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Abstract

In this paper the differential quadrature method is implemented to find numerical solution of two and
three-dimensional telegraphic equations with Dirichlet and Neumanns boundary values. This tech-
nique is according to exponential cubic B-spline functions. So, a modification on the exponential cubic
B- spline is applied in order to use as a basis function in the DQ method. Therefore, the Telegraph
equation (TE) is altered to a system of ordinary differential equations (ODEs). The optimized form of
Runge-Kutta scheme has been implemented by four-stage and three-order strong stability preserving
(SSPRK43) to solve the resulting system of ODEs. We examined the correctness and applicability of
this method by four examples of the TE.

Keywords : Telegraph equation (TE); Exponential modified cubic B-spline function; SSP-RK43; Dif-
ferential quadrature method.
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1 Introduction

S
uppose the following two dimensional second-

order linear hyperbolic TE as:

utt(x, y, t) + 2γut(x, y, t) + δ2u(x, y, t)
= uxx(x, y, t) + uyy(x, y, t)
+f(x, y, t); (x, y) ∈ Ψ

(1.1)
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With initial conditions

u(x, y, 0) = u0(x, y) ; (x, y) ∈ Ψ
ut(x, y, 0) = ν0(x, y) ; (x, y) ∈ Ψ

(1.2)

And the boundary values:

(a) Dirichlet boundary values

u(0, y, t) = f1(x, y) u(1, y, t) = f2(y, t)
u(x, y, t) = f3(x, y) u(x, 1, t) = f4(x, t)

(1.3)

(b) Neumann boundary values

ux(x, y, t) = g1(y, t) ;ux(1, y, t) = g2(y, t)
uy(x, 0, t) = g3(x, t) ;uy(x, 1, t) = g4(x, t)

(1.4)

where Ψ = {(x, y); a ≤ x ≤ b; c ≤ y ≤ d} is

the computational square domain and (0, T ) is

the time step and γ, δ are known constant coef-

ficients.we suppose that u0, ν0, fi, gi(i = 1, 2, 3, 4)
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are known as smooth functions.

For γ ≥ 0 and δ = 0, Eq. (1.1) shows a

wave equation with damping property and for

γ ≥ δ ≥ 0 named the TE.

The TE in three-space dimension is represented

as:

utt(x, y, z, t) + 2γut(x, y, z, t)+
δ2u(x, y, z, t) = uxx(x, y, z, t)+
uyy(x, y, z, t) + f(x, y, z, t),
(x, y, z, t) ∈ Ψ; t ≥ 0

(1.5)

With initial conditions

u(x, y, z, 0) = u0(x, y, z) ; (x, y, z) ∈ Ψ
ut(x, y, z, 0) = ν0(x, y, z) ; (x, y, z) ∈ Ψ

(1.6)

And the Dirichlet boundary conditions

u(0, y, z, t) = f1(y, z, t);u(1, y, z, t)
= f2(y, z, t)
u(x, 0, z, t) = f3(x, z, t);u(x, 1, z, t)
= f4(x, z, t)
u(x, y, 0, t) = f5(x, y, t);u(x, y, 1, t)
= f6(x, y, t)

(1.7)

The simulation of many physical events in differ-

ent aspects of applied science described by hyper-

bolical partial differential equations.These types

of equations have an important role in the formu-

lation of basic equations in atomic physics and

the presentation of several phenomena in applied

sciences like aerospace professions, chemistry and

biology are applicable [1, 2]. In the recent years,

there have been many efforts in the study and de-

velopment of stable numerical schemes in order to

solve hyperbolical PDEs which can be pointed to

[3]-[9].

One of the most practical equations in communi-

cation and electronic engineering is the TE. Ac-

tually, the connection between voltage and flows,

taking into account the distance and time along

the transmission line, is described by the TE.

This equation was introduced in 1880 [10, 11]. So

far, various methods have been proposed to com-

pute the approximate solution of TE in two space

dimension. In this case, . In [18], a comparison of

basic functions in DQM named as Lagrange and

cubic B-Spline interpolation, is presented to cal-

culate the numerical answer of the TE.

