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Abstract 

Mutation testing is a powerful technique to evaluate the quality of test suites The process of 

generating mutation tests involves generating a large number of test cases, which can be 

computationally expensive and time-consuming. This study proposes a classifier-based 

approach to reduce the number of generated mutation tests that involves training a classifier 

on a set of instruction features to determine which ones are error-prone. The classifier is 

trained on a dataset of instruction characteristics for identifying the most effective instructions 

for injecting mutants Mutation score is calculated to determine the most effective instructions. 

The study evaluates the effectiveness of the approach through experiments on several open-

source projects. The results show that the approach is able to reduce the number of generated 

mutants while maintaining high mutation score. This approach has the potential to 

significantly reduce the computational burden of mutation testing and improve the efficiency 

of software testing. 

 
Keywords: Software Mutation Testing, Instruction Classification, Error Propagation, 

Machine Learning.
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1. Introduction 

Software testing is considered an impartible part of the software development process. If the 

software that is delivered to the customer has an acceptable level of quality, appropriate tests 

are needed. Software testing will be successful when it can find many errors in the program 

[1]. To improve the software quality, it is necessary to pay special attention to the software 

testing step. The effectiveness of a software testing is determined based on the ability of the 

test case to find faults in a program. If the effectiveness of test cases is higher, the software 

will be of higher quality [2]. It is noteworthy that the cost of software testing is about 50% of 

the total cost of the software development process . Therefore, cost and time consumption are 

two main challenges of this research. 

The method to evaluate the effective quality of a test suite is the mutation testing. The 

underlying idea of the mutation testing is to inject bugs, namely mutants, into the source code 

of the program. The program containing the injected bugs is called mutant  which actually 

encompass faulty versions of the original program. These syntax changes are usually minor 

and are designed to reflect common faults that may be present in the original program. A 

mutant is said to be killed if a test case is found that discriminates between the mutant and the 

original program. Test suites that kill a large number of mutations are of higher quality than 

those that kill a small number [3]. These mutants are generated using a mutation tool, which 

implements mutation operators; rules for how a mutant should be generated from an input 

program.). Table 1 contains only one example of a mutation operator; there are many others. 

Mutation testing is empirically more robust than testing metrics such as control-flow-based 

testing and data-flow-based testing [4]. Despite its effectiveness, several factors make 

mutation testing expensive and difficult to use experimentally: large sets of mutants that must 

be run, sometimes many times; creating test cases to kill mutants; number of required tests 

and equivalent mutants are examples of these factors [5,6]. 

Table 1. Example of Mutating Operation 

 

 

 

 

 
 

For a given program p, m denotes a mutant of program p. Recall that m is an equivalent mutant 

if m is syntactically different from p, but has the same behavior with p. Table 1 shows an 

example of equivalent mutant generated by changing the operator < of the original program 

into the operator! =. If the statements within the loop do not change the value of i, program p 

and mutant m will produce identical output. 

table 2. Example of Equivalent Mutation 

Program P Equivalent Mutant m 

for (int i = 0; i !< 10; i + +) 

{… (the value of i is not changed)} 

for (int i = 0; i ! = 10; i + +) 

{… (the value of i is not changed)} 

Mutation’s operators modify the program under test to create mutants. For example, an 

arithmetic operator would change the expression (a + b) to (a ∗b), (a −b), and (a / b). Mutation 

operators use fault taxonomies that are usually based on studies of faults in real programs. 

Mutation operators are applied to a program P to create a set of mutants M. Each test t in a 

Program p Mutant p’ 

… 

if (a > 0 && b > 0) 

return 1; 

… 

… 

if (a > 0 || b > 0) 

return 1; 

… 
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test set T is run against each mutant m, m ∈ M. If m (t) _ = P (t) for some t, then we say that t 

has killed m. If not, the tester should find a test that kills m. If m and P are equivalent, then P 

(t) = m (t) for all possible test cases [7].  

