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Abstract

Data envelopment analysis (DEA) obtains the relative efficiency of decision-making units (DMUs)
based on their inputs and outputs. In many situations, some variables can play the role of input or
output for a DMU. It is important to provide a suitable model that can maximize the efficiency of
the unit under evaluation by correctly choosing the role of these variables. One of the production
technologies in DEA is semi-additive production technology. In addition to the observed DMUs, this
technology also considers the set of all aggregations corresponding to these DMUs in the evaluation
of efficiency. In this paper, we presented the semi-additive production technology in DEA in the
presence of flexible measures. This technology is created based on the observed DMUs and their
corresponding aggregations DMUs. We have shown that we can provide semi-additive production
technology in the presence of flexible measures based only on the observed DMUs by removing the
region with decreasing returns to scale from the production possibility set (PPS). In the following,
we present two different approaches for measuring the efficiency of DMUs in the presence of flexible
measures in semi-additive production technology. These two approaches allocate flexible measure as
input or output in such a way that the efficiency of the unit under evaluation is maximized. Also, we
use the proposed approach to evaluate the efficiency of data sets related to academic units.
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—————————————————————————————————–

1 Introduction

D
EA is a mathematical programming method-

ology used to evaluate the relative efficiency

of a set of DMUs which was introduced by

Charnes et al. [9]. The evaluation of the effi-

ciency of each of the DMUs depends on the input

and output variables, and the selected production
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technology. One of the important issues in eval-

uating the efficiency of DMUs is the selection of

input and output variables. In many applications

of the real world, certain variables may play the

role of input or output for DMUs, and it is impor-

tant for the decision-maker (DM) to choose these

variables as input or output, and the appropriate

choice can determine the efficiency of the DMU

correctly. Such data are called flexible measures.

Some of factors in DEA can play both input and

output roles. These factors called flexible mea-

sures. As can be seen, efficiency score is the ratio

of outputs over inputs in DEA, also, the output is

235

https://sanad.iau.ir/journal/ijim/


236 J. Gerami /IJIM Vol. 15, No. 3 (2023) 235-256

a variable and when it increases it causes increase

efficiency score. Also, input is a variable whose

reduction increases efficiency score. Research and

development can be considered as both input and

output factors in the supplier selection problem.

Therefore, if we reduce the Research and develop-

ment then it increases the expenditure of financial

resources, in this case, Research and development

can be considered as an input factor. If we con-

sider it as an input, it imposes tremendous costs

on the supplier, and if we consider it as an output,

it acts as an agent of innovation that leads to bet-

ter products, services and processes. Beasley [6]

considered the research funding factor as a flex-

ible measure in evaluating US universities. The

research funding factor is a proxy for the quality

of the research program, which leads to acquiring

the income for universities on the one hand, and

supports different outputs, such as graduate stu-

dents, on the other hand.

Cook and Zhu [12] developed traditional DEA

models to deal with flexible data in constant re-

turns to scale (CRS) technology. The model pre-

sented by them was a fractional programming

model in the presence of binary variables. Their

model determined the best choice for these data

as input or output components by maximizing

the efficiency according to each DMU. They pre-

sented the necessary transformation in order to

transform their model into a mixed integer pro-

gramming model. In the following, other ap-

proaches were presented to deal with flexible mea-

sures in DEA.

Cook and Green [11] evaluate power plant effi-

ciency in flexible measures. Toloo [32] presented

a mixed integer linear programming to deal with

flexible measures in DEA. He showed that if

we consider alternative optimal solutions in the

model proposed by Cook and Zhu [12], in this

case, I, we cannot obtain more correct results for

choosing flexible measures as input or output. His

model solved the problem of considering alterna-

tive optimal solutions.

Toloo [23] reviewed the models presented by Cook

and Zhu [12]. He showed that in the model pre-

sented by Cook and Zhu [12] by choosing large

values for M, the efficiency score may not be

obtained correctly. He modified the model pre-

sented by Cook and Zhu [12] and solved the com-

putational problems of this model. Farzipoor

Saen [16] proposed a novel model for determining

third-party reverse logistics providers in the pres-

ence of multiple dual-role factors. Their model

can be easily solved by computer and used as a

decision tool to help decision makers.

Azadi and Farzipoor Saen [3] proposed a new

chance-constrained DEA approach to assist the

DMs to determine the most appropriate third-

party reverse logistics providers in the presence

of both dual-role factors and stochastic data.

Amirteimoori and Emrouznejad [1] investigated

the effect of the presence of flexible measures on

the PPS and investigated the effect of the pres-

ence of these measures on the efficiency score cor-

responding to each DMU. They showed that their

model is more appropriate in terms of input and

output compared to the model proposed by Cook

and Zhu [12]. Their model obtains the efficiency

score truly. Because the model presented by Cook

and Zhu [12] was a very optimistic model, while

their model was always overestimating the effi-

ciency. Amirteimoori et al. [2] proposed a flexible

slack-based measure of efficiency to maximize the

performance. They developed a slacks-based clas-

sification DEA model to deal with the presence

of flexible measures in DEA. Their model max-

imizes the efficiency score corresponding to the

DMU and considered the flexible measures corre-

sponding to some units as input and for others as

output. They showed that when the operational

unit is efficient, the flexible measure for this unit

can have both input and output roles.

Kordrostami et al. [26] proposed DEA mod-

els for classifying inputs and outputs by integer-

valued data envelopment analysis. Kordrostami

and Noveiri [27] developed a new model to eval-

uate the efficiency of DMUs where flexible and

negative data exist. Azizi and Amirteimoori [4]

investigated the efficiency evaluation of DMUs in

the presence of imprecise data and presented ef-

ficiency evaluation models in the simultaneous

presence of imprecise and flexible data. These

imprecise data were in the form of intervals. To-

hidi and Matroud [31] presented a non-oriented
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model to deal with flexible measure. Their model

provided in CRS and variable returns to scale

(VRS) technologies. Their model was also able

to deal with negative data. Toloo and Barat [35]

proposed models to handle to dual-role factor in

supplier selection problem. They show that the

dual-role factor can consider as nondiscretionary

in the returns to scale concepts. They present

a mixed integer linear programming approach

for dealing with the dual-role factor. Joulaei et

al. [23] presented a suitable model to deal with

the simultaneous presence of imprecise and flex-

ible data through fuzzy concepts. Toloo et al.

[35] presented a non-radial directional distance-

based DEA model for the classification problem

of inputs and outputs. They proposed two ap-

proaches, pessimistic and optimistic, from both

individual and summative points of view. They

applied their approach to the banking industry.

Toloo et al. [36] proposed a pair of interval DEA

models based on the pessimistic and optimistic

standpoints with the aim of handling with inter-

val dual-role factors. Their model determines a

unique status of each imprecise dual-role factor.

Also, they provided an aggregate model for real-

locating the dual-role factors for all DMUs. They

applied their models for a data set of 20 banks.

Kiyadeh et al. [24] presented a slacks-based clas-

sification DEA model to evaluate the efficiency

of the DMUs in the presence of flexible measures.

They developed DEA models to determine the

type of flexible measures as input or output vari-

ables. They showed that their model has more

adaptability to achieve the desired goals in DEA

compared to previous approaches.

Sharifi et al. [29] developed a new stochastic

model for classifying flexible measures in DEA.

They showed that the orientation of flexible data

is not pre-determined, and flexible data can be

treated as random variable in terms of both in-

put and output selection. The reason is that the

number of DMUs is fixed and all the DMUs are

independent. Hosseini Monfared et al. [21] pro-

posed new radial models for classifying flexible

measures in two-stage network DEA. Their mod-

els can select the status of each flexible measure

as an input or output and target setting to ineffi-

cient units. Hosseini Monfared et al. [22] Classi-

fied flexible measures in two-stage network DEA.

They provide an additive efficiency decomposi-

tion approach so that the overall efficiency is as

a weighted sum of the efficiency of the individ-

ual stages. They developed their approach in the

both CRS and VRS technologies. Amirteimoori

et al. [2] proposes an alternative model that dis-

tinguishes the same efficient and inefficient units,

however, their model accomplishes different pro-

jections for inefficient units obtaining then ap-

proach can obtain different classifications of flex-

ible measures. In this way, Boa [7] proposed a

comment on the paper of Amirteimoori et al. [2]

to solve the problem of the presented model.