In [12] a numerical procedure based on Hermit

wavelets has been implemented to obtain the ap-

proximate solution of the TE. The authors of [13]

achieved a proper accuracy for the numerical so-

lution of twodimensional hyperbolic TE by us-

ing Bernoulli matrix. In [14], an accurate mesh-

less collocation technique has been investigated

in order to find the numerical answer of the two-

dimensional telegraphic equations in arbitrary

domains.Also, the authors in [15], obtained the

approximate solution of TE in the two-space di-

mension subject to Dirichlet boundary conditions

by using Lagranges operational approach. In [16]

a continuous Galerkin method with mesh modi-

fication has been implemented for numerical so-

lution of two-dimensional telegraph equation. A

hybrid meshless method has been used in [17] for

the solution of the second order hyperbolic tele-

graph equation in two space dimensions .The nu-

merical solution of these types of equations by

a reduced differential transform method is ex-

pressed in [18]. Besides, the authors in [19], have

collocated initial and boundary values, like the

Galerkin method ,in order to get approximate so-

lution of TE in two-dimension. But the common

point in most of the above methods has not been

applied to the Newman boundary conditions to

the 2D TE. Since most of the real world, prob-

lems depend on solving partial differential equa-

tions with Newman boundary conditions, so in

this study, in addition to Dirichlet boundary con-

ditions, Newman boundary conditions are also in-

tended. An efficient numerical technique for the

solution of PDEs is the Differential quadrature

method (DQM) [?]. According to DQM, adding

all the functional values at a certain point in the

whole computational domain leads to computing

the derivatives of passive functions with respect

to space components. The main point of the dif-

ferential quadrature method is to determine the

weighting coefficients. So far, several kinds of

test functions such as B-spline function, Lagrange

polynomials, cubic B- spline functions, Legendre

polynomials, quartic B-spline functions, trigono-

metric B-spline functions, modified cubic B-spline

functions [11] and so on have been used in order

to compute the weighting coefficients.

In this paper, a differential quadrature method is
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presented based on a modified exponential cubic

B-spline functions for the numerical simulation of

the TE. Also, in this method by making a mod-

ification in exponential cubic B- spline functions

and utilizing them as the basis functions in DQM,

the unknown weighting coefficients will be deter-

mined. Then the TE reformed to an ODE sys-

tem of first-order. By applying strong stability

preserving time- staging Runge-Kutta method in

four-step the resulting system is solved.Moreover,

we confirmed the efficiency and compatibility of

the method by considering four examples of the

TE in two and three space- dimensions. Briefly,

the most important benefits of this article are

noted as follows:

1. Solve the TE by considering the Newman and

Dirichlet boundary values in two- space dimen-

sions.

2. Solve the TE with Dirichlet boundary values

in three- space dimensions.

3. Use a new interpolation method named as ex-

ponential modified cubic B-spline function.

4. High accuracy compared to the above methods

and high speed in calculations.

The structure of this paper is as follows: In Sec-

tion 2, a modification in the exponential cubic

B- spline DQM is demonstrated. The third part

provides different stages of exerting method on

the TE with Dirichlet and Neumanns boundary

values. The fourth section has Numerical simu-

lations and analytical comparisons. And finally,

the conclusion is represented in Section 5.

2 A Modification in Exponen-
tial Cubic B- Spline DQM

The first step in two-dimensional DQM is dis-

cretizing the domainas Ψ1 = {(xi, yj); i =

1, 2, . . . , N ; j = 1, 2, . . . ,M} by taking space step

∆x = xi−xi−1 and ∆y = yj − yj−1 in the X-axis

direction and Y-axis direction.

