
Available online at http://sanad.iau.ir/journal/ijim/ 

Int. J. Industrial Mathematics (ISSN 2008-5621) 

Vol. 16, No. 3, 2024 Article ID IJIM-1629, 9 pages 

Research Article 

 

 

Gradual improvement of a CCR inefficient DMU using a 

finite sequence of the intermediate targets  
 

 

A.R. Fakharzadeh Jahromi1, H. Rostamzadeh, M. Oroji  

Department of Mathematics, Shiraz University of Technology, Shiraz, Iran. 
 

 

Submission Date: 2022/10/21, Revised Date: 2023/07/04, Date of Acceptance: 2024/05/18 

 

Abstract 

An important action to improve the performance of inefficient decision-making units (DMUs) 

is Finding an efficient target. This target determines the amount of changes in inputs and 

outputs to achieve efficiency. Although the usual models in data envelopment analysis (DEA) 

always consider this improvement and present a target as an efficient DMU, but in fact, for 

some DMUs achieving that target in one step is difficult and even sometimes impossible. For 

this reason, finding an intermediate target is an important fact in DEA. Accordingly, instead 

of improving in one step, this work achieves efficiency in several steps; therefore, the 

improvement is obtained gradually. In this regard, first the efficiency of DMUs is evaluated 

using the CCR model, and then a sequence of intermediate targets is provided for each 

inefficient DMU, such that moving in this direction reduces the inefficiency of these DMUs. 

Also, an example is presented to illustrate the proposed method and its application. 
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1. Introduction and backgrounds 

The purpose of DEA is not only to calculate the efficiency score of DMUs, but also, it 

improves the performance of inefficient units; in this regard, an important issue is how this 

improvement is done. By using appropriate models are determined the necessary target on the 

efficient frontier for the inefficient DMU, so that this DMU with reaching to the target 

becomes efficient. Despite the determination of the efficient improved target for inefficient 

DMUs, due to the limitations of the organization (budget, time, necessary infrastructure, etc), 

it is not always possible for the organization to achieve the improved efficient target in one 

step. In this paper, based on the latest studies and considering the existing limitations in 

organization, we are going to present a multi-step method in DEA for propelling an inefficient 

DMU to an efficient one. 

In the second decade after the emergence of the DEA, in 1999, Cooper et al. [1] proposed the 

RAM model to determine efficient targets for inefficient DMUs; this model determines the 

farthest target for inefficient DMUs. In the same year, Frey et al [2] found the nearest target 

for inefficient DMUs. In 2005, Lezano et al. [3] modified the MIP model and they defined 

intermediate targets in each stage of their proposed model. Dehnukhalji and Soltani [4] 

introduced a sequence of intermediate targets for propelling each inefficient DMU to an 

efficient one; the differences between Dehnukhalji and Soltani's method with Lasano one are: 

returns to scale will not change during Dehnukhalji and Soltani's method, and the obtained 

target from Dehnukhalji and Soltani's method in each step is the closest target to the efficient 

frontier. Moreover, Sharafi et al. [5] improve the inefficient units using the gradient line 

method.  

In this paper, by determining the intermediate targets and based on the CCR model, we propel 

an inefficient DMU to an efficient one in a multi-stage procedure. Our model is derived from 

the presented work in [4]. Since the CCR model with constant returns to scale property detects 

the inefficient DMUs much better in comparison with the BCC model, therefore, our model 

compared to the presented work in [4] can be more popular and practical. This paper is 

organized in 4 sections. After presenting an interdiction and some necessary literature 

reviews, in Section 2 by reminding the related basic concepts the suggested method and model 

are presented.  Then, an applicable example is demonstrated to illustrate the mentioned 

proposed approach in Section 3, and the final section is devoted to some conclusion remarks. 

 

2. Basic concepts and the proposed approach 

Consider n DMUs with m input and s output, such that ( )
t

j 1j 2 j mjX x , x , , x 0=    and 

( )
t

j 1j 2 j sjY y , y , , y 0=    are the input and the output vectors of jDMU  for 

j 1,2,  , n,=   respectively.  

Definition 1. The set of all possible activities is called the production possibility set (PPS) 

and it is defined as follows: 
n n

m s CRS VRS
j j j j j j

j 1 j 1

P )   PS {(X, |  Y) R X X, Y Y, , } (1   +

= =

=      
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and we denote, 
CRS n

j j{ R | 0}  =   and 
CRS n

j j{ R |1 1, 0}    =  = . 