Ebrahimi and Hajizadeh [14] proposed a novel

DEA model for measuring performance DMUs

with flexible measures. They applied their model

to Tehran Stock Exchange. They proposed a

novel mixed binary linear DEA model for classify

the flexible measures and select the best DMU.

Also, they developed an algorithm for finding a

suitable epsilon score, they rank all efficient units.

Tavana et al. [30] proposed a new non-radial di-

rectional distance DEA model for dealing with

negative and flexible measures. They developed

a new extended non-radial directional distance

model, that is a variant of the weighted addi-

tive model, to handle with negative data. They

extend their model in the presence flexible mea-

sures, that play the role of both inputs and out-

puts and have unknown status. They proposed

a case study in the automotive industry to show

the efficacy of the proposed approach. Eydi and

Rastgar [15] developed a DEA model with dual-

role factors and fuzzy data for selecting third-

party reverse logistics provider. They applied

their model in Hospital waste collection. Toloo

et al. [37] developed DEA models for classify-

ing flexible measures. They used role of non-

Archimedean epsilon. They show that proposed

previous models to deal with flexible measures ig-

nore the role of non-Archimedean epsilon in the

input-output classification process. They show

that these epsilon-free models may ignore some

flexible measures in the performance evaluation

process and then the status of flexible measures
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can be randomly and inappropriately identified.

They proposed a pair of epsilon-based multiplier

and envelopment classifier models. They pro-

vided an approach in order to find a suitable ep-

silon score for their developed classifier models.

Ghiyasia and Cook [19] presented performance

evaluation models in DEA in the presence of flex-

ible measures or dual role variables. They showed

that if we apply the model proposed by Cook and

Zhu [12] in variable scale efficiency technology

for the aggregate unit obtained of all DMUs, the

model may have an unbounded optimal solution.

To deal with the above result, they modified the

model proposed by Cook and Zhu [12] and pre-

sented a new model that has a bounded optimal

solution in the evaluation of the aggregate unit.

The production technology or PPS is a signifi-

cant part in the efficiency analysis by the DEA.

The first production technology by Charnes et

al. [9]. It was presented that this technology

had the property of CRS. In continuation Banker

et al. [5]. They presented a different technol-

ogy that has VRS property. Koopmans [25] pre-

sented another technology that had the property

of increasing VRS. Deprins et al. [13] presented

Free Disposal Hall (FDH) technology by remov-

ing the convexity axiom from the set of axioms

in creating PPS. Green and Cook [11] proposed a

model in non-convex production technology that

obtains the efficiency of each DMU in terms of the

observed DMUs and their corresponding aggre-

gate DMUs. As discussed, some production tech-

nologies in data coverage analysis, in addition to

the observed decision-making units, also consider

aggregations units corresponding to them in the

creation of production technology. (Ghiyasi and

Cook, [20]). Inclusion of aggregations units in

production technologies in DEA refers to the ad-

ditive assumption. This assumption states that

if the two DMUs A and B have the possibility

of production and belong to production technol-

ogy, then the aggregations unit corresponding to

them in the form of A+B will have the possibility

of production and will belong to this technology.

(Ghiyasi and Cook, [20]).

Ghiyasi [18] investigated different technologies in

DEA and introduced a new assumption called

semi-additive assumption by modifying the ad-

ditive assumption. He introduced semi-additive

production technology in DEA. This assumption

states that if two different DMUs, A and B have

the possibility of production and belong to this

set, then the aggregation unit corresponding to

them in the form of A+B will also have the pos-

sibility of production and will belong to this set.

The difference between the additive and semi-

additive assumption is that according to the semi-

additive assumption, two units must be different

in the formation of the aggregation unit. They

presented the semi-additive production technol-

ogy in terms of the power set corresponding to

the set of all observed DMUs.

Ghiyasi and Cook [20] investigated the semi-

additive production technology and presented the

axioms of the construction of this technology.

They showed that the relative efficiency evalu-

ation model in semi-additive production technol-

ogy has a large number of constraints and vari-

ables and is not suitable from the computational

point of view. In this regard, they presented the

PPS related to semi-additive production technol-

ogy by removing the decreasing DRS area of PPS,

and proposed semi-additive production technol-

ogy only in terms of the observed DMUs. Their

new model had fewer variables than their origi-

nal model and significantly reduced the amount

of computation.

The semi-additive assumption states that if two

different observed DMUs have the possibility of

production, aggregates of the observed DMUs

also has the possibility of production. The semi-

additive assumption is also called relaxed additiv-

ity. The difference between additivity and semi-

additive assumptions is that, according to the

additivity assumption, the sum of two identical

DMUs can also be produced in this technology,

while according to the semi-additive assumption,

these two DMUs must necessarily be different.

In other words, if A is an observed DMU, then

according to the additivity assumption, new ag-

gregate DMUs in the form of 2A or 3A are also

possible to produce, while according to the semi-

additive assumption, new aggregated DMUs in

the form of 2A or 3A are not possible to pro-
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duce. According to the semi-additive postulate,

if A and B are two different observed DMUs, then

according to the additive postulate, a new aggre-

gated DMU can be produced in the form of A+B.

Classic DEA model calculus the efficiency of

DMUs based on this issue that type of input and

output variables is already known. These mod-

els classified input and output variable as either

input or output. However, in some real world

there are variables that can play both input or

output role. They are known as flexible mea-

sures. Most of the previous suggested approaches

for determining the status of flexible measures

are oriented. Therefore, input and output model

may obtain the different efficiency scores. As we

know, the efficiency score of a DMUs depends on

the technology in which we evaluate this DMU.

So, in different technologies, we may face the re-

sult that a flexible measure is considered as an

input in the evaluation of one technology, while

it is considered as an output in another technol-

ogy. Also, the different technologies may pro-

duce different efficiency scores for under evalu-

ation DMU. Then, we can be expected a flexi-

ble measure is selected as an input variable in

one model but an output variable in the other

model. In addition, in all of the previous stud-

ies did not point to in semi-additive production

technology, but the semi-additive assumption is

prevailed on many real applications. The result-

ing VRS model can be unbounded in VRS tech-

nology, to alleviate this circumstance, we develop

the first approach which is feasible and bounded.

To deal with these issues, this study proposes two

different approaches for measuring the efficiency

of DMUs in the presence of flexible measures in

semi-additive production technology.

The semi-additive production technology consid-

ers the aggregation of production units in the pro-

cess of efficiency evaluation in DEA. This technol-

ogy must consider not only the full set of DMUs,

however as well the entire power set, namely the

set of all aggregations of the set of DMUs. There-

fore, this paper obtains the efficiency of DMUs in

the presence of flexible measures in semi-additive

production technology in the simultaneous pres-

ence of observed DMUs and their corresponding

aggregation DMUs. The current paper develops

two new model that significantly decreases the

computational complexity of models based on the

semi-additive production technology in the pres-

ence of flexible measures. These two approaches

allocate flexible measure as input or output in

such a way that the efficiency of the unit under

evaluation is maximized in the semi-additive pro-

duction technology. In this paper, we presented

performance evaluation models in semi-additive

production technology in the presence of flexible

measures. The first approach proposes a model

in the envelopment form, this model allows the

number of variables to be decreases. The second

approach is non-oriented model that not only se-

lects the status of each flexible measure as an in-

put or output but also determines it in presence

of aggregations DMUs. Performance evaluation

models of DMUs in the presence of flexible mea-

sures have not been presented in semi-additive

production technology so far. We also compared

the results obtained from the previous approaches

in VRS and semi-additive production technology,

considering the importance of these two technolo-

gies in the real world.