In this method, for first-order partial derivatives

of the function u(x, y, t) concerning x, at point xi

(keeping yj fixed) is approximated as follow:

ux(xi, yj , t) =
N∑
k=1

w
(1)
ik u(xk, yj , t); i = 1, 2, . . . , N

(2.8)

Similarly, the second-order partial derivatives of

the function u(x, y, t) concerning x, at point xi
(keeping yj fixed) can approximated as follow:

uxx(xi, yj , t) =

N∑
k=1

w
(2)
ik u(xk, yj , t); i = 1, 2, . . . , N

(2.9)

The first-order partial derivatives of the function

u(x, y, t) with respect to y, at the at point yj
(keeping xi fixed) can be approximated as follow:

uy(xi, yj , t) =

M∑
k=1

w
(1)
jk u(xi, yk, t); j = 1, 2, . . . ,M

(2.10)

Similarly, the second-order partial derivatives of

the function u(x, y, t) to concerning y, at the point

yj (keeping xi fixed) is approximated as:

uyy(xi, yj , t) =
M∑
k=1

w
(2)
jk u(xi, yk, t); j = 1, 2, . . . ,M

(2.11)

B-Spline functions are smooth and piecewise

polynomials that these desirable features make

it easier to integrate and differentiate than other

interpolation methods.Since its smoothness and

capability to handle local phenomena these basis

functions have more influence than other basic

functions.

Suppose The following exponent cubic B-spline

functions [12]

Ej(x) =
1

h3



b2((xj−2 − x)− 1
p(sinh(p(xj−2

−x))));x ∈ [xj−2, xj−1)
a1 + b1(xj − x) + c1 exp(p(xj
−x)) + d1 exp(−p(xj
−x));x ∈ [xj−1, xj ]
a1 + b1(x− xj) + c1 exp
(p(x− xj)) + d1
exp(−p(x− xj));x ∈ [xj , xj+1]
b2((x− xj+2)− 1

p(sinh(p(x

−xj+2))));x ∈ [xj+1, xj+2)
0; otherwise

(2.12)



154 AR. Haghighi et al., /IJIM Vol. 15, No. 2 (2023) 151-163

Where p is the free parameter and

a1 =
ph cosh(ph)

ph cosh(ph)−sinh(ph) ,

b1 =
1
4

[
exp(ph)(cosh(ph)−1)+sinh(ph)(exp(ph)−1)

(ph cosh(ph)−sinh(ph))(1−cosh(ph))

]
c1 =

1
4

[
exp(−ph)(1−cosh(ph))+sinh(ph)(exp(−ph)−1)

(ph cosh(ph)−sinh(ph))(1−cosh(ph))

]
,

d1 =
1
4

[
exp(ph)(cosh(ph)−1)+sinh(ph)(exp(ph)−1)

(ph cosh(ph)−sinh(ph))(1−cosh(ph))

]
Also the collection

{E0(x), E1(x), . . . , EN (x), EN+1(x)} organized a

basic set over [a, b]. For (2.12) Table 1 shows the

values for the Ej(x) and and their derivations in

node points.

Table 1: Values of Ej(x), E
′
j(x), E

′′
j (x) and its deriva-

tives at the nodal points

Ej(x)
xj−2 0

xj−1
sin(ph)−ph

2(ph cosh(ph)−sinh(ph))

xj 1

xj+1
sin(ph)−ph

2(ph cosh(ph)−sinh(ph))

xj+2 0
E′

j(x)

xj−2 0

xj−1
p(cosh(ph)−1)

2(ph cosh(ph)−sinh(ph))

xj 0

xj+1 − p(cosh(ph)−1)
2(ph cosh(ph)−sinh(ph))

xj+2 0
E′′

j (x)

xj−2 0

xj−1
p2(sinh(ph))

2(ph cosh(ph)−sinh(ph))

xj
p2(sinh(ph))

(ph cosh(ph)−sinh(ph))

xj+1
p2(sinh(ph))

2(ph cosh(ph)−sinh(ph))

xj+2 0

A modification of Ej(x) is considered so that the

resulting matrix system is diagonally dominant.