An equivalent mutant plays the role of a parasite in the testing process. Indeed, while it is 

expected to be killable, it remains always live even worse, a tedious effort could be uselessly 

dedicated to improving tests with no hope of killing it Consequently, mutation testing should 

be able to detect and exclude these mutations. However, the issue of functional equivalence 

of programs is undecidable [8]. If the analysis is done manually, it will be very tedious. It has 

been found empirically that the identification of an equivalent mutation in a real-world 

application takes approximately 15 minutes. [9]. Because there are many equivalent mutations 

in real applications, the cost of mutation application will be high.  

In this paper, all program instructions are analyzed and a set of program code level 

characteristics that contribute to error propagation rate are listed. The instructions with low 

rate are assigned to the supervised machine-learning algorithm for classification. Finally, 

based on classification, instructions with low efficiency are removed from the program so that 

the number of mutations generated is minimized. Classification is one of the ways to increase 

the accuracy of classification, which can be effective in improving the classification process . 

 

2. Related works 

Computation costs of mutation testing are one of the challenging research problems in this 

field of study. Researchers have proposed different techniques for solving this problem. In the 

following some of the key techniques and methods are discussed: 

Wong, suggested the idea of selective mutation, which uses only the most critical mutation 

operators [10]. in fact, this  method selects a subset of the mutation operators [11]. Offutt et al 

extended the selective mutation idea, which allows testers to perform approximate mutation 

testing. They demonstrated that reducing the number of mutants decreases the testing costs 

while providing coverage that is almost as strong as non-selective mutation [12]. The selective 

set of mutation operators (appropriately modified for Java) were implemented for Java in 

muJava [13]. Kaminski et al. kaminski et al further showed that only three mutants out of the 

seven created by the relational operator replacement operator (ROR) are needed. Mutant 

sampling is one of the most straightforward strategies which selects a subset of the mutants 

randomly. Mutant random sampling was one of the first attempts to mutant reduction [14]. 

Higher order mutants (HOMs) first introduced by Jia & Harman, combine the changes from 

multiple first-order mutants (FOMs), i.e., single statement mutants, into one mutant. It is also 

possible to generate HOMs that are subsuming; the test cases that kill a subsuming HOM also 

kill every FOM that it is generated from. Consequently, using HOMs also allows for the 

execution time of mutation testing and analysis to be reduced, since if a subsuming HOM is 

killed, each of its constituent FOMs are as well [15,16]. Antonio and Virgilio, present results 

of a mapping study, by synthesizing characteristics of the HOM Testing approaches, HOM 

generation strategies, evaluation aspects, trends and research opportunities. Strong Mutation 

is often referred as traditional Mutation Testing [17]. That is, it is the formulation originally 

proposed by DeMello et al. In Strong Mutation, for a given program p, a mutant m of program 

p is said to be killed only if mutant m gives a different output from the original program p 

[18]. To optimize the execution of the Strong Mutation, Hoyden, proposed Weak Mutation. 

In Weak Mutation, a program p is assumed to be constructed from a set of components  
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C = {c1, ..., cn}. Suppose mutant m is made by changing component cm, mutant m is said to 

be killed if any execution of component cm is different from mutant m [19]. Firm Mutation 

was first proposed by Woodward and Hillwood. The idea of Firm Mutation is to overcome 

the disadvantages of both weak and strong mutations by providing a continuum of 

intermediate possibilities [20]. The idea of Mutant Clustering was first proposed in Hussain's 

master’s thesis [21]. Instead of selecting mutants randomly, Mutant Clustering chooses a 

subset of mutants using clustering algorithms. The process of Mutation Clustering starts from 

generating all first order mutants. A clustering algorithm is then applied to classify the first 

order mutants into different clusters based on the killable test cases. Each mutant in the same 

cluster is guaranteed to be killed by a similar set of test cases. Combefis and Schils has 

benefited unsupervised clustering to aid the assessment of large quantities of solution 

programs [22].  