It can be said that the main contribution of

this paper is as follows. In this paper, we

present the semi-additive production technology

in the presence of flexible measures based on

the observed DMUs and their corresponding ag-

gregation DMUs. With regard to semi-additive

production technology, we present two new ap-

proaches for calculating the efficiency of DMUs in

the presence of flexible measures. Both presented

models are always feasible and have a bounded

optimal solution. The presented models obtain

the efficiency of the unit under evaluation only

based on the observed DMUs. These models al-

locate the flexible measures as input or output to

the DMUs in such a way that the efficiency of the

unit under evaluation is maximized.

It can be said that the remainder of this paper

is organized as follows. In the second section, we

will introduce semi-additive production technol-

ogy in DEA in the presence of flexible measures

and present two different approaches to measure

the efficiency of DMUs in semi-additive produc-
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tion technology. In the third section, we illustrate

the proposed approaches with two different nu-

merical examples. In the fourth section, we pro-

pose an application of the proposed approaches in

this paper, we use the data set related to universi-

ties and compare the results in the semi-additive

production technology and VRS technology. In

the sixth section, we present the results of the

research.

2 The semi-additive produc-
tion technology with flexible
measures

In this section, at first, we illustrate semi-additive

technology with simple a numerical example ge-

ometrically. In the following, we proposed differ-

ent two approach to deal to presence of flexible

measures in semi-additive technology.

2.1 A geometric explanation of semi-
additive production technology

In order to illustrate PPS of semi-additive tech-

nology geometrically, let we have three DMUs as

follows. A = (2, 0.5) B = (3, 2.5) and C = (5, 3).

In this way, we can create aggregated DMUs as

follows. D = A+B = (5, 3), F = A+C = (7, 3.5),

G = B+C = (8, 5.5), E = A+B+C = (10, 6). To

show PPS, we consider horizontal axis as input-

axis and vertical axis as output-axis. DMUs A

, B, and C are efficient. We consider DMUs in

three different technologies including constant re-

turns to scale (CRS), variable returns to scale

(VRS), and semi-additive technology geometri-

cally. The CRS technology is the biggest tech-

nology that includes all the other technologies.

The PPS under CRS property is included the re-

gion restricted by the input-axis and the right-

hand side of the line starting from the origin and

passing the B that show as the dashdot line. The

PPS under VRS property is included the bounded

region by the input-axis starting from xA and

the segment A-B-C and the horizontal extension

from B. The PPS in the semi-additive technol-

ogy is bounded by the input-axis starting from

xA passing the segment of A-B-G-E and hori-

zontal extension from E. The PPS under semi-

additive assumption is bigger than the PPS of the

BCC model. Consider a DMU C that is efficient

DMU in VRS technology but an inefficient DMU

in semi-additive technology. In order to evalu-

ate the efficiency of this DMU, we can project

it on efficient frontier of semi-additive technol-

ogy. We depicts DMU C at point C1 on the effi-

ciency frontier of the PPS corresponding to semi-

additive technology radially. As shown in Fig.

1, the efficiency score is calculated as the ratio

|OCX
1 /OCX |= 0.6. CX and CX

1 , represent the

image of the points C and C1 on the input-axis,

respectively.

Figure 1: PPS of semi-additive technology.

2.2 Modelling the semi-additive pro-
duction technology in the presence
flexible measures

In this section, we will introduce the semi-

additive production technology in the presence

of flexible measures and present the efficiency

evaluation models based on this production tech-

nology. Suppose that there are n DMUs observed

as DMUj = (Xj , Zj , Yj), j = 1, ..., n, where

the input vector Xj = (x1j , ..., xmj) ∈ Rm

are used to produce the output vector

Yj = (y1j , ..., ysj) ∈ Rs. Also assume that

each of these DMUs has a flexible measure

as Zj = (z1j , ..., zDj) ∈ RD. This measure is

considered as an input for some DMUs and as

an output for others. Also, this measure can

play the role of input or output for the unit

under evaluation. Now we introduce the general

production technology as follows.

T = {(X,Z,Y)|X Can produce (Z,Y)

or (X,Z) Can produce Y}.
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To introduce semi-additive production technol-

ogy in the presence of flexible measures, we first

introduce the following axioms.

A1. Feasibility of observations.

This axiom implies that all observed DMUs

belong to the production technology, i.e.

(Xj , Zj , Yj) ∈ T , j = 1, ..., n.

A2. Free (strong) disposability.

This axiom states that if (X1, Z1, Y1) ∈ T and if a

point (X2, Z2, Y2) is such that, X2 ≥ X1, Z2 ≥ Z1

or Z2 ≤ Z1, Y2 ≤ Y1, then (X2, Z2, Y2) ∈ T .

A3. Convexity.

This axiom states that if (X1, Z1, Y1) ∈ T ,

(X2, Z2, Y2) ∈ T , then µ(X1, Z1, Y1) + (1 −
µ)(X2, Z2, Y2) ∈ T for all µ ∈ (0, 1).

A4. Radial rescaling.

This axiom states that if (X,Z, Y ) ∈ T , then

µ(X,Z, Y ) ∈ T , for all µ ≥ 0.

A5. Semi-additive.

This axiom implies that (Xi, Zi, Yi) ∈ T ,

(Xj , Zj , Yj) ∈ T , then ((Xi, Zi, Yi) +

(Xj , Zj , Yj)) ∈ T , that i ̸= j.

The semi-additive axiom states that if we

consider two DMUs, then their corresponding

aggregation DMU also belongs to the production

technology.

A6. Minimum extrapolation.

This axiom states that the set T is the smallest

set that holds in the above axioms. In other

words, the T set is the subscription of all sets

of production technologies that have the above

properties.

As seen in the numerical example in section 2.1.,

the PPS of VRS technology is created only based

on DMUs, A, B, C as observed DMUs. This

PPS is formed only based on observed DMUs,

i.e. J = {1, ..., n}.
Now we consider the power set corresponding

to the set J = {1, ..., n} as the set P (J). This

set includes all subsets of set J . We obtain

new aggregations units based on the observed

DMUs according to the semi-additive axiom. In

fact, we can consider semi-additive production

technology as an aggregate form of the VRS

technology. It should be noted that the set J
′

is the power set corresponding to the set J,

which includes all the subsets of the set J except

the null set, that is, this production technology

does not include the origin. Therefore, we put

J
′
= P (J)/∅ where P (J) represents the power

set of J set and ∅ show empty set. It should be

noted that semi-additive production technology

accepts the axioms of including feasibility of ob-

servations, free (strong) disposability, convexity,

radial rescaling, semi-additive, and minimum

extrapolation.

To create the PPS in semi-additive production

technology, we must create the power set P (J)

corresponding to all the DMUs. We remove the

origin from this set. All the aggregated DMUs

in the power set belong to semi-additive produc-

tion technology. Therefore, the semi-additive

production technology is created based on all

the observed DMUs and the aggregated DMUs

corresponding to them in the power set, while

the VRS production technology is created only

based on the existing observed DMUs. In order

to build the PPS in semi-additive production

technology, we accept assumptions A1 − A3, A5

and A6. Therefore, semi-additive production

technology can be considered as an aggregated

form of BCC model. The semi-additive produc-

tion technology has the property of VRS. The

semi-additive production technology allows for

an IRS-like technology of the BCC model.

Therefore, we can present the set TSF based on

the above axioms as follows.

TSF = {(X,Z, Y ) |
∑
j∈J ′

λjXj ≤ X,

(
∑
j∈J ′

λjZj ≤ Z or
∑
j∈J ′

λjZj ≥ Z),∑
j∈J ′

λjYj ≥ Y,∑
j∈J ′

λj = 1, λj ≥ 0, j ∈ J
′}.

(2.1)

Theorem 2.1. The set TSF is the smallest set

that satisfy in the axioms A1 − A6. Proof: It

is clear that the set TSF satisfy in the axioms

A1−A6. To show that the set TSF is the smallest

set that satisfy in the axioms A1 − A6. Assume

that the set T̂ is another set that satisfy in

the axioms A1 − A6. We show that TSF ⊆ T̂ .

Assume that the set T̂ applies to the above
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axioms. Suppose that the vector (X,Z, Y ) satisfy

in the following relation.