Therefore, the modified Ej(x) at nodal points

are expressed as:
Φ1(x) = E1(x) + 2E0(x)
Φ2(x) = E2(x) + 2E0(x)
ΦN (x) = Ei(x); i = 3, 4, . . . , N − 2
ΦN−1(x) = EN−1(x)− EN+1(x)
ΦN (x) = EN (x) + EN+1(x)

(2.13)

Again, the functions Φm(x);m = 1, 2, . . . , N hold

a basis set over [a, b].By fixing the y-axis in (2.8),

we obtain weighting coefficients w
(1)
ik .Now by in-

serting the Φm(x);m = 1, 2, . . . , N in (2.8), we

get

Φ′
m(xi, yj) =

N∑
k=1

w
(1)
ik Φm(xk, yj); j = 1, 2, . . . ,M

(2.14)

Hence the (2.14) is modified to following the tridi-

agonal system of equations by using Table ??,

(2.12) and (2.13):
Φ11 Φ12

Φ21 Φ22 Φ23

. . .
. . .

ΦN−1,N−1 ΦN−1,N

ΦN,N−1 ΦN,N




w
(1)
i,1

w
(1)
i,2
...
...

w
(1)
i,N−1

w
(1)
i,N


=



Φ′
1,i

Φ′
2,i
...
...

Φ′
N−1,i

Φ′
N,i


(2.15)

And the first-order derivatives of the weighting

coefficients w
(1)
i,j can be calculated by employing

the Thomas algorithm. For i = 1 by assuming

that c = cosh(ph) and s = sinh(ph) the three

diagonal systems are as:

phc−ph
phc−s

s−ph
2(phc−s)

0 1 s−ph
2(phc−s)

. . .
. . .

s−ph
2(phc−s) 1 1 0
s−ph

2(phc−s)
phc−ph
phc−s




w
(1)
11

w
(1)
12
...
...

w
(1)
1,N−2

w
(1)
1,N−1

w
(1)
1,N


=



−p(c−1)
phc−s
p(c−1)
phc−s
...
...
0
0
0


(2.16)

Also, the Thomas algorithm can be utilized in

the above equation to get the weighting coeffi-
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cients w
(1)
j ; j = 1, 2, · · · ,M .similarly, at the sec-

ond knot, one has

Φ′
m(x2, yj) =

∑N
k=1w

(1)
2k Φm(xk, yj);

j = 1, 2, · · · ,M
(2.17)

Therefore a tridiagonal system can be produced

again as:



phc−ph
phc−s

s−ph
2(phc−s)

0 1 s−ph
2(phc−s)

s−ph
2(phc−s) 1 s−ph

2(phc−s)

. . .
. . .

. . .
s−ph

2(phc−s) 1 s−ph
2(phc−s)

s−ph
2(phc−s) 1 1 0

s−ph
2(phc−s)

phc−ph
phc−s




w
(1)
21

w
(1)
22
...
...

w
(1)
2,N−2

w
(1)
2,N−1

w
(1)
2,N


=



−p(c−1)
2(phc−s)

0
−p(c−1)
2(phc−s)

...
0
0
0


(2.18)

Using the Thomas algorithm, weighting coeffi-

cients w
(1)
2j ; j = 1, 2, · · · ,M can be achieved.The

weighting coefficients w
(1)
3j , w

(1)
4j , · · · , w

(1)
N−1,j , can

be computed at each grid point similarly using

the Thomas algorithm. At the last grid point, we

have

Φ′
m(xN , yj) =

∑N
k=1Φm(xk, yj);

j = 1, 2, · · · ,M (2.19)

Which produce a tridiagonal set of the equation

as:

phc−ph
phc−s

s−ph
2(phc−s)

0 1 s−ph
2(phc−s)

. . .
. . .

s−ph
2(phc−s) 1 1 0
s−ph

2(phc−s)
phc−ph
phc−s




w
(1)
N1

w
(1)
N2
...
...

w
(1)
N,N−2

w
(1)
N,N−1

w
(1)
N,N


=



0
0
...
...

p(c−1)
2(phc−s)

0
−p(c−1)
2(phc−s)


(2.20)

Finally weighting coefficients w
(1)
N,k, k =

1, 2, · · · , N is computed by solving the above

system. Furthermore, weighting coefficients of

second and higher orders can be calculated by

using the following recurrence relations [13, 14].

w
(r)
i,j = r

[
w

(1)
i,j w

(r−1)
i,i − w

(r−1)
i,j

xi−xj

]
,

i ̸= j; i, j = 1

w
(r)
i,i = −

∑N
j=1,i ̸=j w

(r)
i,j

(2.21)

where the (r − 1)th and rth orders of partial

derivations with concerning to x are shown as

wr−1
i,i and wr

i,j .we can observe the weighting coef-

ficients w
(1)
ik of first-order partial derivations with

concerning to y (by fixing x-axis) in the same pro-

cedure with inserting modified Ej(x) in (2.10).

