

Available online at http://sanad.iau.ir/journal/ijim/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol.16, No.4, 2024 Article ID IJIM-1629, 17 pages

Research Article

The Distribution of Randomly Weighted Averages

on Random Independent Vectors with Dirichlet

Distributions

Z. Asghari1*, B. Arasteh2,3, A. Koochari1

1 Department of Computer Engineering, Science and Research Sciences Branch, Islamic

Azad University, Tehran, Iran.
2 Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz,

Iran.
3 Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye

University, Istanbul, Turkiye.

Submission Date:2022/03/29, Revised Date:2023/06/12, Date of Acceptance:2024/08/05

Abstract

Mutation testing is a powerful technique to evaluate the quality of test suites The process of

generating mutation tests involves generating a large number of test cases, which can be

computationally expensive and time-consuming. This study proposes a classifier-based

approach to reduce the number of generated mutation tests that involves training a classifier

on a set of instruction features to determine which ones are error-prone. The classifier is

trained on a dataset of instruction characteristics for identifying the most effective instructions

for injecting mutants Mutation score is calculated to determine the most effective instructions.

The study evaluates the effectiveness of the approach through experiments on several open-

source projects. The results show that the approach is able to reduce the number of generated

mutants while maintaining high mutation score. This approach has the potential to

significantly reduce the computational burden of mutation testing and improve the efficiency

of software testing.

Keywords: Software Mutation Testing, Instruction Classification, Error Propagation,

Machine Learning.

* Corresponding author: Email: zeinab.asghari@srbiau.ac.ir

http://sanad.iau.ir/journal/ijim/
mailto:zeinab.asghari@srbiau.ac.ir

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

75

1. Introduction

Software testing is considered an impartible part of the software development process. If the

software that is delivered to the customer has an acceptable level of quality, appropriate tests

are needed. Software testing will be successful when it can find many errors in the program

[1]. To improve the software quality, it is necessary to pay special attention to the software

testing step. The effectiveness of a software testing is determined based on the ability of the

test case to find faults in a program. If the effectiveness of test cases is higher, the software

will be of higher quality [2]. It is noteworthy that the cost of software testing is about 50% of

the total cost of the software development process . Therefore, cost and time consumption are

two main challenges of this research.

The method to evaluate the effective quality of a test suite is the mutation testing. The

underlying idea of the mutation testing is to inject bugs, namely mutants, into the source code

of the program. The program containing the injected bugs is called mutant which actually

encompass faulty versions of the original program. These syntax changes are usually minor

and are designed to reflect common faults that may be present in the original program. A

mutant is said to be killed if a test case is found that discriminates between the mutant and the

original program. Test suites that kill a large number of mutations are of higher quality than

those that kill a small number [3]. These mutants are generated using a mutation tool, which

implements mutation operators; rules for how a mutant should be generated from an input

program.). Table 1 contains only one example of a mutation operator; there are many others.

Mutation testing is empirically more robust than testing metrics such as control-flow-based

testing and data-flow-based testing [4]. Despite its effectiveness, several factors make

mutation testing expensive and difficult to use experimentally: large sets of mutants that must

be run, sometimes many times; creating test cases to kill mutants; number of required tests

and equivalent mutants are examples of these factors [5,6].

Table 1. Example of Mutating Operation

For a given program p, m denotes a mutant of program p. Recall that m is an equivalent mutant

if m is syntactically different from p, but has the same behavior with p. Table 1 shows an

example of equivalent mutant generated by changing the operator < of the original program

into the operator! =. If the statements within the loop do not change the value of i, program p

and mutant m will produce identical output.

table 2. Example of Equivalent Mutation

Program P Equivalent Mutant m

for (int i = 0; i !< 10; i + +)

{… (the value of i is not changed)}

for (int i = 0; i ! = 10; i + +)

{… (the value of i is not changed)}

Mutation’s operators modify the program under test to create mutants. For example, an

arithmetic operator would change the expression (a + b) to (a ∗b), (a −b), and (a / b). Mutation

operators use fault taxonomies that are usually based on studies of faults in real programs.

Mutation operators are applied to a program P to create a set of mutants M. Each test t in a

Program p Mutant p’

…

if (a > 0 && b > 0)

return 1;

…

…

if (a > 0 || b > 0)

return 1;

…

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

76

test set T is run against each mutant m, m ∈ M. If m (t) _ = P (t) for some t, then we say that t

has killed m. If not, the tester should find a test that kills m. If m and P are equivalent, then P

(t) = m (t) for all possible test cases [7].