∑
j∈J ′

λjXj ≤ X,

(
∑
j∈J ′

λjZj ≤ Z or
∑
j∈J ′

λjZj ≥ Z),∑
j∈J ′

λjYj ≥ Y,∑
j∈J ′

λj = 1, λj ≥ 0, j ∈ J
′}.

Let, vector corresponding to λ = (λ1, ..., λn)

in the set T̂ is as (X̄, Z̄, Ȳ ) =

(
∑
j∈J ′

λjXj ,
∑
j∈J ′

λjZj ,
∑
j∈J ′

λjYj)

where
∑
j∈J ′

λj = 1, λj ≥ 0, j ∈ J
′
.

Considering that the set T̂ applies to the

assumptions of including observations, feasi-

bility, convexity, ray infinity, quasi-collectivity,

therefore (X̄, Z̄, Ȳ ) ∈ T̂ . Therefore, the vec-

tor (X̄, Z̄, Ȳ ) dominates the vector (X,Z, Y ).

According to the assumption of feasibility, we

conclude that (X,Z, Y ) ∈ T̂ and the proof is

complete.2

If we design the efficiency evaluation model

based on set TSF , then these model has 1+2n de-

cision variables. If the number of observed DMUs

is large. Solving the above model is not appropri-

ate from a computational point of view. But in

Theorem (2) it was shown that semi-additive pro-

duction technology can be presented only based

on the observed DMUs. In this case, we define

a new set as Tnew
SF that it only based on the ob-

served DMUs.

Theorem 2.2. The set of semi-additive produc-

tion technology, TSF , is equal to the set below.

Tnew
SF = {(X,Z, Y ) |

n∑
j=1

λjXj ≤ X,

(

n∑
j=1

λjZj ≤ Z or

n∑
j=1

λjZj ≥ Z),

n∑
j=1

λjYj ≥ Y,

n∑
j=1

λj ≥ 1, λj ≤ 1, λj ≥ 0, j = 1, ..., n}.

(2.2)

Proof: To show that TSF = Tnew
SF . We show that

Tnew
SF ⊆ TSF and TSF ⊆ Tnew

SF . First, we show

that TSF ⊆ Tnew
SF . Suppose that (X,Z, Y ) ∈ TSF ,

according to the definition of the set TSF , there

exists a vector λ = (λ1, ..., λn) such that∑
j∈J ′

λjXj ≤ X,

(
∑
j∈J ′

λjZj ≤ Z or
∑
j∈J ′

λjZj ≥ Z),∑
j∈J ′

λjYj ≥ Y,∑
j∈J ′

λj = 1, λj ≥ 0, j ∈ J
′
.

(2.3)

Suppose we divide the indexes set relating to

DMUs in the set J
′
into two groups. The first

set includes the index corresponding to the ob-

served DMUs, namely J , and aggregation DMUs

that belong to the J
′ − J set. We consider two

different cases. In the first case, suppose that we

have λj > 0 only for the observed DMUs, where

j ∈ J and for j ∈ J
′ − J units we have λj = 0.

Therefore, according to relation (3), we will have
n∑

j=1

λjXj ≤ X,

(
n∑

j=1

λjZj ≤ Z or
n∑

j=1

λjZj ≥ Z),

n∑
j=1

λjYj ≥ Y,

n∑
j=1

λj = 1, λj ≥ 0, j = 1, ..., n.

According to the constraint
n∑

j=1

λj = 1, λj ≥ 0,
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j = 1, ..., n, we will have

n∑
j=1

λj ≥ 1, 0 ≤ λj ≤ 1,

j = 1, ..., n. So we conclude that (X,Z, Y ) ∈
Tnew
SF .

In the second case, suppose that we have an in-

dex J
′ − J , such that λj > 0. Suppose that we

define the set Ĵ ⊆ J to contain the indices of the

observed DMUs that produce the unit (X,Z, Y ),

i.e. X =
∑
j∈Ĵ

λjXj, Z =
∑
j∈Ĵ

λjZj, Y =
∑
j∈Ĵ

λjYj.

Put in this case λ̄j = 1, j ∈ Ĵ , λ̄j = 0, j ∈ J − Ĵ .

So we will have

n∑
j=1

λ̄j ≥ 1, 0 ≤ λ̄j ≤ 1, j =

1, ..., n, and∑
j∈J

λ̄jXj ≤ X,

(
∑
j∈J

λ̄jZj ≤ Z or
∑
j∈J

λ̄jZj ≥ Z),∑
j∈J

λ̄jYj ≥ Y.

namely (X,Z, Y ) ∈ Tnew
SF , then TSF ⊆ Tnew

SF .

To show that Tnew
SF ⊆ TSF , suppose that

(X,Z, Y ) ∈ Tnew
SF according to the definition of

the set Tnew
SF , there is a vector λ = (λ1, ..., λn)

such that
n∑

j=1

λjXj ≤ X,

(

n∑
j=1

λjZj ≤ Z or

n∑
j=1

λjZj ≥ Z),

n∑
j=1

λjYj ≥ Y,

n∑
j=1

λj ≥ 1, λj ≤ 1, λj ≥ 0, j = 1, ..., n.

We consider two different cases. First, assume

that

n∑
j=1

λj = 1, λj ≥ 0, j = 1, ..., n. Put in this

case λ̃j = λj, j ∈ J , λ̃j = 0, j ∈ J
′ − J .

So we will have
∑
j∈J ′

λ̃jXj ≤ X,

(
∑
j∈J ′

λ̃jZj ≤ Z or
∑
j∈J ′

λ̃jZj ≥ Z),∑
j∈J ′

λ̃jYj ≥ Y,∑
j∈J ′

λ̃j = 1, λ̃j ≥ 0, j ∈ J
′
,

then (X,Z, Y ) ∈ TSF .

In the second case, assume that
n∑

j=1

λj > 1, λj ≥ 0. Put in this case

λ̃j = λj/

n∑
j=1

λj, j ∈ J , λ̃j = 0, j ∈ J
′ − J .

So we will have
∑
j∈J ′

λ̃jXj ≤ X,

(
∑
j∈J ′

λ̃jZj ≤ Z or
∑
j∈J ′

λ̃jZj ≥ Z),∑
j∈J ′

λ̃jYj ≥ Y,∑
j∈J ′

λ̃j = 1, λ̃j ≥ 0, j ∈ J
′
,

then (X,Z, Y ) ∈ Tnew
SF .

Considering that we have shown that Tnew
SF ⊆

TSF , and TSF ⊆ Tnew
SF , therefore the proof is com-

plete. 2

Therefore, we created the set Tnew
SF based on all

the observed DMUs and the aggregated DMUs

corresponding to them. In semi-additive produc-

tion technology Tnew
SF , the DRS region is removed

from the VRS technology. For this purpose, the

expression
n∑

j=1

λj ≥ 1 is used. This constraint re-

moves the DRS region from the VRS technology

and ensures that we have the IRS region in this

technology and this constraint do not allow for

any scaling up. Also, the constraint 0 ≤ λj ≤ 1,

j = 1, ..., n, allows us to have all observed DMUs

and the aggregated DMUs corresponding to them

in the power set in the semi-additive production

technology.

Based on the definition of the Tnew
SF set, we

present the evaluation model of the efficiency

of the unit under evaluation, i.e. DMUo =

(Xo, Zo, Yo) in the input oriented in the presence

of flexible measures based on semi-additive pro-

duction technology as follows.

min {θSF | (θSFXo,
(θSFZo or Zo), Yo) ∈ Tnew

SF }. (2.4)

According to the definition of the set Tnew
SF , there-
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fore, model (2.4) will be as follows.

min θSF

s.t.
n∑

j=1

λjxij ≤ θSFxio, i = 1, · · · ,m,

(

n∑
j=1

λjzfj ≤ θSF zfo,

or

n∑
j=1

λjzfj ≥ zfo), f = 1, · · · , D,

n∑
j=1

λjyrj ≥ yro, r = 1, · · · , s,

n∑
j=1

λj ≥ 1, 0 ≤ λj ≤ 1, j = 1, · · · , n.