The returns to scale of a unit in PPS depend on the rate of change in the outputs to change in 

inputs. CRS and VRS are considered for the states of the constant return to scale and the 

variable return to scale, respectively. Table 1 shows the CCR and BCC models in the forms 

of the envelopment and multiplier for evaluating oDMU  (  o 1,2, ,n  ). In these models, 

the optimal value of the objective function O  is called the oDMU efficiency score. oDMU  

is efficient if O 1, =  otherwise it is called inefficient. 

Table 1: CCR and BCC models 

 
(2)                                     Multiplier model (3)    envelopment model 

 

o
n

j ij o

j 1
n

j rj o

j 1

j

Min

S.to : x X ;

y Y ;

, j 1,2,..., n.

 

 





=

=

=

 =




                   

o o 0

o

j j 0

0

MaxUY u
S.to : VX 1;

UY VX u 0, j 1,2,..., n;

U 0;
V 0;
u ,

 = +
=
− + =



 

where  CRS 0 =  and 
VRS . =  

Definition 2. The radial image of  oDMU  in the CCR model is as ( ) ( )O O O O O
ˆ ˆX ,Y X ,Y .=

Theorem 1. Suppose ( )0U ,V ,u  
  is an optimal solution of model (3) in the evaluation of 

oDMU ,  then ( ) O 0H X,Y | U Y V X u 0  = − + =  is a supporting hyperplane of the 

production possibility set. 

Proof: Refer to [6]. 

A subset of PPS that their radial image belongs to the corresponding support hyperplane of 

oDMU  (hyperplane 𝐻𝑂) is denoted by HoP , therefore 

( ) ( ) HO O O )P X,Y PPS| X,Y . 4H (=    

We define: 

       1 2 q i 1 2 p r (5)i , i , , i i | v 0 , r , r , , r r | u 0 ,   =   =  

where iv  and ru   are the optimal weights of  thi  input and thr  output in model (3) 

respectively; and also, we define: 
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( )   ( )  ( )
O

n

H j j j j O j j j

j 1

K )X ,Y | j 1,2, ,n , X ,Y H , Pos A a | 0 , j 1,2, ,n . (6 
=

  
=    =  =  

  
  

With these symbols, Nasrabadi et al. [7] proved that HoP  is equal to the following set and 

also, they proved Theorem 2 by regarding: 

( ) ( )

( ) ( ) ( ) ( )
O

k

1 p

' '
Ho l

Hq p

k i
' ' ' ' '

k 1 l 1 1 q 1 p 1 p r

r

o

l

o r

1, 0 1, X,Y P

)

os K ,

X d e , Y
d,

P d e
d d , ,d ,d ,...,d 0, d ,...,

7
d y y

|
,

(
,

,

 
 

= =

   
  

=


   
  




+ −
=  




 
 

 

 

where ike  is the standard unit vector in 
m

that its ki th−  component equal to 1 and 
'
rle  is 

the same vector in 
s

 that its li th− component equal to 1. 

Theorem 2. Suppose ( )0U ,V ,u  
  is an optimal solution of model (3) in the evaluation of  

oDMU ;  in this case 

1 .If 0u 0, = then each ( )
OHX, Y P has constant returns to scale. 

2 .If 0u 0,   then each ( )
OHX, Y P has non-decreasing returns to scale. 

3. If 0u 0,   then each ( )
OHX, Y P has non-increasing returns to scale. 

Proof: See [7]. 

Theorem 2 shows that if oDMU  belongs to the class of returns to constant scale, then all the 

points of the set 
OHP also belong to this class. Therefore, the return to scale property of each 

unit in 
OHP is similar to oDMU .  

A basic point in determining intermediate targets and improving the performance of 

inefficient DMUs is the resemblance criterion. In this paper, we define the similarity criterion 

based on the return to scale property and the efficiency score. In other words, we move an 

inefficient DMU toward the efficiency frontier via a sequence of targets that all have the same 

return to scale as the target DMU and their efficiency scores are increasing as well. Also, to 

reach the efficient frontier in fewer steps, in each step we minimize the distance of the 

evaluated unit from the efficiency frontier. For finding a sequence of the targets similar to 

oDMU ,  we need a subset of PPS including DMUs with the efficiency score greater than or 

equal to the oDMU efficiency score, and we limit our search to the subscription of this subset 

and 
OHP .  

Theorem 3. Suppose ( ) ( ) O O 0X,Y H X,Y PPS | U Y V X u 0   =  − +   and   is 
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the efficiency score of ( )X, Y ; then O.   

Proof: Refer to [4]. 