An equivalent mutant plays the role of a parasite in the testing process. Indeed, while it is

expected to be killable, it remains always live even worse, a tedious effort could be uselessly

dedicated to improving tests with no hope of killing it Consequently, mutation testing should

be able to detect and exclude these mutations. However, the issue of functional equivalence

of programs is undecidable [8]. If the analysis is done manually, it will be very tedious. It has

been found empirically that the identification of an equivalent mutation in a real-world

application takes approximately 15 minutes. [9]. Because there are many equivalent mutations

in real applications, the cost of mutation application will be high.

In this paper, all program instructions are analyzed and a set of program code level

characteristics that contribute to error propagation rate are listed. The instructions with low

rate are assigned to the supervised machine-learning algorithm for classification. Finally,

based on classification, instructions with low efficiency are removed from the program so that

the number of mutations generated is minimized. Classification is one of the ways to increase

the accuracy of classification, which can be effective in improving the classification process .

2. Related works

Computation costs of mutation testing are one of the challenging research problems in this

field of study. Researchers have proposed different techniques for solving this problem. In the

following some of the key techniques and methods are discussed:

Wong, suggested the idea of selective mutation, which uses only the most critical mutation

operators [10]. in fact, this method selects a subset of the mutation operators [11]. Offutt et al

extended the selective mutation idea, which allows testers to perform approximate mutation

testing. They demonstrated that reducing the number of mutants decreases the testing costs

while providing coverage that is almost as strong as non-selective mutation [12]. The selective

set of mutation operators (appropriately modified for Java) were implemented for Java in

muJava [13]. Kaminski et al. kaminski et al further showed that only three mutants out of the

seven created by the relational operator replacement operator (ROR) are needed. Mutant

sampling is one of the most straightforward strategies which selects a subset of the mutants

randomly. Mutant random sampling was one of the first attempts to mutant reduction [14].

Higher order mutants (HOMs) first introduced by Jia & Harman, combine the changes from

multiple first-order mutants (FOMs), i.e., single statement mutants, into one mutant. It is also

possible to generate HOMs that are subsuming; the test cases that kill a subsuming HOM also

kill every FOM that it is generated from. Consequently, using HOMs also allows for the

execution time of mutation testing and analysis to be reduced, since if a subsuming HOM is

killed, each of its constituent FOMs are as well [15,16]. Antonio and Virgilio, present results

of a mapping study, by synthesizing characteristics of the HOM Testing approaches, HOM

generation strategies, evaluation aspects, trends and research opportunities. Strong Mutation

is often referred as traditional Mutation Testing [17]. That is, it is the formulation originally

proposed by DeMello et al. In Strong Mutation, for a given program p, a mutant m of program

p is said to be killed only if mutant m gives a different output from the original program p

[18]. To optimize the execution of the Strong Mutation, Hoyden, proposed Weak Mutation.

In Weak Mutation, a program p is assumed to be constructed from a set of components

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

77

C = {c1, ..., cn}. Suppose mutant m is made by changing component cm, mutant m is said to

be killed if any execution of component cm is different from mutant m [19]. Firm Mutation

was first proposed by Woodward and Hillwood. The idea of Firm Mutation is to overcome

the disadvantages of both weak and strong mutations by providing a continuum of

intermediate possibilities [20]. The idea of Mutant Clustering was first proposed in Hussain's

master’s thesis [21]. Instead of selecting mutants randomly, Mutant Clustering chooses a

subset of mutants using clustering algorithms. The process of Mutation Clustering starts from

generating all first order mutants. A clustering algorithm is then applied to classify the first

order mutants into different clusters based on the killable test cases. Each mutant in the same

cluster is guaranteed to be killed by a similar set of test cases. Combefis and Schils has

benefited unsupervised clustering to aid the assessment of large quantities of solution

programs [22].

3. proposed Method

There are a series of instructions of the program code that do not have much effect on the

output of the program. But this does not mean that these instructions should be completely

removed from the program. The selection of this type of instructions is based on the error

propagation rate (ep-rate). The instructions with the lowest level of effectiveness do not

necessarily mean their complete removal from the program code. In some cases, keeping that

instruction in the program may increase the mutation score in the program. In this paper, we

use the programs with java languages. The reason for choosing Java language to check

mutations in the proposed method is the existence of limited platforms in the field of mutation

production. Mujava, as the most powerful platform in this field, has made the flexibility and

applicability of the proposed method limited to Java language only. The supervised machine

learning algorithms were used to classify instructions. Those machine learning algorithms are

Gradient Boosted Trees, Decision Tree, Multi-Layer Perceptron, and Random Forest and

Neural Networks. After classifying the instructions mutation operators are applied on

selective instructions. The proposed method is depicted in Fig.1.