 

3. proposed Method 

There are a series of instructions of the program code that do not have much effect on the 

output of the program. But this does not mean that these instructions should be completely 

removed from the program. The selection of this type of instructions is based on the error 

propagation rate (ep-rate). The instructions with the lowest level of effectiveness do not 

necessarily mean their complete removal from the program code. In some cases, keeping that 

instruction in the program may increase the mutation score in the program. In this paper, we 

use the programs with java languages.  The reason for choosing Java language to check 

mutations in the proposed method is the existence of limited platforms in the field of mutation 

production. Mujava, as the most powerful platform in this field, has made the flexibility and 

applicability of the proposed method limited to Java language only. The supervised machine 

learning algorithms were used to classify instructions. Those machine learning algorithms are 

Gradient Boosted Trees, Decision Tree, Multi-Layer Perceptron, and Random Forest and 

Neural Networks. After classifying the instructions mutation operators are applied on 

selective instructions. The proposed method is depicted in Fig.1. 

In any program, there are many instructions, the nature of each instruction is different from 

the other. This difference is determined based on a series of criteria and characteristics. If we 

want to check Java language programs, there are instructions in programs that removing those 

instructions will not affect the output of the program. We call this Z-instruction. For example, 

notification and print instructions. But in the discussion related to the software mutation test, 

the case is different. In this case, Z-instructions that have low effectiveness in the output of 

the program have a different effect on the mutation score. Among Z-instructions, sometimes 

not deleting that instruction will increase the mutation score. This is because some of the 

characteristics of those instructions are different from the rest of the instructions and the 

remaining of that instruction can somehow change the number of kill and live mutants. So, 

the purpose of this part of the method is to separate notification and print instructions and 

classify Z-instructions. For example, Fig.2 shows the part of java Prime program, the total 

number of Z-instructions is 7. While it can be proven that the effect of these 8 instructions on 

the mutation score is different. To prove this, we need to use a classification with supervised 

machine learning algorithms. Classification of instructions can help in dividing these types of 

instructions based on effecting. To identify instructions with low impact on program output, 

we need to be able to separate low impact instructions from other instructions based on a series 

of features. The values associated with each characteristic in the table have been assigned. 
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Each entry takes different values based on the instruction  in the program code. This 

characteristic based on which the level of effectiveness can be determined are as follows: 

i. Average number of executions: This property specifies the average number of 

executions of each instruction for test data. 

ii. Number of variables: Any instruction can declare a variable or use a variable based on 

its application in the program. In Z- instructions, this feature has a great impact to 

determine the level of the instruction. The sum of the test variables and other variables 

is the number of variables. 

iii. Test variable: In order to be able to identify the behavior of the program, we need to 

use test data. The test data should be edge-coverage. that is, they can cover all edges of 

the program as much as possible based on the edge coverage property. Running the 

majority of edges allows us to identify the behavior of individual instruction . The 

variables in the instructions can be the type of variables used in the test data. If these 

types of variables are available in the Z instructions, the value of this column in the data 

table will be equal to 1. 

iv. Other variable: Any variable other than the variable used by the test data is placed in 

this class. Control dependency: This feature represents the number of next instructions 

which has control dependency on the result of the current instruction. 

v. Static variable:  Static variable is variable which belongs to the class and initialized 

only once at the start of the execution. It is a variable which belongs to the class. Static 

variables are initialized only once, at the start of the execution. 

vi. Nesting level: The nesting level of an instruction shows the accessibility of the 

instruction. If the instruction is not in an if instruction, its nesting level is 0; if it is in an 

if instruction, then its nesting level is 1. 

Java source code
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high error-propagation rate 
and all instructions of the 

program

Evaluating the number of 
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instructions

 Creating instruction 
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Figure 1.Steps of the proposed method 
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Equation.1 shows the ep-rate. The ep-rate of each instruction in a program has been measured 

by 100 executions in the presence of the injected mutant. The number of times the program 

fails divided by 100 indicates the ep-rate rate of an instruction.  