We can apply the following recurrence relations

(from [13, 14]) in order to calculate the second

and higher-order derivations.

wr
ij = r

[
w

(1)
i,j w

(r−1)
i,i − w

(r−1)
i,j

xi−xj

]
,

i = 1, 2, · · · , N ; r = 2, 3, · · · , N − 1

w
(r)
i,i = −

∑N
j=1,i̸=j w

(r)
i,j ; i = j

(2.22)

Here the (r − 1) th and rth orders of partial

derivations with concerning to y is shown as

w
(r−1)
i,j and w

(r)
i,j .
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3 How to Implement The
Method For the TE?

We first converted the two-dimensional TE (1), in

the following system of PDE utilizing the trans-

formation ν = ut + 2αu
ut(x, y, t) = ν(x, y, t) + 2αu(x, y, t)
νt(x, y, t) = uxx(x, y, t) + uyy(x, y, t)−
β2u(x, y, t) + f(x, y, t)

(3.23)

Here, first and second-order derivation of u at

the nodal points (xi, yj); i = 1, 2, . . . , N ; j =

1, 2, . . . ,M are discretized by the modified ex-

ponential cubic B- spline DQM. Therefor (3-1)

converted as follows:
du(xi,yj ,t)

dt = ν(xi, yj , t) + 2αu(xi, yj , t)
dν(xi,yj ,t)

dt =
∑N

k=1w
(2)
i,k u(xk, yj , t)+∑N

k=1w
(2)
jk u(xi, yk, t)

−β2u(xi, yj , t) + f(x, y, t)
(3.24)

where (xi, yj , t) ∈ R × (0, t] and i = 1, 2, . . . , N ,

j = 1, 2, . . . ,M .

Using the following initial values

u(xi, yj , 0) = u0(xi, yj); (x, y) ∈ Ψ
ν(xi, yj , 0) = ν0(xi, yj); (x, y) ∈ Ψ

(3.25)

System (3.24) represents a set of 2N-ODEs.

First, we calculate the vector of the initial value

[u0i,j , ν
0
i,j ]; i = 1, 2, . . . , N, j = 1, 2, . . . ,M using

(3-3).

Then to get the values of u and ν at interior grid

points the system (3.24) should be solved by us-

ing the SSP-RK43 method .

3.1 How to apply the method for
boundary values?

The boundary Dirichlet values are applied at the

boundary points and gives the amount of u and

ν at these points. When the boundary values are

in the following Neumanns form:
ut(x, y, t) = ν(x, y, t) + 2αu(x, y, t)
νt(x, y, t) = uxx(x, y, t) + uyy(x, y, t)−
β2u(x, y, t) + f(x, y, t)

(3.26)

By using DQM we discrete the conditions and

achieve the answers of u and ν at the following

boundary points

g1(0, y, t) =
∑N

k=1w
(1)
1k u(xk, yj , t);

j = 1, 2, . . . ,M
(3.27)

g2(1, y, t) =
∑N

k=1w
(1)
Nku(xk, yj , t);

j = 1, 2, . . . ,M
(3.28)

g3(x, 0, t) =
∑M

k=1w
(1)
1k u(xi, yk, t);

i = 1, 2, . . . , N
(3.29)

g4(x, 1, t) =
∑M

k=1w
(1)
Mk

u(xi, yk, t);
i = 1, 2, . . . , N

(3.30)

(3.27) and (3.28) can be written as

w
(1)
1,1u(x1, yj , t) + w

(1)
1,N

u(xN , yj , t) = g1(0, y, t)

−
∑N−1

k=2 w
(1)
1,ku(xk, yj , t)