In any program, there are many instructions, the nature of each instruction is different from

the other. This difference is determined based on a series of criteria and characteristics. If we

want to check Java language programs, there are instructions in programs that removing those

instructions will not affect the output of the program. We call this Z-instruction. For example,

notification and print instructions. But in the discussion related to the software mutation test,

the case is different. In this case, Z-instructions that have low effectiveness in the output of

the program have a different effect on the mutation score. Among Z-instructions, sometimes

not deleting that instruction will increase the mutation score. This is because some of the

characteristics of those instructions are different from the rest of the instructions and the

remaining of that instruction can somehow change the number of kill and live mutants. So,

the purpose of this part of the method is to separate notification and print instructions and

classify Z-instructions. For example, Fig.2 shows the part of java Prime program, the total

number of Z-instructions is 7. While it can be proven that the effect of these 8 instructions on

the mutation score is different. To prove this, we need to use a classification with supervised

machine learning algorithms. Classification of instructions can help in dividing these types of

instructions based on effecting. To identify instructions with low impact on program output,

we need to be able to separate low impact instructions from other instructions based on a series

of features. The values associated with each characteristic in the table have been assigned.

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

78

Each entry takes different values based on the instruction in the program code. This

characteristic based on which the level of effectiveness can be determined are as follows:

i. Average number of executions: This property specifies the average number of

executions of each instruction for test data.

ii. Number of variables: Any instruction can declare a variable or use a variable based on

its application in the program. In Z- instructions, this feature has a great impact to

determine the level of the instruction. The sum of the test variables and other variables

is the number of variables.

iii. Test variable: In order to be able to identify the behavior of the program, we need to

use test data. The test data should be edge-coverage. that is, they can cover all edges of

the program as much as possible based on the edge coverage property. Running the

majority of edges allows us to identify the behavior of individual instruction . The

variables in the instructions can be the type of variables used in the test data. If these

types of variables are available in the Z instructions, the value of this column in the data

table will be equal to 1.

iv. Other variable: Any variable other than the variable used by the test data is placed in

this class. Control dependency: This feature represents the number of next instructions

which has control dependency on the result of the current instruction.

v. Static variable: Static variable is variable which belongs to the class and initialized

only once at the start of the execution. It is a variable which belongs to the class. Static

variables are initialized only once, at the start of the execution.

vi. Nesting level: The nesting level of an instruction shows the accessibility of the

instruction. If the instruction is not in an if instruction, its nesting level is 0; if it is in an

if instruction, then its nesting level is 1.

Java source code

Pr
op

os
ed

 M
et

ho
d

performing the mutation
testing on the instructions with

high error-propagation rate
and all instructions of the

program

Evaluating the number of

generated mutants and

mutation score in the proposed

method

 Specifying effective

characteristics of this

instructions

 Creating instruction

classifier by ML

 Selecting instructions

with low impact on

error-propagation in

program code

Figure 1.Steps of the proposed method

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

79

Equation.1 shows the ep-rate. The ep-rate of each instruction in a program has been measured

by 100 executions in the presence of the injected mutant. The number of times the program

fails divided by 100 indicates the ep-rate rate of an instruction.

Errro − Propagation Rate =
Number of failure

Total Number of Execution
∗ 100 Equation 1

public class Prime {

public int prime (int n) {
int i=1;

boolean isPrime = true;

System.out.print(i+ " is a secondary variable\n");

System.out.println(n+ " must be a positive number");

if (n == 0 || n == 1) {

isPrime= false;
System.out.printf(n+ " is Not Prime");

return 0;

} else {
for (i = 2; i <= n/2; i+=1) {

if (n % i == 0) {
isPrime = false;

System.out.printf("'%S' %n"," is Not prime");

break;
.

.

.

Figure 2. A summary view of Prime java program

The MuJava tool is used instructions ep-rates and quantify the Rank feature. This feature

represents ep-rate of Z-instructions. The category of ep-rate is shown in table 3.