Errro − Propagation Rate =
Number of failure

Total Number of Execution
∗ 100                Equation 1 

 
public class Prime { 

public int prime (int n) { 
int i=1; 

boolean isPrime = true; 

System.out.print(i+ " is a secondary variable\n"); 

System.out.println(n+ " must be a positive number"); 

if (n == 0 || n == 1) { 

isPrime= false; 
System.out.printf(n+ " is Not Prime"); 

return 0; 

} else { 
for (i = 2; i <= n/2; i+=1) { 

if (n % i == 0) { 
isPrime = false; 

System.out.printf("'%S' %n"," is Not prime"); 

break; 
. 

. 

. 

Figure 2. A summary view of Prime java program 

The MuJava tool is used instructions ep-rates and quantify the Rank feature. This feature 

represents ep-rate of Z-instructions. The category of ep-rate is shown in table 3. 

Table 3.Error-propagation rate of Z-instructions 

 

 

 

 

4. Results and discussion 

A series of mutation testing experiments has been performed in order to measure the ep-rate 

of Z-instructions. We must use machine learning algorithms to create a classification of 

benchmark programs. For this purpose, it is necessary to use the ep-rate. The supervised 

machine learning algorithms used in this section are: Auto MLP, Neural Networks, Random 

Forest and naive bayes. The performance of the created classifier has been compared with 

each other. Table 4 shows the Prime program data required for the classification of machine 

learning algorithms. These data are extracted for all benchmark programs and will be used as 

input for ML algorithms. Indeed, the last column is the dependent variable and the other 

features are independent variables that are used in the training stage of the machine learning 

algorithm. In this paper, we use the RapidMiner tool for implement data classification. Table 

6 shows the performance of the created classifier by different ML algorithms in terms of 

accuracy, precision, recall, and kappa.  

 

 

 

propagation rate  Category 

  10% - 30% A 

0% - 10% B 
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Table 4. The values of the features for the Prime benchmark program   

The dataset prepared in table 4 was used to train the ML algorithm and the created classifier 

by the ML algorithms has been tested in the same way (k-fold). The created classifier is a 

multi-class classifier; the outputs of the classifier are shown in table 3. Every Z-instruction in 

a 2-class classification must be sorted into one of two categories. Given a set of program Z-

instructions at the source code level, the generated classifier must determine which category 

(A, B) each Z-instruction belongs to. Indeed, the created classifier takes the features of an 

instruction and predicts its classes in terms of its error-propagation rate. This stage of the 

proposed method has been implemented in the RapidMiner tool set. RapidMiner includes an 

extensive data analysis library and it is one of the most frequently used tools for data analysis 

and data mining applications. Table 5 shows the details of benchmarks programs used in 

proposed method. These programs have been used abundantly in the experiments of various 

articles. In the proposed method, it has not been possible to check real-world huge programs 

due to checking programs at the instruction level. Because the mutations that are created 

during the review process of the proposed method in medium and small programs show a 

significant increase. For example, in the calculator program, with 31 lines of code, 112 

mutants have been created, which is a relatively large number for checking mutations and 

classifying them. 

Table 6 shows the performance of the created classifier by different ML algorithms in terms 

of accuracy, precision, recall, and kappa. There is potential limitations or drawbacks of using 

a classifier-based approach such this approach. The risk of misclassifying in supervised 

machine learning algorithms occurs when the algorithm incorrectly assigns a label or category 

to a data point. This can happen due to various reasons such as insufficient or biased training 

data, incorrect feature selection, or inappropriate model selection. Misclassification can lead 

to inaccurate results.Over-reliance on supervised machine learning algorithms without proper 

human oversight can also lead to potential drawbacks. For example, if the algorithm is not 

monitored and updated regularly, it may become outdated and less accurate over time. 

Additionally, the algorithm may not be able to handle new or unexpected data that was not 

included in the training data. This can lead to incorrect predictions or decisions, which can 

have negative consequences in real-world applications. 

