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Abstract

This work presents the generalized nonlinear multi-terms fractional variable-order differential equa-
tion with proportional delays. In this paper, a novel shifted Jacobi operational matrix technique is
introduced to solve a class of these equations mentioned, so that the main problem becomes a system
of algebraic equations that we can solve numerically. The suggested technique is successfully devel-
oped for the aforementioned problem. Comprehensive numerical tests are provided to demonstrate
the generality, efficiency, accuracy of presented scheme and the flexibility of this technique. The nu-
merical experiments compared it with other existing methods such as Reproducing Kernel Hilbert
Space method (RKHSM). Comparing the results of these methods as well as comparing the current
method (NSJOM) with the true solution, indicating the validity and efficiency of this scheme. Note
that the procedure is easy to implement and this technique will be considered as a generalization of
many numerical schemes. Furthermore, the error and its bound are estimated.

Keywords : Nonlinear multi-terms differential equations; Fractional variable-order with proportional
delays; Shifted Jacobi operational matrix; Caputo differential operator.

—————————————————————————————————–

1 Introduction

T
he applications and analysis of fractional or-

der calculus is an active and the fastest

growing region for research in the last three
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decades. It has currently become an important

tool owing to their wide usages in diverse scien-

tific disciplines, such as chemistry, physics, reg-

ular changes in thermodynamics, blood circula-

tion phenomenons, biophysics, electro-dynamics

of complex medium, capacitor theory, polymer

rheology, dynamical systems, fitting of experi-

mental data, etc. ([5, 22, 31, 43] and refer-

ences therein). The increasing development of

appropriate and efficient method to solve FDEs

has aroused more interest of researchers in this

field. Nonlinear phenomenons have diverse us-

ages in different regions of engineering and sci-
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ence such as fluid flow, mechanics, thermic sys-

tems and other fields of applications[26]. Clearly,

solving the nonlinear FDEs is relatively diffi-

cult compared to its linear type. In this regard,

analytical methods such as, concept of Lambert

function, homotopy perturbation (HPM), new

iterative methods and Adomian decomposition,

have been used in the recent literature widely

[2, 9, 14, 15, 27, 53, 50] . On the other hand,

some researchers like Diethelm et. al. [23, 22]

have developed standard numerical schemes, for

example Adams-Bashforth techniques have been

used numerically for integration of FDEs.

Putting up of delay in the differential equations

of fractional order creates new perspectives espe-

cially in the field of bioengineering [17], because

in bioengineering, the realization of the dynamics

that happen in biological tissues, is improved by

fractional derivatives [17, 28].

In mathematical sciences, the differential equa-

tions of delay are a kind of differential equations

in that the derivative of an unknown function at

a definite time is presented in terms of the values

of the function at prior times. The delay differ-

ential equations are also called systems of time-

delay, deed-time systems or aftereffect systems,

equations of differential-difference type, systems

of hereditary, equations with deviating arguments

[26].

Fractional delay differential equations are dif-

ferent from the ordinary type in which the deriva-

tive at any time related to the solution (and when

the equations are neutral then depends on the

derivative) at previous times. Many real-world

events can be modeled as the delay fractional dif-

ferential equations [43]. The fraction order of

differential equations have many application in

various scientific disciplines by modeling of vari-

ous problem such as economy, electro dynamics,

biology, control, finance, chemistry, physics and

so on, for further reading, interested parties can

refer toreader to the [26, 38, 11, 46, 47, 44, 3]

resouces.

In recent years, Margado et al in [36] an-

alyzed numerical solution and approximated it

for FDDEs. The stability areas of systems of

FDDEs is examined via Cermak et al in [13].

Stability for systems of FDDEs by means of

Grünwalds approach is analyzed by Lazarovic

and Spansic [33]. Daftardar-Gejji et al in

[16] have proposed a New Predictor-Corrector

method (NPCM) and new iteration technique

presented by Daftardar-Gejji and Jafari [18] ,

for solving FDEs numerically. Bhalekar and

Daftardar-Gejji proposed A Predictor-Corrector

method to solve non-linear fractional-order delay

differential equations in [10]. In [52], the author

generalized the algorithm of Adams-Bashforth-

moulton presented in [22, 23, 21] to solve the

delay FDEs. Varsha et al [17], have presented

a new technique for solving non-linear FDDEs.