Table 3.Error-propagation rate of Z-instructions

4. Results and discussion

A series of mutation testing experiments has been performed in order to measure the ep-rate

of Z-instructions. We must use machine learning algorithms to create a classification of

benchmark programs. For this purpose, it is necessary to use the ep-rate. The supervised

machine learning algorithms used in this section are: Auto MLP, Neural Networks, Random

Forest and naive bayes. The performance of the created classifier has been compared with

each other. Table 4 shows the Prime program data required for the classification of machine

learning algorithms. These data are extracted for all benchmark programs and will be used as

input for ML algorithms. Indeed, the last column is the dependent variable and the other

features are independent variables that are used in the training stage of the machine learning

algorithm. In this paper, we use the RapidMiner tool for implement data classification. Table

6 shows the performance of the created classifier by different ML algorithms in terms of

accuracy, precision, recall, and kappa.

propagation rate Category

 10% - 30% A

0% - 10% B

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

80

Table 4. The values of the features for the Prime benchmark program

The dataset prepared in table 4 was used to train the ML algorithm and the created classifier

by the ML algorithms has been tested in the same way (k-fold). The created classifier is a

multi-class classifier; the outputs of the classifier are shown in table 3. Every Z-instruction in

a 2-class classification must be sorted into one of two categories. Given a set of program Z-

instructions at the source code level, the generated classifier must determine which category

(A, B) each Z-instruction belongs to. Indeed, the created classifier takes the features of an

instruction and predicts its classes in terms of its error-propagation rate. This stage of the

proposed method has been implemented in the RapidMiner tool set. RapidMiner includes an

extensive data analysis library and it is one of the most frequently used tools for data analysis

and data mining applications. Table 5 shows the details of benchmarks programs used in

proposed method. These programs have been used abundantly in the experiments of various

articles. In the proposed method, it has not been possible to check real-world huge programs

due to checking programs at the instruction level. Because the mutations that are created

during the review process of the proposed method in medium and small programs show a

significant increase. For example, in the calculator program, with 31 lines of code, 112

mutants have been created, which is a relatively large number for checking mutations and

classifying them.

Table 6 shows the performance of the created classifier by different ML algorithms in terms

of accuracy, precision, recall, and kappa. There is potential limitations or drawbacks of using

a classifier-based approach such this approach. The risk of misclassifying in supervised

machine learning algorithms occurs when the algorithm incorrectly assigns a label or category

to a data point. This can happen due to various reasons such as insufficient or biased training

data, incorrect feature selection, or inappropriate model selection. Misclassification can lead

to inaccurate results.Over-reliance on supervised machine learning algorithms without proper

human oversight can also lead to potential drawbacks. For example, if the algorithm is not

monitored and updated regularly, it may become outdated and less accurate over time.

Additionally, the algorithm may not be able to handle new or unexpected data that was not

included in the training data. This can lead to incorrect predictions or decisions, which can

have negative consequences in real-world applications.

Table 5. Benchmark programs

program LOC no.Z_instruction program description

Prime 34 7 Determines if it is a prime number

Perfect 21 5 Determines if it is a perfect number

Factorial 26 5 Determining factorial number

Triangle 28 5 Determining triangle type

Calculator 31 5 Building a calculator

Runtime

Average

Number of

variables

Test

variable

Other

variable

Control

dependency

Static

variable

Nesting

Level
Rank

1 1 1 0 0 1 0 A

1 1 1 0 1 1 0 B

1 1 1 0 0 1 1 B

3 1 1 0 1 1 2 A

2 1 0 1 0 0 1 A

1 1 0 1 0 1 0 A

1 1 1 0 0 0 0 B

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

81

Table 6. The output of different ML algorithms

Name of ML algorithm Accuracy Kappa Recall Precision

MLP 100% 1 100% 100%

Naive bayes 100% 1 100% 100%

Random Forest (RF) 100% 1 100% 100%

NN 96.67% 0.927 95.45% 97.50%

After the classification is done by machine learning algorithms, it is time to create mutations.

