𝑖−1𝑥𝑖

2 + 𝑐𝑖−1𝑥𝑖 + 𝑑𝑖−1    (5.8) 

 𝑢𝑖
′ = 2𝑥𝑖𝑢𝑖          (5.9) 

 𝑢𝑖
′′ = 2𝑢𝑖 + 2𝑥𝑖𝑢𝑖

′         (5.10) 

 𝑢𝑖
′′′ = 4𝑢𝑖

′ + 2𝑥𝑖𝑢𝑖
′′         (5.11) 

The discrete solution is then 

𝑢𝑖(𝑥𝑖 ) = 𝑎𝑖𝑥𝑖
3 + 𝑏𝑖𝑥𝑖

2 + 𝑐𝑖𝑥𝑖 + 𝑑𝑖  ,  𝑖 = 0,1,2, … 𝑛 (5.12) 

with the corresponding continuous solution being 

𝑢(𝑥) = ∑ (𝑎𝑖𝑥
3 + 𝑏𝑖𝑥

2 + 𝑐𝑖𝑥 + 𝑑𝑖)𝛾[𝑥𝑖 , 𝑥𝑖+1)(𝑥)𝑛
𝑖=0      (5.13) 

Figure 6 shows the comparisons of the approximate and exact solutions for ℎ = 0.1.  

 
Figure 6. Comparison of improved approximate and exact results for sample problem 1 

(ℎ = 0.1) 

The match is excellent. For various step sizes, the maximum errors are listed in Table 4.  

Table 4. Maximum Errors for Improved Solution of Sample Problem 1 

h 𝑒𝑚 

0.1 0.0030 

0.01 3.4751 10-6 

0.001 3.5279 10-9 

The maximum errors are proportional to 𝑂(ℎ3). From the numerical solutions and the 

character of the equations, for a k’th order ordinary differential equation and inclusion of the 

m’th derivatives of the residues, the conclusions are 

• The solution must contain 𝑘 + 𝑚 + 1 parameters 

• The maximum errors are proportional to 𝑂(ℎ𝑚+1). 



IJDEA Vol.4, No.2, (2016).737-749  

M. Pakdemirli, / IJIM Vol.15, No.4, (2024), 346-359 

 

357 
 

• If the recursive relations yield constant solutions for the parameters that do not vary 

depending on the integration steps, then the assumed solution is the exact solution.  

 

6. Concluding Remarks 

A new numerical technique is proposed to solve ordinary differential equations. The method 

is more suitable for initial value problems albeit it can be applied to boundary value problems 

if combined with shooting techniques.  The method can directly be implemented to the 

equation without reduction to system of first order equations as is done in standard numerical 

techniques for initial value problems. An assumed form of solution is proposed which contains 

2 more parameters than the order of the equation. The compatibility conditions, the residue 

equation and its derivative lead to a system of algebraic nonlinear equations which results in 

recursive relations for the parameters. The discrete solution can also be expressed as a 

continuous solution in terms of the Gamma Interval function. It is found that the exact and 

numerical solutions match with each other for fairly large step sizes. The numerical 

simulations reveal that the maximum errors are proportional to ℎ2, ℎ being the step size. The 

third order boundary value problem of Blasius equation is also solved with the method 

displaying a good match with the adaptive step size Runge Kutta method.  

If the number of parameters is increased with an inclusion of residue annihilations of higher 

order derivatives, the convergence rate can be increased. For inclusions up to m’th order 

derivatives of the residue, the order of convergence would be proportional to ℎ𝑚+1 with a 

disadvantage of increasing the computational algebra due to increased number of parameters.    

The implementation of the method to many physical problems may appear in the future.  
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