(3.31)

w
(1)
N,1u(x1, yj , t) + w

(1)
N,N

u(xN , yj , t) = g2(0, y, t)

−
∑N−1

k=2 w
(1)
N,ku(xk, yj , t)

(3.32)

By solving (3.27) and (3.28) for w1,j and wN,j we

get

w1,j =
w

(1)
1,N (g2−

∑N−1
k=2 w

(1)
N,ku)−w

(1)
N,N (g1−

∑N−1
k=2 w

(1)
1,ku)

(w
(1)
1,Nw

(1)
N,1−w

(1)
1,1w

(1)
N,N )

, j = 1, 2, . . . ,M
(3.33)

wN,j =
w

(1)
N,1(g1−

∑N−1
k=2 w

(1)
1,ku)−w

(1)
1,1(g2−

∑N−1
k=2 w

(1)
N,ku)

(w
(1)
1,Nw

(1)
N,1−w

(1)
1,1w

(1)
N,N )

, j = 1, 2, . . . ,M
(3.34)

Similarly, for ui,1 and ui,M we have:

ui,1 =
w

(1)
1,M (g4−

∑M−1
k=2 w

(1)
M,ku)−w

(1)
M,M (g3−

∑M−1
k=2 w

(1)
1,ku)

(w
(1)
1,Mw

(1)
M,1−w

(1)
1,1w

(1)
M,M )

, j = 1, 2, . . . ,M
(3.35)

ui,M =
w

(1)
M,1(g3−

∑M−1
k=2 w

(1)
1,ku)−w

(1)
1,1(g4−

∑M−1
k=2 w

(1)
M,ku)

(w
(1)
1,Mw

(1)
M,1−w

(1)
1,1w

(1)
M,M )

;

; i = 1, 2, . . . ,M
(3.36)
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4 Numerical Simulation

Here, in order to show the effectiveness and accu-

racy of the numerical scheme, we applied the sug-

gested numerical technique on some testing prob-

lems. These examples are selected because their

exact answers are known and already existed in

the literature and can be easily compared with

our results. Also, the numerical simulations are

provided in the Matlab software. Moreover the

following formulas are used to compute the rela-

tive errors and root means square (RMS) errors.

L2 =

 N∑
j=1

∣∣uexactj − u∗j
∣∣2 1

2

(4.37)

L∞ = maxNj=1

∣∣uexactj − u∗j
∣∣ (4.38)

RMS =

(
N∑
i=1

e2i
N

) 1
2

(4.39)

That u∗j indicates a numerical solution for u at

point j.

Example 4.1. Consider a TE as follows:

utt + 2γut + δ2u = uxx + uyy + f(x, y, t);
0 ≤ x, y ≤ 1, t ≥ 0

(4.40)

With the following initial and Dirichlet boundary

values

u(x, y, 0) = sinx sin y;ut(x, y, 0) = 0 (4.41)

u(0, y, t) = 0; 0 ≤ y ≤ 1;x = 0
u(1, y, t) = cos t sin(1) sin y;
0 ≤ y ≤ 1;x = 1
u(x, 0, t) = 0; 0 ≤ x ≤ 1; y = 0
u(x, 1, t) = cos t sinx sin(1);
0 ≤ x ≤ 1; y = 1

(4.42)

the exact solution of this example in case

f(x, y, t) = 2(cos t − sin t) sinx is given by

u(x, y, t) = cos t sinx sin y [15].

The above example is solved with γ = 1 and

δ = 1. In Table 2, L2 and L∞ error norms are

reported with ∆t = 0.01, hx = hy = 0.1. Next,

we take ∆t = 0.001 andhx = hy = 0.05 and the

Table 2: Error norms of Example 4.1 with ∆t = 0.01
and hx = hy = 0.05

T The method in [?]
L2 L∞ Relative error

1 9.722e− 4 2.2746e− 3 5.9762e− 3
2 2.2877e− 4 6.0818e− 3 7.4720e− 4
3 1.0926e− 3 2.8706e− 3 8.5019e− 3
7 7.2867e− 4 1.8781e− 3 3.1572e− 3
T present method