Ghasemi et al [26], have employed Reproducing

kernel Hilbert Space method for solving nonlinear

FDDEs. Jhing and Daftardar-Gejji have pro-

vided a new numerical scheme to solve FDDEs

[28] and Khodabandehlo et al in [29, 30] have pro-

posed a novel shifted Jacobi operational matrix

method for nonlinear variable-order FDDEs with

periodic and anti periodic condition.

Moreover, the spectral methods that funda-

mentally related to an orthogonal polynomials

set, are used for solving the FDEs. One of

the most famous of them, is the classic Jacobi

polynomials which shown as follow:

P
(α,β)
m (t) (α > −1, β > −1, m ≥ 0).

These polynomials have been employed broadly

in mathematical analysis and practical applica-

tions due to it has the benfits of achieving the

numeric solutions in parameters α and β. There-

fore, the systematic study of Jacobi polynomi-

als with general indexes α and β will be useful

and obviously, this case, in addition to extending

the time interval t ∈ [0, I], can be considered

as one of the goals and novelties of this version

[24]. Furthermore, recently interest of researchers

has increased in this field (field of variable frac-

tional differential equations) [49, 34]. So,many

techniques are used to find the numeric solution

of these equations [37, 25, 35].

Now, the goal of current work is to general-

ize the orthogonal polynomials in the base of so-

lution. In fact, this technique is introduced in
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[24] and we present a Novel Shifted Jacobi Op-

erational Matrix for the fractional derivatives to

solve a class of nonlinear multi-terms differential

equations of fractional variable-order with pro-

portional delays which as follow:

Dη(t)w(t) =
F (t, w(t), w(p1t), w(p2t), ..., w(pkt)),

0 ≤ t ≤ T,

w(i)(0) = λi, i = 0, 1, · · · , n− 1,
0 < pm < 1, m = 1, 2, · · · , k .

(1.1)

whereDη(t) is the Caputo’s derivative of variable-

order fractional.

note

If η(t) is constant, then equation (1.1) will be as

follow:

Dηw(t) = F (t, w(t), w(p1t),
w(p2t), ..., w(pkt)) , 0 ≤ t ≤ T,

w(i)(0) = λi, i = 0, 1, · · · , n− 1.

(1.2)

Also note that: we can use many polynomials

such as Legendre polynomials, Gegenbauer poly-

nomials, Fibonacci polynomials, all Chebyshev

polynomials, Lucas, Vieta-Lucas, and etc in our

new suggestion technique. The numerical results

obtained for the mentioned equation in this study

reveal that the present method is of highly ac-

curacy. By focusing on numerical experiments

gained by this method with other available meth-

ods, and comparing them, we can find that the

proposed scheme capable of solving the variable-

order FDDE, playing role of a powerful effective

and practical numerical technique.

2 Fundamentals and prelimi-
naries

At the beginning of this part of the article, we

review some of the fundamental and most im-

portant features of theory of fractional calculus.

Then recall some important traits of the Jacobi

polynomials which help us for developing the sug-

gested technique. So we refuse to include dupli-

cate concepts in other related articles and unnec-

essary content but readers who are interested can

refer to [8, 48, 20].

2.1 The derivative of fractional order

Different definitions are provided and used for the

fractional derivative, but the three most usual are

the Caputo definitions, Grünwald-Letincov and

Riemann-Liouville. This article is based on Ca-

puto definition because , in the initial conditions,

only the Caputo’s definition has the same form

as integer-order DEs.

Definition 2.1. The right and left-sided Caputo

fractional derivatives of order η (m− 1 < η ≤ m )

are detemined as

Dη
−w(t) =

(−1)m

Γ(m− η)

∫ T
t

U ′(s)

(s− t)η−m+1
ds,

Dη
+w(t) =

1

Γ(m− η)

∫ t
0

U ′(s)

(t− s)η−m+1
ds.