To start our mentioned procedure, at first, we solve the CCR model for all DMUs to determine 

the inefficient DMUs and their corresponding supporting hyperplanes. Then, to find a target 

similar to oDMU , we use the following model. 

oH

o

o

Min dist((X,Y), (X,Y))
S.to : (X,Y) P ; (8)

(X,Y) H ;
(X,Y) H ,






 

where ( )X, Y  belongs to the allowed area for changing the inputs and outputs of oDMU  

and ( )X,Y  is an arbitrary point on the corresponding supporting hyperplane of oDMU .   But 

by applying the 
OHP set in model (8), nonlinear constraints are created. To get rid of this 

problem, we present the following lemma which is necessary to prove the next theorem 4. 

Lemma 1. The 
OHP set is equal to the following set: 

( ) ( ) ( ) ( )

k

HO
o

1 p

' '

j
l rl

q p
j j

k i j j
j

k 1 l 1 j K
H

' ' ' '
j j 1 q 1 p 1 p r O r O

'

XX
X X d e , Y Y , , 1 ,

YY
P (X,Y) | . (9)

0

d

0 1, 0 , d, d , ,d ,d ,d ...,d , d ,...,d y ,

e

, y


 



  

= = 

 
= + = − =  

 
=  
 

   =   

  
   


 





 
  

 

Proof: If j =  and j =  for all j, then 
O OH HP .P  Conversely, if we put 

HO

HO

j j j

j K

j j

j K

X

X










=




 and 

HO

HO

j j j

j K

j j

j K

Y

,
Y

 








=




 then we can conclude that 

O OH HP P .          □ 

Theorem 4. The 
OHP set is equal to the following set: 

( )
O

H HO O

H j j j j j

j K j K

P̂ X,Y | X X , Y Y , 0 . (10)  
 

 
 

=    
  

   

Proof: It is clear that 
O OH H

ˆP P .  Suppose ( )
OH

ˆX,Y P then 

HO

j j

j K

X X


   and 

HO

j j

j K

Y Y ,


   therefore, there exist 
'S,S 0 such that 
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( )
H H H H HO O O O O

j j j j j j j j j j j j j

j K j K j K j K j K

X X S X X 1 X X X,       
    

= + = + = + = =      

( )
H H H H HO O O O O

' ' '
j j j j j j j j j j j j j

j K j K j K j K j K

Y Y S Y Y 1 Y Y Y       
    

= − = − = − = =      

which 
'

j j j j0, 1 , 0 1    = +     and  
'

j j1 = −   for all 
OHj ,K   therefore 

( )
OHX, Y P . □  

According to lemma 1, the sets 
OHP  and 

OHP̂  are equal, and according to theorem 4, the sets 

of 
OHP and 

OHP̂  are also equal. Therefore, the set 
OHP̂ can be replaced by the set 

OHP , and 

therefore, model (8) could be rewritten as model (11): 

Ho

Ho

o

o o
t
j j

j K

t
j j

j K

* *t 1 * *
o o 0

* * *
o o 0

t 1
t
I t 1

t 1
t
ot 1

t
j H

| X X | | Y Y |
Min 1 1

X Y

S.to : X X;

Y Y;

U Y V X u 0; (11)

U Y V X u 0;

X X
L 0;

X
Y Y

0 U ;
Y

0 ,, j K   













−

−

−

−

−

− −
+

− +

− + =

−

−

 





 

where all the variables are positive, o is the index of the evaluated DMU and t is the index of 

the intermediate target in step t. 
tX and 

tY are the input and the output vectors of the 

intermediate target in step t respectively and 
t

  is the optimal value of the CCR model in 

the evaluation of ( )t tX ,Y ;  also, 
t
IL s are the lower bounds of the allow able changes of the 

inputs and 
t
OU s are the upper bounds of the allow able changes of the outputs in step t. Note 

that these lower and upper bounds are parameters that should be determined by the decision-

maker based on the ability of the oDMU to change the inputs and outputs; these bounds can 

be changed at each stage as well. The objective function of model (11) is a nonlinear function, 

which can be linearized by changing the variables X X a b− = + and Y Y c d,− = + where 

a,b,c,d 0.  

Theorem 5. Model (11) is feasible and has a finite optimal solution. 
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Proof: Since ( ) O

t 1 t 1
HX ,Y P ,− −   then ( ) O

t t
HX ,Y P ,  therefore 

OHP  in each step. 