(2.5)

We easily convert model (2.5) into a mixed in-

teger programming model. Suppose that M is a

large number. Due to the fact that the relations

in second constraint of model (2.5) cannot exist

simultaneously, we use two binary variables to in-

clude this constraint in model (2.5). We present

the model corresponding to model (2.5) as fol-

lows.

θSF∗ = min θSF

s.t.

n∑
j=1

λjxij ≤ θSFxio, i = 1, · · · ,m,

n∑
j=1

λjzfj ≤ θSF zfo +Mαf , f = 1, · · · , D,

n∑
j=1

λjzfj ≥ zfo −Mβf , f = 1, · · · , D,

n∑
j=1

λjyrj ≥ yro, r = 1, · · · , s,

n∑
j=1

λj ≥ 1, 0 ≤ λj ≤ 1, j = 1, · · · , n,

αf + βf = 1, f = 1, · · · , D,
αf , βf ∈ {0, 1}, f = 1, · · · , D.

(2.6)

In model (2.6), by choosing αf = 0 and

βf = 1, the fourth constraint of model (2.6)

is redundant and third constraint namely
n∑

j=1

λjzfj ≤ θSF zfo + Mαf is satisfied. In this

way, zfo is considered as input for the unit

under evaluation, i.e. DMUo = (Xo, Zo, Yo).

Similarly, in model (2.6) by choosing αf = 1

and βf = 0, the third constraint of model

(2.6) is redundant and fourth constraint namely
n∑

j=1

λjzfj ≥ zfo − Mβf is established. In this

way, zfo for the unit under evaluation, i.e.

DMUo = (Xo, Zo, Yo) is considered as output. In

model (2.6), only one of the constraints third and

fourth will be satisfied, and these two constraints

are not simultaneously satisfied.

Theorem 2.3. Model (2.6) is always feasible and

has a bounded optimal solution.

Proof: If we put ˜θSF = 1, λ̃o = 1, λ̃j = 0, j =

1, · · · , n, j ̸= o, α̃f = 1, β̃f = 0, f = 1, · · · , D.

We can provide a feasible solution for model

(2.6). With this choice, the third constraint of

model(2.6) will be a redundant constraint. Con-

sidering that ˜θSF ≥ 0 and (θ̃SF , λ̃, α̃, β̃) is a

feasible solution for model (2.6), from the point

of view of optimization, because model (2.6) is

a model is minimization, so model (2.6) has a

bounded optimal solution score and, the proof is

complete.2

Therefore, to evaluate all the DMUs using the

design model based on TSF , we must solve this

model 2n times, while to evaluate all the DMUs

using the design model based on the Tnew
SF namely

model (2.6), then model (2.6) must be solved n

times. If the number of observed DMUs is large,

solving the design model according to set TSF is

not appropriate from a computational point of

view. An alternative approach to model (2.6) is

based on the entire collection of DMUs. In order

to determine designation (Both input and out-

put) for each flexible variable which maximizes

the efficiency of the entire set of DMUs. In deter-

mining whether flexible measures are selected as

inputs or outputs for the DMU under evaluation

is to use a new aggregation unit instead of the

unit under evaluation in model (2.6). We con-

sider the new aggregation unit based on the all

observed DMUs as follows.

ˆDMU = (

n∑
j=1

xij ,

n∑
j=1

zfj ,

n∑
j=1

yrj :

i = 1, · · · ,m, f = 1, · · · , D, r = 1, · · · , s).
In model (2.6), instead of evaluating the unit un-



J. Gerami /IJIM Vol. 15, No. 3 (2023) 235-256 245

der evaluation, i.e. DMUo, we evaluate the ag-

gregation unit, i.e. ˆDMU . In this case, model

(2.6) becomes as follows.

θSF∗ = min θSF

s.t.
n∑

j=1

λjxij ≤ θSF (
n∑

j=1

xij),

i = 1, · · · ,m,
n∑

j=1

λjzfj ≤ θSF (

n∑
j=1

zfj) +Mαf ,

f = 1, · · · , D,
n∑

j=1

λjzfj ≥ (
n∑

j=1

zfj)−Mβf ,

f = 1, · · · , D,
n∑

j=1

λjyrj ≥ (

n∑
j=1

yrj),

r = 1, · · · , s,
n∑

j=1

λj ≥ 1, 0 ≤ λj ≤ 1, j = 1, · · · , n,

αf + βf = 1, f = 1, · · · , D,
αf , βf ∈ {0, 1}, f = 1, · · · , D.

(2.7)

Model (2.7) includes flexible measures compo-

nents as input for some components of the aggre-

gation unit and as output for some others, thus

maximizing the efficiency of the aggregation unit
ˆDMU .

Now we present another approach to measure the

efficiency of DMUs in the presence of flexible mea-

sures as follows.

EFSF∗
CL = min (θSFCL/φ

SF
CL)

s.t.

n∑
j=1

λjxij ≤ θSFCL xio, i = 1, · · · ,m,

n∑
j=1

λjzfj ≤ θSFCL zfo +Mdf ,

f = 1, · · · , D,
n∑

j=1

λjzfj ≥ φSF
CL zfo −M(1− df ),

f = 1, · · · , D,
n∑

j=1

λjyrj ≥ φSF
CL yro, r = 1, · · · , s,

n∑
j=1

λj ≥ 1, 0 ≤ λj ≤ 1, j = 1, · · · , n,

df ∈ {0, 1}, f = 1, · · · , D,
θSFCL ≥ 0, φSF

CL ≥ 0.

(2.8)

Model (2.8) is a model without essence in DEA.

This model is a mixed fractional correct program-

ming problem that we expressed based on the

concept of most productive scale (MPS). Model

(2.8) obtains the efficiency of the unit under eval-

uation in the presence of flexible measures in

semi-additive technology. θSFCL, and φSF
CL, are vari-

ables considered in model (2.8) to decrease and

increase the input and output components, re-

spectively. The vector λ = (λ1, · · · , λn) is the

intensity vector corresponding to the observation

DMUs. df , f = 1, · · · , D, are binary variables.

In model (2.8), by choosing M as a large num-

ber, only one of the second and third constraints

will be satisfied and the other constraint will be

redundant. If in model (2.8) the value of df = 0 in

an optimal solution, then second constraint will

be valid and third constraint will be redundant.

In this way, zfo is considered as an input for the

unit under evaluation, i.e. DMUo = (Xo, Zo, Yo).

Similarly, if the model (2.8) obtains the value of

df = 1, in an optimal solution, then third con-

straint will be valid and second constraint will be

redundant. In this way, zfo for the unit under

evaluation, i.e. DMUo = (Xo, Zo, Yo) is consid-

ered as output. In model (2.8), only one of the

second and third constraints will be satisfied, and

these two constraints are not simultaneously sat-

isfied.

Theorem 2.4. Model (2.8) is always feasible and

has a bounded optimal solution. Proof: If we put
˜θSFCL = 1, ˜φSF

CL = 1, λ̃o = 1, λ̃j = 0, j = 1, · · · , n,
j ̸= o, d̃f = 0, f = 1, · · · , D, we can provide

a feasible solution for model (2.8). With this

choice, third constraint will be a redundant con-

straint. Considering that ˜θSFCL ≥ 0, ˜φSF
CL ≥ 0.

Then ( ˜θSFCL,
˜φSF
CL, λ̃, d̃) is a feasible solution for

model (2.8), from the point optimization opin-

ion, because model (2.8) is a minimization model,

therefore model (2.8) has a bounded optimal so-

lution and and, the proof is complete.2

Model (2.8) includes flexible measure com-

ponents for some components of the aggregate

unit as input and for others as output, thus

maximizing the efficiency of the aggregate unit
ˆDMU . In model (2.8), we can determine the
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Table 1: An illustrative example.

DMU Input Output Flexible
1 1 3 6
2 2 5 6
3 1 6 5
4 1 7 6
5 1 8 5
6 2 5 6
7 7 7 2
8 9 3 2

Table 2: The result based on the proposed approaches.