(2.3)

that

Dη
+t

j =


0 , for j ∈ M0 and j < ⌈η⌉,

Γ(j + 1)tj−η

Γ(j − η + 1)
, j ∈ M0, j > ⌈η⌉.

(2.4)

and

Dη
−(T − t)j =


0 , for j ∈ M0 and j < ⌈η⌉,

(−1)jΓ(j + 1)(T − t)j−η

Γ(j − η + 1)
,

for j ∈ M0 and j > ⌈η⌉.
(2.5)

where ⌈.⌉ is the ceiling function and M0 =

{0, 1, 2, · · ·}.
Also

Dη
±(γφ(t) + δϕ(t)) = γDη

±(φ(t)) + δDη
±(ϕ(t)).

where γand δ are constants.

Definition 2.2. The Caputo derivative with frac-

tional variable-order η(t) for w(t) ∈ Cm[0, T ] are

given respectively as [34, 12]:

Dη(t)w(t) =
1

Γ(1− η(t))

∫ t
0+

w′(s)

(t− s)η(t)
ds

+
w(0+)− w(0−)

Γ(1− η(t))
t−η(t).

(2.6)
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At the beginning time and for

0 < η(t) < 1, we have:

Dη(t)w(t) =
1

Γ(1− η(t))

∫ t

0+

w′(s)

(t− s)η(t)
ds. (2.7)

also, if aand b are constant then

Dη(t)(aw1(t) + bw2(t)) =

aDη(t)w1(t) + bDη(t)w2(t) .
(2.8)

According to Eqution (2.6), we have:

Dη(t)C = 0, C is a constant. (2.9)

On the other hand

Dη(t)tk =0, for k = 0,
Γ(k + 1)

Γ(k + 1− η(t))
tk−η(t) for k = 1, 2, · · · .

(2.10)

2.2 Shifted Jacobi polynomials and
their properties

Suppose P
(α,β)
m (x); α > −1 , β > −1 as the m−th

degree Jacobi orthogonal polynomial in x defined

on [−1, 1].

As any classical orthogonal polynomials,

P
(α,β)
m (x) form an orthogonal system with respect

to weight function ω(α,β)(x) = (1+ x)α (1− x)β,

in other words [8]:∫ 1

−1
P

(α,β)
i (x) P

α,β)
j (x)ω(α,β) dx = h

(α,β)
j δi,j ,

(2.11)

where

h
(α,β)
j =

2α+β+1Γ(j + α+ 1)Γ(j + β + 1)

(2j + α+ β + 1)j! Γ(j + β + α+ 1)
,

and δi,j is the function of Kronecker. also the

i−th order Jacobi polynomial has the following

analytical form [24]

P
(α,β)
i (t) =

∑i
k=0

Γ(α+ i+ 1)Γ(α+ i+ 1 + β + k)(
t− 1

2
)k

Γ(α+ β + i+ 1)Γ(α+ 1 + k)k! (i− k)!
,

(2.12)

the polynomials presented in Equation (2.12) can

be generated as follow:

dα,β1,i P
(α,β)
i (t) = dα,β2,i P

(α,β)
i−1 (t)− dα,β3,i P

(α,β)
i−2 (t),

i = 2, 3, · · ·
(2.13)

where

dα,β1,i = 2i(α+ i+ β)(α+ 2i− 2 + β),

dα,β2,i = (α+ 2i− 1 + β)(α2 − β2

+(α+ 2i+ β)(α+ 2i+ β − 2)t),

dα,β3,i = 2(α+ i− 1)(β + i− 1)(α+ 2i+ β).

That start values as follow

P
(α,β)
0 (t) = 1

and P
(α,β)
1 (t) =

1

2
[(α+ β + 2) t+ (α− β)].

If we implement the shift of variable x =

(
2t

T
− 1), then we can use the polynomial of Eq.