Table 5. Benchmark programs 

program LOC no.Z_instruction program description 

Prime 34 7 Determines if it is a prime number 

Perfect 21 5 Determines if it is a perfect number 

Factorial 26 5 Determining factorial number 

Triangle 28 5 Determining triangle type 

Calculator 31 5 Building a calculator 

Runtime 

Average 

Number of 

variables 

Test 

variable 

Other 

variable 

Control 

dependency 

Static 

variable 

Nesting 

Level 
Rank 

1 1 1 0 0 1 0 A 

1 1 1 0 1 1 0 B 

1 1 1 0 0 1 1 B 

3 1 1 0 1 1 2 A 

2 1 0 1 0 0 1 A 

1 1 0 1 0 1 0 A 

1 1 1 0 0 0 0 B 
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Table 6. The output of different ML algorithms 

Name of ML algorithm Accuracy Kappa Recall Precision 

MLP 100% 1 100% 100% 

Naive bayes 100% 1 100% 100% 

Random Forest (RF) 100% 1 100% 100% 

NN 96.67% 0.927 95.45% 97.50% 

After the classification is done by machine learning algorithms, it is time to create mutations. 

Now, based on the features of each leveled instruction, test mutations are created. For 

example, the mutations created for the Prime program are shown in Figure 3. After generating 

mutant programs, Mujava uses the Junit tool for executing the test and evaluating the mutation 

score. in this level, the error propagation rate for each instruction is evaluated by the proposed 

method. Then, the instructions with a high error propagation rate are detected. Our first 

priority the Z-instructions with a high error-propagation rate were subjected. The Z-

instructions with a low rate of error-propagation are subjected to mutation operators in the 

next priority. The status of the created mutants is then looked into in terms of being alive or 

killed. After that, it is calculated how many mutations were made on the Z-instructions with 

the highest mistake propagation rate and the average mutation score. Finally, the obtained 

results are compared and contrasted with those of the previous related works. Because in this 

article, the programs available in this method have been checked at the instruction level and 

each instruction has been classified in a very clear and precise way, also the classification of 

the program instructions has been done based on machine learning methods, so this article is 

somehow It is unique and it can even be said that it is considered superior to other existing 

methods. 

 

Figure 3.A view of operators for prime program 
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Table 7. Generated mutants for all benchmarks by the MuJava tool 

program 

name 

Total 

mutants 

number of mutants 

after deleting Z- 

instructions 

number of mutants 

for A-level of Z-

instructions 

number of mutants 

for B-level of Z-

instructions 

calculator 112 58 12 42 

Prime 112 47 10 55 

Perfect 70 54 23 38 

Triangle 213 169 14 29 

Factorial 78 53 9 16 

In this paper, we cannot compare our proposed method with previous methods. The reason of 

lack of comparative analysis between different classifier-based approaches is that the previous 

existing methods which are based on classification did not analyze the programs at the 

instruction level, so it is not possible to compare the proposed method with the existing 

methods. In fact, the previous existing methods have injected mutations at the block level or 

they have not done the classification based on machine learning classification methods. 

The following graphs show the results of tests performed on 5 benchmark programs using the 

Mujava tool. In these experiments, the average results of 5 test data series have been used in 

the programs. As you can see in the figures, on the horizontal axis, original is the original 

program, z1 is the modified version of the original program by removing the first instruction 

of level D, and similarly z5 is the modified version of the original program by removing the 

last instruction of level D. In fact, as many instructions as level D, we will have charts on the 

horizontal level. 

Figure 4 shows the number of live mutations for the calculator program. In this program, there 

are 5 level D instructions. As shown in the figure, there are instructions that, by removing that 

instruction, the number of live mutations has decreased significantly. Similarly, Figure 5 

shows the average kill mutants per 5 level D instructions. In Figure 6, the results obtained for 

score mutation are shown. 