Results from model (2.6) Results from model (2.8)
DMU Efficiency δ1 δ2 Efficiency d
1 1 1 0 0.375 0
2 0.5 1 0 0.497 0
3 1 1 0 0.75 0
4 1 1 0 0.875 0
5 1 1 0 1 0
6 0.5 1 0 0.497 0
7 0.14 1 0 0.125 1
8 0.11 1 0 0.0427 1
Aggregated DMU 0.561 1 0 0.2639 1

Table 3: The result based on the previous proposed approaches in the VRS technology.

Amirteimoori and
Emrouznejad [1] Cook and Zhu [12]
DMU Efficiency δ1 δ2 Efficiency d
1 1 1 0 1 0
2 0.5 1 0 0.79 0
3 1 1 0 1 0
4 1 1 0 1 0
5 1 1 0 1 0
6 0.5 1 0 0.79 0
7 0.14 1 0 1 0
8 0.11 1 0 1 0

Table 4: Inputoutput data (Ghiyasi and Cook [19]).

DMU Input1 Input2 Felexible Output1 Output2
A 2 5 2 9 4
B 5 7 5 5 5
C 4 4 4 4 6
D 8 1 7 1 2
E 3 9 9 2 8
F 5 8 8 6 4
DMU 27 34 35 27 29

returns to scale class of unit under evaluation

based on an optimal solution of the model.

Assume that (θSF∗
CL , φSF∗

CL , λ∗, d∗) is an arbitrary

optimal solution of model (2.8). If we have

A) θSF∗
CL = φSF∗

CL = 1, in this case, the unit

under evaluation, i.e. DMUo = (Xo, Zo, Yo)
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Table 5: Classification results assuming semi additive (considering the flexible measure).

Results from model (2.6) Results from model (2.8)
DMU Efficiency δ1 δ2 Efficiency d
A 1 1 0 1 0
B 0.6296 0 1 0.6122 0
C 1 1 0 1 0
D 1 1 0 1 0
E 1 1 0 1 0
F 0.5618 0 1 0.4864 0
Aggregated DMU 0.8933 0 1 0.6721 0

Table 6: The results of Ghiyasia and Cook [19] in the VRS technology

DMU Efficiency d
A 1 0
B 1 1
C 1 0
D 1 1
E 1 1
F 1 1
Aggregated DMU 0.946 1

will have a CRS class. (Banker et al. [5]). b)

θSF∗
CL > φSF∗

CL > 1, in this case, the unit under

evaluation, i.e. DMUo = (Xo, Zo, Yo) will have

the IRS (increasing returns to scale) class. Due

to the fact that in the semi-additive production

technology, we remove the region with decreas-

ing scale efficiency (DRS), therefore the unit

under evaluation, i.e. DMUo = (Xo, Zo, Yo) does

not have the DRS class. (Ghiyasi and Cook [20]).

Theorem 2.5. The optimal objective function

score of the model (2.8) will not be greater than

the optimal objective function score of the model

(2.6).

Proof: Assume that (θSF∗, α∗, β∗, λ∗) be an opti-

mal solution for model (2.6). Then

(θ̌SFCL = θSF∗, φ̌SF
CL = 1, λ̌ = λ∗

j/
n∑

j=1

λ∗
j , ď = α∗),

is a feasible solution for model (2.8). There-

fore, the optimal objective function score of model

(2.8) will be less than or equal to optimal objec-

tive function score of model (2.6)and, the proof is

complete.2

An alternative approach for model (2.8) in de-

termining whether flexible measures are selected

as inputs or outputs for the unit under evaluation

is to create a new aggregation unit based on all

observed DMUs instead of the unit under evalu-

ation. We present the aggregation unit based on

all new observed DMUs based on the model (2.8)

as follows.

EFSF∗
CL = min (θSFCL/φ

SF
CL)

s.t.

n∑
j=1

λjxij ≤ θSFCL (

n∑
j=1

xij),

i = 1, · · · ,m,
n∑

j=1

λjzfj ≤ θSFCL (
n∑

j=1

zfj) +Mdf ,

f = 1, · · · , D,
n∑

j=1

λjzfj ≥ φSF
CL (

n∑
j=1

zfj)−M(1− df ),

f = 1, · · · , D,
n∑

j=1

λjyrj ≥ φSF
CL (

n∑
j=1

yrj),

r = 1, · · · , s,
n∑

j=1

λj ≥ 1, 0 ≤ λj ≤ 1, j = 1, · · · , n,

df ∈ {0, 1}, f = 1, · · · , D,
θSFCL ≥ 0, φSF

CL ≥ 0.
(2.9)

In this paper, we present two different approaches

to measure efficiency in semi-additive production
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Table 7: University data (Beasley [6]).

University Input1 Input2 Output1 Output2 Output3 Flexible

U1 528 64 145 0 26 254
U2 2605 301 381 16 54 1485
U3 304 23 44 3 3 45
U4 1620 485 287 0 48 940
U5 490 90 91 8 22 106
U6 2675 767 352 4 166 2967
U7 422 0 70 12 19 298
U8 986 126 203 0 32 776
U9 523 32 60 0 17 39
U10 585 87 80 17 27 353
U11 931 161 191 0 20 293
U12 1060 91 139 0 37 781
U13 500 109 104 0 19 215
U14 714 77 132 0 24 269
U15 923 121 135 10 31 392
U16 1267 128 169 0 31 546
U17 891 116 125 0 24 925
U18 1395 571 176 14 27 764
U19 990 83 28 36 57 615
U20 3512 267 511 23 153 3182
U21 1451 226 198 0 53 791
U22 1018 81 161 5 29 741
U23 1115 450 148 4 32 347
U24 2055 112 207 1 47 2945
U25 440 74 115 0 9 453
U26 3897 841 353 28 65 2331
U27 836 81 129 0 37 695
U28 1007 50 174 7 23 98
U29 1188 170 253 0 38 879
U30 4630 628 544 0 217 4838
U31 977 77 94 26 26 490
U32 829 61 128 17 25 291
U33 898 39 190 1 18 327
U34 901 131 168 9 50 956
U35 924 119 119 37 48 512
U36 1251 62 193 13 43 563
U37 1011 235 217 0 36 714
U38 732 94 151 3 23 297
U39 444 46 49 2 19 277
U40 308 28 57 0 7 154
U41 483 40 115 0 23 531
U42 515 68 79 7 23 305
U43 593 82 101 1 9 85
U44 570 26 71 20 11 130
U45 1317 123 293 1 39 1043
U46 2013 149 403 2 51 1523
U47 992 89 161 1 30 743
U48 1038 82 151 13 47 513
U49 206 1 16 0 6 72
U50 1193 95 240 0 32 485

technology in the presence of flexible measures.

Both approaches can have their advantages.

The differences between the two models are as

follows.

D1. The first approach, i.e. model (2.6) is in the

input oriented, while the second approach, i.e.

model (2.8) is without orientation.

D2. Model (2.6) is a mixed integer programming
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Table 8: Classification results assuming semi additive (considering the flexible measure).

Results from model (2.6) Results from model (2.8)

DMU Efficiency δ1 δ2 Efficiency d

U1 1 1 0 1 0
U2 0.653 1 0 0.6147 0
U3 0.968 1 0 0.6627 1
U4 0.6893 1 0 0.6451 0
U5 0.951 1 0 0.8928 1
U6 1 1 0 1 1
U7 1 1 0 1 1
U8 0.7666 0 1 0.7497 0
U9 0.7296 1 0 0.6576 1
U10 0.9449 1 0 0.8921 0
U11 0.7562 1 0 0.747 1
U12 0.711 1 0 0.6907 0
U13 0.851 1 0 0.7726 1
U14 0.7074 1 0 0.7037 1
U15 0.6892 1 0 0.6892 1
U16 0.5237 1 0 0.5237 1
U17 0.5552 0 1 0.5359 0
U18 0.5925 0 1 0.5925 0
U19 1 1 0 1 0
U20 0.9019 0 1 0.8575 0
U21 0.6693 1 0 0.6693 1
U22 0.664 0 1 0.664 0
U23 0.5603 1 0 0.5603 1
U24 0.4855 0 1 0.4841 0
U25 1 1 0 0.9517 0
U26 0.4344 0 1 0.4251 0
U27 0.856 1 0 0.8534 0
U28 0.8088 1 0 0.8088 1
U29 0.8014 0 1 0.7755 0
U30 0.852 0 1 0.8315 0
U31 0.7283 0 1 0.7283 0
U32 0.8407 1 0 0.8407 1
U33 1 1 0 1 1
U34 1 1 0 1 0
U35 1 1 0 1 0
U36 0.7467 1 0 0.7349 1
U37 0.808 0 1 0.7816 0
U38 0.8064 1 0 0.8064 1
U39 0.9202 0 1 0.7887 1
U40 0.9896 1 0 0.7401 0
U41 0.9979 0 1 0.9935 0
U42 0.9248 0 1 0.8355 1
U43 0.7011 1 0 0.6426 1
U44 1 1 0 1 1
U45 0.8913 0 1 0.8832 0
U46 0.8516 0 1 0.8477 0
U47 0.6573 0 1 0.6573 0
U48 0.8835 1 0 0.8835 1
U49 1 1 0 0.6366 1
U50 0.8369 1 0 0.8369 1
Aggregated DMU 0.9352 1 0 0.6592 0

problem, while model (2.8) is a mixed fractional

integer programming problem.