As a result, there are coefficients 
t
j  which leads to the feasibility of model (11) and other 

variables are chosen as follows: 

( ) ( ) ( ) ( ) ( )
t 1t 1 t 1 t 1 t 1X,Y X ,Y , X,Y X ,Y . 12
−− −  − −= =  

Also, the existence of a zero-lower bound for the objective function guarantees that the 

optimal value of the objective function is finite.                                                              □ 

Now, to determine a sequence of targets for the inefficient DMU𝑜, we present the following 

algorithm: 

Step 1: Put t=0; 

Step 2: Put 
t t

O OY Y , X X ;= =  

Step 3: Evaluate ( )O OX ,Y  by model (3) and determine the values of ( )O O 0U ,V ,u ;  
 

Step 4: Evaluate ( )t tX ,Y  by model (3) and obtain the value of 
t

;  

Step 5: If 
t

1, =  stop and otherwise go to step 6; 

Step 6: Put t 1 t+ →  and get the values ( )X ,Y 
 from model (11); 

Step 7: Put ( ) ( )t tX ,Y X ,Y =  and go to step 4. 

According to 
t

1   and increasing of 
t

,  the algorithm ends after the finite number of 

iterations. 

 

3. Numerical example  

Consider an organization including 6 DMUs with one input and one output, whose data are 

taken from [4] and are reported in Table 2. As seen in this table, the BCC efficiency scores of 

DMUs A, B and E are equal to one, as a result, these DMUs are efficient based on the BCC 

model. But according to the CCR model, only DMU B is efficient and DMUs A, C, D, E and 

F are inefficient. As expected, the CCR model detects inefficiencies, much better. 

Table 2. Data and efficiency scores of BCC and CCR. 

CCR  BCC  Y X DMU 

0.50 1.00 10 10 A 

1.00 1.00 36 18 B 

0.17 0.33 10 30 C 

0.57 0.69 40 35 D 

0.55 1.00 60 55 E 

0.17 0.22 20 60 F 

Suppose that the decision maker has allowed that the maximum of the input reduction be 20% 

and the output increase be 30%. The intermediate targets with the CCR efficiency scores of 
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these targets for the inefficient DMUs are presented in Table 3. As an example, DMU C with 

activity vector (10, 30) has the CCR efficiency score 0.17. The decision-maker must reduce 

about 83% of its the input in one step that unit C achieves efficiency, while the capacity 

reduction of the input is maximum 20%. Therefore, it is impossible that the decision-maker 

reaches to this target in one step. By applying the mentioned algorithm on DMU C, the first 

intermediate target is obtained with the activity vector (13, 24). Therefore, it is enough that in 

the first step the input decreases to 6 and the output increases to 3. Thus, with this 

improvement, the efficiency score will be 0.27. With 4 repetitions of the algorithm, the final 

efficiency for DMU C is obtained with the activity vector (24.50, 12.29). The results of this 

example are reported in Table 3. Note that in running the algorithm for each inefficient DMU, 

the returns to scale do not change, and also the efficiency scores are increasing as expected 

and the final efficiency score is equal to one. 
 

Table 3. Intermediate targets and their CCR efficiency scores. 

Step4 Step3 Step2 Step1 Step0  DMU 

--- --- 6.50 8 10 X 
 

A 
--- --- 13 13 10 Y 

--- --- 1.00 0.81 0.50 CCR  

12.29 15.36 19.20 24 30 X 
 

C 
24.50 21.97 16.90 13 10 Y 

1.00 0.72 0.44 0.27 0.17 CCR  

--- --- 26 28 35 X 
 

D 
--- --- 52 52 40 Y 

--- --- 1.00 0.93 0.57 CCR  

--- --- 39 44 55 X  

E 

 

--- --- 78 78 60 Y 

--- --- 1.00 0.89 0.55 CCR  

24.58 30.72 38.40 48 60 X 
 

F 
49.15 43.94 33.80 26 20 Y 

1.00 0.72 0.44 0.27 0.17 CCR  

 

4. Conclusion 

In this paper, an algorithm is presented to generate a sequence of intermediate targets for each 

inefficient DMU based on CCR model, such that the return to scale of all the targets in this 

sequence is the same with the inefficient DMU. Also, the efficiency scores of the targets in 

this sequence are increasing and the final target is efficient. In other words, the introduced 

targets in the sequence of intermediate are completely similar to the inefficient DMU, and the 

efficiency scores gradually are improved to get to the efficiency. In each step, according to 

the decision-maker's opinion and based on management constraints, the lower and upper 

bounds for changing the inputs and outputs of the inefficient DMU are determined. Based on 

these bounds, a sequence of targets similar to the inefficient DMU and as close as possible to 

the efficiency frontier is obtained. 
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