Now, based on the features of each leveled instruction, test mutations are created. For

example, the mutations created for the Prime program are shown in Figure 3. After generating

mutant programs, Mujava uses the Junit tool for executing the test and evaluating the mutation

score. in this level, the error propagation rate for each instruction is evaluated by the proposed

method. Then, the instructions with a high error propagation rate are detected. Our first

priority the Z-instructions with a high error-propagation rate were subjected. The Z-

instructions with a low rate of error-propagation are subjected to mutation operators in the

next priority. The status of the created mutants is then looked into in terms of being alive or

killed. After that, it is calculated how many mutations were made on the Z-instructions with

the highest mistake propagation rate and the average mutation score. Finally, the obtained

results are compared and contrasted with those of the previous related works. Because in this

article, the programs available in this method have been checked at the instruction level and

each instruction has been classified in a very clear and precise way, also the classification of

the program instructions has been done based on machine learning methods, so this article is

somehow It is unique and it can even be said that it is considered superior to other existing

methods.

Figure 3.A view of operators for prime program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

82

Table 7. Generated mutants for all benchmarks by the MuJava tool

program

name

Total

mutants

number of mutants

after deleting Z-

instructions

number of mutants

for A-level of Z-

instructions

number of mutants

for B-level of Z-

instructions

calculator 112 58 12 42

Prime 112 47 10 55

Perfect 70 54 23 38

Triangle 213 169 14 29

Factorial 78 53 9 16

In this paper, we cannot compare our proposed method with previous methods. The reason of

lack of comparative analysis between different classifier-based approaches is that the previous

existing methods which are based on classification did not analyze the programs at the

instruction level, so it is not possible to compare the proposed method with the existing

methods. In fact, the previous existing methods have injected mutations at the block level or

they have not done the classification based on machine learning classification methods.

The following graphs show the results of tests performed on 5 benchmark programs using the

Mujava tool. In these experiments, the average results of 5 test data series have been used in

the programs. As you can see in the figures, on the horizontal axis, original is the original

program, z1 is the modified version of the original program by removing the first instruction

of level D, and similarly z5 is the modified version of the original program by removing the

last instruction of level D. In fact, as many instructions as level D, we will have charts on the

horizontal level.

Figure 4 shows the number of live mutations for the calculator program. In this program, there

are 5 level D instructions. As shown in the figure, there are instructions that, by removing that

instruction, the number of live mutations has decreased significantly. Similarly, Figure 5

shows the average kill mutants per 5 level D instructions. In Figure 6, the results obtained for

score mutation are shown.

Figure 4. Number of Live mutants in the mutation test performed on the calculator program

95 95

83 83
84

82

75

80

85

90

95

100

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
Li

ve
 M

u
ta

n
ts

Calculator program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

83

Figure 5.Number of killed mutants in the mutation test performed on the calculator program

Figure 6.Number of mutation score in the mutation test performed on the calculator program

Figure 7 shows the results of live mutations on Prime program. According to the figure, this

program has 6 instructions in D level. Compared to the original program, by removing the

level D instruction in the modified z6 program, the number of live mutations has been

significantly reduced. In Figure 8, the amount of kill mutntss shows that only by removing

the instruction into z1 program, the number of kill mutants has decreased significantly. Figure

9 shows the mutation score for the Prime program. The results indicate that the deletion of the

z4 instruction has reduced the mutation score. It can be concluded that if the instruction in z4

program is not removed from the program, the mutation score can be kept at an acceptable

level.

Figure 7.Number of live mutants in the mutation test performed on the Prime program

17

11

17 17 17 17

0

5

10

15

20

original z1 z2 z3 z4 z5N
u

m
b

er
 o

f
K

ill
ed

 M
u

ta
n

ts

Calculator program

15

10

17 17 16 17

0

5

10

15

20

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
M

u
ta

ti
o

n

Sc
o

re

Calculator program

95 95

83 83 84 83 82

75

80

85

90

95

100

original z1 z2 z3 z4 z5 z6

N
u

m
b

er
 o

f
Li

ve
 M

u
ta

n
ts

Prime program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

84

Figure 8.Number of killed mutants in the mutation test performed on the Prime program

Figure 9. Number of mutation score in the mutation test performed on the Prime program

Figure 10 shows the changes made to the number of live mutants on 5 different versions of

the Perfect program. The results show that removing the D level instructions in the two created

programs z2 and z3 has reduced the number of live mutants. Figure 11 shows that the z4

program has fewer killed mutants than the rest of the programs. In fact, the level D instruction

in this program should not be removed from the main program to achieve optimal results .

Figure 12 also shows the bounce score for the Perfect program. As you can see in the figure,

the two programs z2 and z3 have a better situation than the rest of the programs compared to

the original program. In fact, the D-level instruction sin these two programs should be

removed from the program.