 

Figure 4. Number of Live mutants in the mutation test performed on the calculator program 
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Figure 5.Number of killed mutants in the mutation test performed on the calculator program 

 

Figure 6.Number of mutation score in the mutation test performed on the calculator program 

Figure 7 shows the results of live mutations on Prime program. According to the figure, this 

program has 6 instructions in D level. Compared to the original program, by removing the 

level D instruction in the modified z6 program, the number of live mutations has been 

significantly reduced. In Figure 8, the amount of kill mutntss shows that only by removing 

the instruction into z1 program, the number of kill mutants has decreased significantly. Figure 

9 shows the mutation score for the Prime program. The results indicate that the deletion of the 

z4 instruction has reduced the mutation score. It can be concluded that if the instruction in z4 

program is not removed from the program, the mutation score can be kept at an acceptable 

level. 

 

Figure 7.Number of live mutants in the mutation test performed on the Prime program 
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Figure 8.Number of killed mutants in the mutation test performed on the Prime program 

 

Figure 9. Number of mutation score in the mutation test performed on the Prime program 

Figure 10 shows the changes made to the number of live mutants on 5 different versions of 

the Perfect program. The results show that removing the D level instructions in the two created 

programs z2 and z3 has reduced the number of live mutants. Figure 11 shows that the z4 

program has fewer killed mutants than the rest of the programs. In fact, the level D instruction 

in this program should not be removed from the main program to achieve optimal results . 

Figure 12 also shows the bounce score for the Perfect program. As you can see in the figure, 

the two programs z2 and z3 have a better situation than the rest of the programs compared to 

the original program. In fact, the D-level instruction sin these two programs should be 

removed from the program. 
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Figure 10. Number of live mutants in the mutation test performed on the Perfect program 

 

Figure 11. Number of killed mutants in the mutation test performed on the Perfect program 

 

Figure 12.Number of mutation score in the mutation test performed on the Perfect program 

Figure 13 shows the test results on the Triangle program. As you can see, the number of live 
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versions produced from the original program, the reduction of live mutants is more noticeable. 

Likewise, in Figure 14, the number of kill mutants in the first version of the main program 
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Figure 13.Number of live mutants in the mutation test performed on the Triangle program 

 

Figure 14.Number of killed mutants in the mutation test performed on the Triangle program 

 

Figure 15.Number of mutation score in the mutation test performed on the Triangle program 
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In Figure 16, the two instructions in programs z1, z2 of the Factorial program have been 

identified as effective instructions in the main program from level D, and it is better to remove 

them from the program. In Figure 17, except for the instruction in the z3 program, the rest of 

the instructions have similar conditions, that is, by removing these instructions, the number 

of killed mutants has increased. And finally, Figure 18 shows an increase in the mutation score 

in all programs, but in the z3 program, the increase is not significant. 

 

Figure 16.Number of live mutants in the mutation test performed on the Factorial program 

 

 

Figure 17.Number of killed mutants in the mutation test performed on the Factorial program 

 

Figure 18.Number of mutation score in the mutation test performed on the Factorial program 
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This article examines the level D instructions available at the level of the program code and 

we showed that some instructions at this level may increase the number of generated mutants 

and decrease the speed of the program by removing the instruction. Therefore, in some cases, 

it will not be necessary to delete these instructions. In this article, we have shown that the rate 

of error propagation rate in some instructions of the program is higher than in other 

instructions, and in some instructions this rate is lower. In instructions that have a lower error 

propagation rate, two categories of instructions have been identified. Removing the second 

level from these instructions has increased the mutation score and reduced the number of live 

mutants. 

The scalability of the proposed approach is limited to the size and complexity of software 

systems to which it is applied. Considering that the number of mutations generated in the 

examined programs has a direct relationship with the number of program lines and the 

complexity of the program instructions, so this creates a limitation for the author to select only 

programs to generate mutants in which the number of created mutants should be reasonably 

small so that the speed of program execution and the quality of instruction execution do not 

decrease. 
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