L2 L∞ Relative error
1 1.2305e− 5 3.2417e− 6 2.5960e− 6
2 1.3130e− 6 4.2118e− 6 3.9841e− 6
3 4.1228e− 5 5.7123e− 5 3.5587e− 5
7 2.2279e− 6 5.5127e− 5 5.3124e− 6

Table 3: Error norms of Example 4.1 with ∆t =
0.001 and hx = hy = 0.05

T The method in [15]
L2 L∞ R error

1 9.8870e− 5 2.4964e− 4 6.2977e− 4
2 1.2148e− 4 3.2296e− 4 1.0025e− 3
3 3.7627e− 5 9.9310e− 5 1.3078e− 4
7 7.2867e− 4 1.8781e− 3 3.1572e− 3
T present method

L2 L∞ R error
1 5.2140e− 7 2.5127e− 7 9.3184e− 6
2 6.7448e− 6 4.9972e− 6 5.3420e− 5
3 2.6025e− 7 3.1782e− 8 6.3327e− 6
7 2.2279e− 6 5.5127e− 5 5.3124e− 6

L2, L∞ and relative errors at different time steps

are reported in Table 3. In addition, a compar-

ison of the present method and results in [15] is

noted in Table 2 and Table 3 . One can see the re-

sults of the proposed method perform much bet-

ter than the answers of [15] and are in a better

agreement with the exact solution.

Example 4.2. We consider the linear 3D hyper-

bolic TE

utt + 2γut + δ2u = uxx + uyy + uzz + f(x, y, z, t);
0 ≤ x, y, z ≤ 1, t ≥ 0

(4.43)

where f(x, y, z, t) = (δ2 − 4) cos(t) −
2 sin(t) sinh(x) sinh(y) sinh(z) and γ = 10 ,
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Figure 1: A comparison between the numerical and
exact solution of Example 4.2 at t = 1

-1
1

-0.8

1

-0.6

E
xa

ct
 s

o
lu

tio
n
 a

t 
t=

2

0.8

-0.4

Y axis

0.5 0.6

X axis

-0.2

0.4
0.2

0 0

-1
1

-0.8

1

-0.6

N
u
m

e
ri
ca

l s
o
lu

tio
n
 a

t 
t=

2

0.8

-0.4

Y axis

0.5 0.6

X axis

-0.2

0.4
0.2

0 0

Figure 2: A comparison between the numerical and
exact solution of Example 4.1 at t = 2
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Figure 3: A comparison between the numerical and
exact solution of Example 4.1 at t = 3
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Figure 5: A comparison between the numerical and
exact solution of Example 4.1 at t = 1 and the method
in [15].

δ = 5 with initial conditions

u(x, y, z, 0) = sinh(x) sinh(y) sinh(z)
ut(x, y, z, 0) = 0

(4.44)

The exact solution is given by u(x, y, z, t) =

cos(t) sinh(x) sinh(y) sinh(z) Table 4 and

Table 5 show a comparison between the

method in [19] with the present method in

terms of relative and L2, L∞ error norms at

hx = hy = 1
10 ,

1
16 ,

1
20 ,∆t = 0.001 . The results

indicate that the new method produces much

better results in comparison with [19].

Errors N=10
T = 1 T = 2

L2 5.7008e− 4 5.0974e− 4

L∞ 1.200e− 3 8.6344e− 4

R error

Errors N=16
T = 1 T = 2

L2 1.4645e− 4 5.9825e− 5

L∞ 2.1278e− 4 1.7305e− 4

R error 2.4400e− 4 1.2936e− 4

Errors N=20
T = 1 T = 2

L2 1.3244e− 4 5.5135e− 5
L∞ 4.9567e− 5 1.9493e− 5
R error

Table 4: error norms of Example 4.2 at time t =
1, t = 2 and ∆t = 0.001 with the proposed numerical
method

.