17

11

17 17 17 17 17

0

2

4

6

8

10

12

14

16

18

original z1 z2 z3 z4 z5 z6

N
u

m
b

er
 o

f
K

ill
ed

 M
u

ta
n

ts

Prime program

15

10

17 17
16

17 17

0

2

4

6

8

10

12

14

16

18

original z1 z2 z3 z4 z5 z6

N
u

m
b

er
 o

f
M

u
ta

ti
o

n
 S

co
re

Prime program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

85

Figure 10. Number of live mutants in the mutation test performed on the Perfect program

Figure 11. Number of killed mutants in the mutation test performed on the Perfect program

Figure 12.Number of mutation score in the mutation test performed on the Perfect program

Figure 13 shows the test results on the Triangle program. As you can see, the number of live

mutants has decreased in the first version of the original program. But in the rest of the

versions produced from the original program, the reduction of live mutants is more noticeable.

Likewise, in Figure 14, the number of kill mutants in the first version of the main program

has been significantly reduced. This shows that it is better not to delete the level D instruction

in the z1 program. The reduction of the mutation score in the first version of the original

program in Figure 15 also proves this claim.

13

6
5 5

6 6

0

5

10

15

original z1 z2 z3 z4 z5N
u

m
b

er
 o

f
Li

ve
 M

u
ta

n
ts

Perfect program

57

26 26 26 25 26

0

10

20

30

40

50

60

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
K

ill
ed

 M
u

ta
n

ts

Perfect program

81 81

83 83

80

81

78

79

80

81

82

83

84

original z1 z2 z3 z4 z5

N
u

m
b

er
 f

f
M

u
ta

ti
o

n
 S

co
re

Perfect program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

86

Figure 13.Number of live mutants in the mutation test performed on the Triangle program

Figure 14.Number of killed mutants in the mutation test performed on the Triangle program

Figure 15.Number of mutation score in the mutation test performed on the Triangle program

140

137

129 129 129 129

122

124

126

128

130

132

134

136

138

140

142

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
Li

ve
 M

u
ta

n
ts

Triangle program

73

65

73 73 73 73

60

62

64

66

68

70

72

74

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
K

ill
ed

 M
u

ta
n

ts

Triangle program

34

32

36 36 36 36

30

31

32

33

34

35

36

37

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
M

u
ta

ti
o

n
 S

co
re

Triangle program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

87

In Figure 16, the two instructions in programs z1, z2 of the Factorial program have been

identified as effective instructions in the main program from level D, and it is better to remove

them from the program. In Figure 17, except for the instruction in the z3 program, the rest of

the instructions have similar conditions, that is, by removing these instructions, the number

of killed mutants has increased. And finally, Figure 18 shows an increase in the mutation score

in all programs, but in the z3 program, the increase is not significant.

Figure 16.Number of live mutants in the mutation test performed on the Factorial program

Figure 17.Number of killed mutants in the mutation test performed on the Factorial program

Figure 18.Number of mutation score in the mutation test performed on the Factorial program

29

12
9

24

17 17

0

10

20

30

40

original z1 z2 z3 z4 z5N
u

m
b

er
 o

f
Li

ve
 M

u
ta

n
ts

Factorial program

62

83 87

67
76 76

0

20

40

60

80

100

original z1 z2 z3 z4 z5

N
u

m
b

er
 o

f
M

u
ta

ti
o

n
 S

co
re

Factorial program

49

61 64

49
56 56

0

10

20

30

40

50

60

70

original z1 z2 z3 z4 z5N
u

m
b

er
 o

f
K

ill
ed

 M
u

ta
n

ts

Factorial program

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

88

This article examines the level D instructions available at the level of the program code and

we showed that some instructions at this level may increase the number of generated mutants

and decrease the speed of the program by removing the instruction. Therefore, in some cases,

it will not be necessary to delete these instructions. In this article, we have shown that the rate

of error propagation rate in some instructions of the program is higher than in other

instructions, and in some instructions this rate is lower. In instructions that have a lower error

propagation rate, two categories of instructions have been identified. Removing the second

level from these instructions has increased the mutation score and reduced the number of live

mutants.

The scalability of the proposed approach is limited to the size and complexity of software

systems to which it is applied. Considering that the number of mutations generated in the

examined programs has a direct relationship with the number of program lines and the

complexity of the program instructions, so this creates a limitation for the author to select only

programs to generate mutants in which the number of created mutants should be reasonably

small so that the speed of program execution and the quality of instruction execution do not

decrease.