(2.12) on the interval 0 ≤ t ≤ T . Therefore,

we have constructed the shifted Jacobi orthogo-

nal polynomials P
(α,β)
n (

2t

T
−1) which denoted via

P
(α,β)
T,i (t). Then P

(α,β)
T,i (t) form an orthogonal sys-

tem with ω
(α,β)
T (t) = tα (T − t)β as the weight

function for 0 ≤ t ≤ T with follow orthogonality

trait:∫ T

0
P

(α,β)
T,i (t) P

α,β)
T,j (t)ω

(α,β)
T dt = h

(α,β)
T,j δi,j ,

(2.14)

where

h
(α,β)
T,j = (

T

2
)α+β+1 h

(α,β)
j .

Also the i−th order Shifted Jacobi polynomial

has the following analytical form [24]

P
(α,β)
T,i (t) =

i∑
k=0

(−1)i−k

(α+ i)! Γ(α+ k + i+ 1 + β) tk

Γ(α+ i+ 1 + β)(α+ k)! k! (i− k)!T k
,

=

i∑
k=0

(i+ β)! Γ(α+ k + i+ β + 1)(T − t)k

Γ(α+ i+ 1 + β)(β + k)! k! (i− k)!T k
.

(2.15)
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And in the endpoint values are given as

P
(α,β)
T,i (0) = (−1)i

Γ(α+ i+ 1)

Γ(α+ 1)Γ(k + 1)
,

P
(α,β)
T,i (T ) =

Γ(β + i+ 1)

Γ(β + 1)Γ(k + 1)
.

Note that we can estimated the P
(α,β)
T,i (t) by

the recurrence formula, we refer the interested

reader to [24].

note

The Jacobi’s shifted orthogonal polynomials con-

stitute infinite number of orthogonal polynomi-

als such as the shifted Chebyshev polynomials of

the first, second, third and fourth kinds T
(α,β)
T,i (t),

U
(α,β)
T,i (t), V

(α,β)
T,i (t) and W

(α,β)
T,i (t), respectively;

the shifted Gegenbauer polynomials G
(α,β)
T,i (t),

and the shifted Legendre polynomials L
(α,β)
T,i (t).

These polynomials, which are all orthogonal, are

related to P
(α,β)
T,i (t)as follow:

L
(α,β)
T,i (t) = P

(0,0)
T,i (t),

G
(α,β)
T,i (t) =

Γ(i+ 1)Γ(α+
1

2
)

Γ(α+
1

2
+ i)

P
(α−

1

2
,β−

1

2
)

T,i (t),

T
(α,β)
T,i (t) =

Γ(i+ 1)Γ(
1

2
)

Γ(
1

2
+ i)

P
(−

1

2
,−
1

2
)

T,i (t),

U
(α,β)
T,i (t) =

Γ(i+ 2)Γ(
1

2
)

2Γ(
3

2
+ i)

P
(
1

2
,
1

2
)

T,i (t),

V
(α,β)
T,i (t) =

22i(Γ(i+ 1))2

Γ(2i+ 1)
P

(−
1

2
,
1

2
)

T,i (t),

W
(α,β)
T,i (t) =

22i(Γ(i+ 1))2

Γ(2i+ 1)
P

(
1

2
,−
1

2
)

T,i (t).

3 Function Approximation by
Shifted Jacobi Polynomials

Suppose the function w(t) is square integrable

with respect to ω
(α,β)
T (t) in [0, T ], thus, we can

expand it as follows:[8, 24]

w(t) =

∞∑
i=0

aiP
(α,β)
T,i (t), (3.16)

where ai (the coefficients of the series ) are ob-

tained by

ai =
1

h
(α,β)
T,j

∫ T
0 ω

(α,β)
T P

(α,β)
T,i (t) w(t)dt,

i = 0, 1, · · · .
(3.17)

So, we can estimate the approximate solution via

considering (N +1)-terms of the presented series

in Eq. (3.16) and we will have

w(t) ≃ wN (t) =

N∑
i=0

aiP
(α,β)
T,i (t) = ATΦT,N (t),

(3.18)

where A = [a0, a1, · · · , aN ]T , and ΦT,N (t) =

[P
(α,β)
T,0 (t), P

(α,β)
T,1 (t), · · · , P (α,β)

T,N (t)]T .