Errors N=10
T = 1 T = 2

L2 2.7301e− 6 7.2481e− 5
L∞ 4.8311e− 5 2.2035e− 6
Errors N=16

T = 1 T = 2

L2 2.9512e− 7 1.1907e− 5
L∞ 1.9417e− 6 4.5129e− 6
Errors N=20

T = 1 T = 2

L2 3.6493e− 6 2.5700e− 6
L∞ 2.6307e− 6 5.2175e− 6
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Example 4.3. suppose the following 3D second-

order hyperbolic TE

utt+2ut+u = uxx+uyy+uzz; 0 ≤ x, y ≤ 1, t ≥ 0

(4.45)

with 0 ≤ x, y, z ≤ 1 and the initial conditions

u(x, y, z, 0) = sinh(x) sinh(y) sinh(z)
ut(x, y, z, 0) = − sinh(x) sinh(y) sinh(z)

(4.46)

The exact solution is obtained by u(x, y, z, t) =

exp−t sinh(x) sinh(y) sinh(z). Table 6 reports a

comparison between the scheme in [14] with the

present method in terms of L2 and L∞ errors at

hx = hy = hz = 1
20 and ∆t = 0.001 at differ-

ent times t = 5, 10, 15.The results indicate that

the new scheme produces much better results in

comparison with [19].

Table 5: L2 and L∞ error norms of Example 4.3 at
∆t = 0.001 and hx = hy = hz = 1

20 .

T L2 L∞

5 3.2600× 10−6 2.7895× 10−6

10 1.6252× 10−6 9.13549× 10−7

2 2.2106× 10−9 5.7118× 10−9

T L2 in [14] L∞ in [14]

5 5.0130× 10−4 1.9019× 10−5

10 9.088× 10−6 7.900× 10−6

2 1.2490× 10−8 500740× 10−8

Example 4.4. We suppose the second-order hy-

perbolic TE (1.1), with 0 ≤ x, y ≤ 1, γ = δ = 1

and the initial condition

u(x, y, 0) = sin(πx) sin(πy)
ut(x, y, 0) = − sin(πx) sin(πy)

(4.47)

With boundary conditions

∂u
∂x(0, y, t) = −π exp−t sin(πy); 0 ≤ y ≤ 1;x = 0
∂u
∂x(x, 1, t) = −π exp−t sin(πx); 0 ≤ x ≤ 1; y = 1
u(x, 0, t) = 0; 0 ≤ x ≤ 1; y = 0
u(1, y, t) = 0; 0 ≤ x ≤ 1;x = 1

(4.48)

Table 6: RMS and relative errors of Example 4.4 and
a comparison of relative errors with other numerical
methods

T present method method in [16]

0.5 5.2512× 10−7 1.00788× 10−4

1 1.2858× 10−7 9.13549× 10−4

2 6.9107× 10−7 1.19624× 10−4

3 3.9943× 10−8 1.32672× 10−5

5 2.7133× 10−7 1.32777× 10−5

10 1.3561× 10−8 3.35744× 10−6

T method [17](ML) method in [17]

0.5 7.040× 10−5 3.701× 10−5

1 9.088× 10−5 7.900× 10−5

2 4.820× 10−4 1.216× 10−4

3 1.400× 10−3 8.302× 10−4

5 · · · · · ·
10 · · · · · ·

The exact solution is achieved by u(x, y, t) =

− exp−t sin(πx) sin(πy); t ≥ 0.

Table 6 shows a comparison between the meth-

ods in [16] and [17] with the present method

in terms of relative errors at hx = hy = 0.05

and ∆t = 0.001. The results indicate the new

method has a better accuracy in comparison

with [16, 17] .

5 Conclusion

In this article, the numerical approximations of

two and three-dimensional hyperbolic TE were

computed by an exponential modified cubic B-

spline DQM. During our study, we have used a

DQM for discretizing both of the spatial deriva-

tives and SSP-RK43 method for discretizing time.

After discretizing we get an ODE system which

solved by the SSP- RK43 method. The obtained

numerical results were in good agreement with

the exact solutions. A trivial outcome of this ar-

ticle is that accurate results will be achieved by

using a little number of grid points instead of a

lot of grid points, which not only can reduce the

computations but also lead to saving in the com-
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Figure 8: A comparison between the numerical and
exact solution of Example 4.4 at t = 1.
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puter running time.
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