D3. Models (2.6) and (2.8) havem+s+3D+n+1

and m + s + 2D + n + 1 constraint respectively,
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Table 9: Classification results assuming VRS (considering the flexible measure).

Ghiyasi and Cook [19] Tohidi and Matroud [31]

DMU Efficiency d Efficiency d

U1 1 0 1 0
U2 1 0 0.61 0
U3 1 0 0.66 1
U4 0.9559 0 0.65 0
U5 1 0 0.89 1
U6 1 0 0.79 1
U7 1 1 1 1
U8 0.9106 1 0.75 0
U9 1 0 0.53 1
U10 0.9492 0 0.89 0
U11 1 0 0.75 1
U12 0.7368 1 0.58 0
U13 0.865 0 0.77 1
U14 0.7074 1 0.7 1
U15 0.735 0 0.69 1
U16 0.6242 0 0.52 1
U17 0.83 1 0.52 0
U18 0.6726 1 0.59 0
U19 1 1 1 0
U20 1 0 0.73 0
U21 0.8752 0 0.59 1
U22 0.79106 1 0.66 0
U23 0.7786 0 0.55 1
U24 1 0 0.45 0
U25 1 1 0.95 0
U26 1 1 0.43 0
U27 0.8686 1 0.7 0
U28 1 0 0.81 1
U29 0.9584 0 0.78 0
U30 1 0 0.63 0
U31 0.8609 1 0.73 0
U32 0.9497 0 0.84 1
U33 1 1 1 1
U34 1 1 0.92 0
U35 1 1 1 1
U36 1 1 0.73 1
U37 0.9419 0 0.78 0
U38 0.8707 0 0.81 1
U39 0.9209 1 0.62 0
U40 0.9969 0 0.74 0
U41 1 1 1 0
U42 0.9263 1 0.8 1
U43 0.9828 0 0.64 1
U44 1 1 1 1
U45 1 1 0.88 0
U46 1 1 0.85 0
U47 0.7526 1 0.66 0
U48 1 0 0.79 1
U49 1 1 0.45 0
U50 1 0 0.84 1
Aggregated DMU 1 0 - -

and model (2.6) has more D than model (2.8) .

Therefore, if the number of flexible sizes is large,

the solution of model (2.8) is more appropriate

from the computational point of view.
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D4. Models (2.6) and (2.8) have n + 2D + 1

and n+D + 2 variables, respectively. Therefore,

if the number of flexible measures is large, the

solution of model (2.8) is more appropriate from

the computational point of view.

D5. The objective function of the model (2.6) is

linear, while the objective function of the model

(2.8) is nonlinear.

D6. Based on the model (2.8), we can also deter-

mine the class of returns to scale of the DMUs,

which is constant or IRS in the semi-additive

production technology in the presence of flexible

measures.

According to the above comparison, model (2.8)

has fewer constraints and variables than model

(2.6). Also, the model (2.8) is a non-orientation

model that can make a correct choice to deter-

mine whether a flexible measure is selected as

input or output.

3 Numerical examples

In this section, in order to check the results of the

two proposed approaches in this paper and com-

pare them, we present two numerical examples.

3.1 Numerical example 1

Consider 8 DMUs, each of which uses one input

to produce one output, according to Table 1.

Each DMUs has a flexible measure.

First, we examine the results based on model

(2.6). As can be seen, in the evaluation of the

efficiency of the DMUs based on model (2.6),

the value of α∗
f = 0 f = 1, · · · , D. is obtained,

that is, for all the DMUs of model (2.6) the

flexible measure considered as output. The

second column of Table2 shows the efficiency

of each of the measure based on model (2.6).

As can be seen, the DMUs, 1, 3, 4, and 5 are

efficient units and other units are inefficient. If

we use the model (2.7) for the aggregation unit

corresponding to all the observed DMUs, then

the model (2.7) includes the flexible measure for

the aggregation unit as output and the efficiency

score of this unit is 0.561. These results are in

the last row of Table 2.

Now let’s compare the results in semi-additive

technology according to model (2.6) with the

results obtained from the approach provided

by Amirteimoori and Emrouznejad [1] in VRS

technology according to Table 3. The results of

the two approaches are the same. The approach

presented by Amirteimoori and Emrouznejad [1]

considers the flexible measure as output for all

DMUs. We examine the results of the second

proposed approach in this paper to deal with

flexible measures in semi-additive production

technology according to model (2.8). The results

are in the last two columns of Table 2. As can

be seen, this model considers flexible measure for

units 1, 2, 3, 4, 5, and 6 as input and for units 7

and 8 as output. According to model (2.8), the

only efficient unit is unit 5.

If we apply model (2.9) to the aggregation unit

corresponding to all the observed DMUs, then

model (2.9) includes the flexible measure for the

aggregation unit as output and obtains the effi-

ciency score of this unit as 0.2639. Now let’s com-

pare the results in semi-additive technology ac-

cording to model (2.8) with the results obtained

from the approach provided by Cook and Zhu

[12] in VRS technology. The results are in the

last two columns of Table 3. The results of the

two approaches are the same. The approach pre-

sented by Cook and Zhu [12] takes the flexible

measure as the output for all DMUs. Based on

the model of Cook and Zhu [12], all DMUs ex-

cept DMUs 2 and 6 are efficient. These results

show the difference between the efficiency scores

of the DMUs in flexible measures in VRS and

semi-additive production technology. DMUs, 1,

3, 4, 7, and 8 are efficient in the presence of flexi-

ble measure in VRS technology, but these DMUs

are inefficient in the presence of flexible measure

in semi-additive technology.

3.2 Numerical example 2

Now we present another numerical example in

order to compare the results of the proposed ap-

proaches in this paper in the semi-additive pro-

duction technology and the previous approaches
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in the VRS technology. Table 4 show data related

to seven DMUs, each of which has two inputs and

two outputs and a flexible measure. The data is

given in Table 4.

Now we examine the results of the first approach

presented in this paper to deal with flexible mea-

sures in semi-additive production technology ac-

cording to model (2.6). The results are in the

second to fourth columns of Table 5. As can be

seen, model (2.6) introduces units A, C, D, and E

as efficient units and obtains units B and F as in-

efficient. Model (2.8) introduces flexible measure

for units A, C, D, and E as output and for units,

B and F as input. If we use model (2.7) for the

aggregated unit corresponding to all the observed

units, then model (2.7) includes the flexible mea-

sure for the aggregated unit as an input and the

efficiency score of this unit is 0.8933. These re-

sults are in the last row of Table 5.

Now we will examine the results of model (2.8) in

semi-additive production technology. The results

are in the last two columns of Table 5). As can

be seen, model (2.8) introduces units A, C, D,

and E as efficient units and obtains units B and

F as inefficient. Model (2.8) introduces flexible

measure for all units as input.

Now we will examine the results of model (2.8)

in semi-additive production technology with the

results of the approach provided by Ghiyasia and

Cook [19] in VRS technology.

The results are shown in Tables 5 and 6 respec-

tively.