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

89

References

[1] Shomali, N., & Arasteh, B. (2020). Mutation reduction in software mutation testing using

firefly optimization algorithm. Data technologies and applications, 54(4), 461-480.

[2] Mohammad Javad Hosseini, S., Arasteh, B., Isazadeh, A., Mohsenzadeh, M., &

Mirzarezaee, M. (2021). An error-propagation aware method to reduce the software

mutation cost using genetic algorithm. Data technologies and applications, 55(1), 118-

148.

[3] Beller, M., Wong, C. P., Bader, J., Scott, A., Machalica, M., Chandra, S., & Meijer, E.

(2021, May). What it would take to use mutation testing in industry—a study at facebook.

In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP) (pp. 268-277). IEEE.

[4] Frankl, P. G., Weiss, S. N., & Hu, C. (1997). All-uses vs mutation testing: an experimental

comparison of effectiveness. Journal of Systems and Software, 38(3), 235-253.

[5] Offutt, A. J., & Untch, R. H. (2001). Mutation 2000: Uniting the orthogonal. Mutation

testing for the new century, 4.

[6] Mateo, P. R., & Usaola, M. P. (2015). Reducing mutation costs through uncovered

mutants. Software Testing, Verification and Reliability, 25(5-7), 464-489.

[7] Pizzoleto, A. V., Ferrari, F. C., Offutt, J., Fernandes, L., & Ribeiro, M. (2019). A

systematic literature review of techniques and metrics to reduce the cost of mutation

testing. Journal of Systems and Software, 157, 110388.

[8] Budd, T. A., & Angluin, D. (1982). Two notions of correctness and their relation to

testing. Acta informatica, 18(1), 31-45.

[9] Schuler, D., & Zeller, A. (2013). Covering and uncovering equivalent mutants. Software

Testing, Verification and Reliability, 23(5), 353-374.

[10] Wong, W. E., & Mathur, A. P. (1995). Reducing the cost of mutation testing: An empirical

study. Journal of Systems and Software, 31(3), 185-196.

[11] Barbosa, E. F., Maldonado, J. C., & Vincenzi, A. M. R. (2001). Toward the determination

of sufficient mutant operators for C. Software Testing, Verification and Reliability, 11(2),

113-136.

[12] Offutt, A. J., Rothermel, G., & Zapf, C. (1993, May). An experimental evaluation of

selective mutation. In Proceedings of 1993 15th international conference on software

engineering (pp. 100-107). IEEE.

[13] Ma, Y. S., Offutt, J., & Kwon, Y. R. (2005). MuJava: an automated class mutation system.

Software Testing, Verification and Reliability, 15(2), 97-133.

[14] Kaminski, G., Ammann, P., & Offutt, J. (2013). Improving logic-based testing. Journal

of Systems and Software, 86(8), 2002-2012.

IJDEA Vol.4, No.2, (2016).737-749

Z. Asghari, et al./ IJIM Vol.16, No.4, (2024), 74-90

90

[15] Jia, Y., & Harman, M. (2008, September). Constructing subtle faults using higher order

mutation testing. In 2008 Eighth IEEE International Working Conference on Source Code

Analysis and Manipulation (pp. 249-258). IEEE.

[16] Jia, Y., & Harman, M. (2009). Higher order mutation testing. Information and Software

Technology, 51(10), 1379-1393.

[17] do Prado Lima, J. A., & Vergilio, S. R. (2019). A systematic mapping study on higher

order mutation testing. Journal of Systems and Software, 154, 92-109.

[18] DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (2006). Hints on test data selection: Help

for the practicing programmer. Computer, 11(4), 34-41.

[19] Howden, W. E. (2006). Weak mutation testing and completeness of test sets. IEEE

Transactions on Software Engineering, (4), 371-379.

[20] Woodward, M. R., & Halewood, K. (1988, January). From weak to strong, dead or alive?

an analysis of some mutation testing issues. In Workshop on software testing, verification,

and analysis (pp. 152-153). IEEE Computer Society.

[21] Hussain, S. (2008). Mutation clustering. Ms. Th., Kings College London, Strand, London,

9.

[22] Combéfis, S., & Schils, A. (2016, November). Automatic programming error class

identification with code plagiarism-based clustering. In Proceedings of the 2nd

International Code Hunt Workshop on Educational Software Engineering (pp. 1-6).