The results related to the approach provided

by Ghiyasia and Cook [19] in VRS technology

are shown in Table 6. This approach introduces

all DMUs as efficient. It also introduces flexible

measure for units B, D, F, and E as outputs and

for units A and C as inputs.

If we use model (2.9) for the aggregated unit

corresponding to all the observed DMUs, then

model (2.9) includes the flexible measure for the

aggregated unit as an input and the efficiency

score of this unit is 0.6741 according to last

row of Table 5. But the approach provided

by Ghiyasia and Cook [19] in VRS technology

considers the flexible measure for the aggregated

unit as output and obtains the efficiency score of

this unit as 0.946 according to last row of Table

6. As can be seen, the results of the proposed

approaches in this paper in the presence of

flexible measure and semi-additive production

technology are different from the previous

approaches in the face of flexible measures

in VRS technology. A unit may be efficient

in semi-additive production technology, while

it is inefficient in VRS technology, and vice versa.

4 An application for university
units

In this section, we present an application of

the proposed approaches in this paper in the

presence of flexible measures and semi-additive

production technology. Data are from Beasley

[6] and Cook and Zhu [12]. The data is given

in Table 7. The data are related to university

units. Each academic unit has two entrances

included: General Expenditure and Equipment

Expenditure and three outputs, consisting of

three types of students. The ”flexible measure”

here is the Research Income.

Now we examine the results of the first pro-

posed approach in this paper to deal with flexible

measures in semi-additive production technology

according to model (2.6). The results are in the

second to fourth columns of Table 8. As can be

seen, model (2.6) introduce units 1, 6, 7, 19, 25,

33, 34, 35, 44, 49 as efficient and other units inef-

ficient. According to Table 8, model (2.6) intro-

duces flexible measure for 64 percent of units as

output and for 34 percent of units as input. Now

we examine the results of model (2.8) in semi-

additive production technology. The results are

shown in the fifth and sixth columns of Table 8.

As can be seen, model (2.8) introduce units 1, 6,

7, 19, 33, 34, 35, 44 as efficient and other units

inefficient. According to Table 8, model (2.6) in-

troduces flexible measure for 48 percent of units

as output and for 52 percent of units as input.

Now we examine the results of the approaches

provided by Tohidi and Matroud [31] and Ghiya-
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sia and Cook [19]in VRS technology. The results

are shown in Table 9.

The results of the approach provided by Tohidi

and Matroud [31] are shown in the fourth and

fifth columns of Table 9. Based on this approach,

units 1, 7, 19, 33, 36, 41, 44 are efficient and

other units are inefficient. This approach intro-

duces the flexible measure for 46 percent of the

units as output and for 54 percent of the units as

input.

The results of the approach of Ghiyasia and Cook

[19] are shown in the second and third columns

of Table 8. Based on this approach, units 1, 2, 3,

5, 6, 7, 9, 11, 19, 20, 24, 25, 26, 28, 33, 35, 36,

41, 44, 45, 46, 48, 49, 50, are efficient unit and

other units as inefficient. This approach intro-

duces the flexible measure for 52 percent of the

units as output and for 48 percent of the units as

input.

According to Table 9, if in the approach pro-

vided by Tohidi and Matroud [31] and Ghiyasia

and Cook [19] the value of d∗f = 0 is obtained,

then the flexible measure is obtained as the

output and if the value of d∗f = 1 is obtained,

then we take the flexible measure as input.

Based on the results obtained in this paper, we

can find out that the flexible measure may be

considered as an input for a special DMU in

semi-additive production technology and as an

output in VRS technology. This measure can

be considered as input or output in order to

maximize the efficiency score of the unit under

evaluation.

In this study, efficiency measurement models

in semi-additive production technology in the

presence of flexible measures were presented.

As stated in the paper and we showed it geo-

metrically in section 2, VRS and semi-additive

technologies are different. So far, no model has

been presented to measure efficiency in semi-

additive production technology in the presence

of flexible measures. Two approaches presented

in this paper can be useful. In this paper, we dis-

cussed the results of previous models presented

to measure efficiency in VRS technology and the

results of the models presented in this paper in

semi-additive production technology. Although

the two technologies are different, comparing the

results of the models in these two technologies

can help to better understand the models and

their validity. In this paper, we have shown

that a flexible measure may be considered as an

input in the semi-additive production technology,

while it is considered as an output in a VRS

technology. It is not important to choose a

flexible measure as input or output in the model,

and the goal is to maximize the efficiency of the

DMU under evaluation. As we have shown in

the paper, the results related to the two models

introduced in this paper to measure efficiency

in semi-additive production technology in the

presence of flexible measures, i.e. models (2.6)

and (2.8), may be different.

5 Conclusion

As we know, the efficiency score corresponding to

each DMUs in DEA depends on their input and

output vector and the technology in which this

unit is evaluated. In traditional DEA models,

the input and output variables are determined in

advance by the DM. But in the real world, some

certain variables can play the role of input or out-

put. It is important to determine whether these

variables are included in the evaluation model as

input or output. In this paper, we presented the

semi-additive production technology in DEA in

the presence of flexible measures.

This technology is created based on the ob-

served DMUs and their corresponding aggrega-

tions DMUs. We have shown that we can propose

semi-additive production technology in the pres-

ence of flexible measures based only on the ob-

served DMUs by removing the region with DRS

property from the PPS. We also present two dif-

ferent approaches to deal with flexible measures

in semi-additive production technology in order

to evaluate the DMUs. These two approaches al-

locate flexible measure as input or output in such

a way that the efficiency score of the unit under

evaluation is maximized. We have shown that the

proposed second presented in this paper is more

suitable compared to the first approach because
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this approach, in addition to obtaining the effi-

ciency score of the unit under evaluation in the

presence of flexible measures, also provides the

returns to scale class of the unit under evalua-

tion in semi-additive production technology. We

have shown that the class of returns to scale of

this unit can be constant or increasing. We have

shown that the models presented in this paper are

always feasible and have a bounded optimal solu-

tion. Then we can say that the advantages of the

presented study over the existing is as follows.

a. We present the semi-additive production tech-

nology in the presence of flexible measures based

on the observed DMUs and their corresponding

aggregation DMUs which has not been provided

so far.

b. The major problem includes the semi-additive

production technology is computational complex-

ity when there are many DMUs. (Observed

DMUs and the aggregation of DMU). This pa-

per develops two model that reduces the compu-

tational complexity of the semi-additive produc-

tion technology by reducing the number of vari-

ables in the presence of flexible measures. This

paper deals with computational complexity issues

in traditional DEA model that the consideration

of the power set corresponding to the observed

DMUs as aggregations DMUs.

c. We present two new approaches for calculating

the efficiency of DMUs in the presence of flexible

measures in semi-additive production technology.

Both presented models are always feasible and

have a bounded optimal solution.

d. The presented models obtain the efficiency

of the DMU under evaluation only based on the

observed DMUs, however, in semi-additive pro-

duction technology we also have aggregate DMUs

corresponding to the observed DMUs.

e. We determine the type of flexible factors, for

this propose, two models were presented in this

paper, in the direction that flexible factors used

in the best situation. Then factors in both output

and input roles will maximum efficiency of under

evaluation DMU.

f. Most of the previous suggested approaches

for determining the status of flexible measures

are oriented. The second approach in this paper

have not oriented. Therefore, the right choice to

choose the flexible measure as input or output is

made correctly and the efficiency value of the unit

under evaluation is maximized in semi-additive

production technology.

g. The models presented in this paper are always

feasible and have a bounded optimal solution.

The limitations of proposed models are as follows.

The two proposed models are nonlinear program-

ming. The firs model is mixed integer program-

ming model and second model is a mixed frac-

tional correct programming problem.

To solve them, we must use software for solving

non-linear models.

In semi-additive production technology, the tar-

gets for inefficient DMUs may be selected based

on aggregation DMUs. These targets may not be

created in some situations.

As future work, inverse DEAmodels can be devel-

oped in the presence of flexible measures. Also,

the models presented in this paper were devel-

oped in the presence of flexible measures in semi-

additive production technology for two-stage net-

work structure.
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