Here, we suppose that

S(t) = [1, t, t2, t3, · · · , tN ]T . (3.19)

By equation (3.18), the vector ΦT,N (t) can be

presented as

ΦT,N (t) = B(α,β)S(t). (3.20)

where B(α,β) is a square matrix (of order (N +

1)× (N + 1) ) that given as follow

bi+1,j+1 =
(−1)i−j(α+ i)! (α+ β + j + i)!

(α+ β + i)! (α+ j)! (j! )(i− j)! T j
, i ≥ j,

0 , otherwise.
(3.21)

for 0 ≤ i, j ≤ N .

Let N = 4, α = β = 0, then B as follows

B(0,0) =
1

T i


1 0 0 0 0
−1 2 0 0 0
1 −6 6 0 0
−1 12 −30 20 0
1 −20 90 −140 70


(3.22)

Hence, using Eq. (3.20), we get

S(t) = B−1
(α,β) ΦT,N (t). (3.23)
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note

Note that, we can obtain this matrix B for all

orthogonal polynomials as well. For instance, let

N = 4, β =
−1

2
, α =

1

2
then the orthogonal poly-

nomials will be of the fourth kind shifted Cheby-

shev type, hence B(square matrix of order 4× 4)

for these polynomials as follows

B
(
1

2
,
−1

2
)

=

1

T i


1 0 0 0 0
−1 4 0 0 0
1 −12 16 0 0
−1 24 −80 64 0
1 −40 240 −448 256


(3.24)

4 Novel Shifted Jacobi
Polynomials Operational
Matrix(NSJOM)

Operational matrix, which are applied in differ-

ent areas of numerical analysis and to solve prob-

lems of different types and topics are of espe-

cial importance such as integral equations, DEs,

integro-DEs, ordinary and partial FDEs and etc

[37, 8, 12, 1, 54, 32, 40, 19, 6, 41, 42, 4, 7]. In this

part, we investigate the (SJOM) of fractional

variable-order to support the numerical solution

of Eq. (1.1). Therefore, we convert the problem

into the system of algebraic of equations which is

solved numerically in collocation points.

At first, we deduce Dη(t)ΦT,N (t), as follows:

according to the previous content, we have:

ΦT,N (t) = B(α,β)S(t), thus

Dη(t)ΦT,N (t) = Dη(t)(B(α,β)S(t) ) =

B(α,β)D
η(t) [1, t, · · · , tN ]T ,

(4.25)

Combining Eqs.(2.10) and (4.25), it gives

Dη(t)ΦT,N (t) = B(α,β)D
η(t)(S(t))

= B(α,β)[0,
Γ(2)t(1−η(t))

Γ(2− η(t))
,
Γ(3)t(1−η(t))

Γ(3− η(t))
,

· · · , Γ(N + 1)t(N−η(t))

Γ(N + 1− η(t))
]T

= B(α,β)


0 0 0 · · · 0
0 q2(t) 0 · · · 0
0 0 q3(t) · · · 0
...

...
...

...
...

0 0 0 · · · qN+1(t)




1
t
t2

...
tN


= B(α,β)Q(t)S(t),

(4.26)

where

Q(t) =


0 0 0 · · · 0
0 q2(t) 0 · · · 0
0 0 q3(t) · · · 0
...

...
...

...
...

0 0 0 · · · qN+1(t)

 .

(4.27)

and qi(t) =
Γ(i)t−η(t)

Γ(i− η(t))
Using Eq. (3.23), then

Dη(t)ΦT,N (t) = B(α,β)Q(t)B−1
(α,β)ΦT,N (t). (4.28)

The operational matrix of Dη(t)ΦT,N (t) , is

B(α,β)Q(t)B−1
(α,β).

Here, we estimate the variable-order fractional

of the calculated function that obtained in Eq.

(3.18) as follows

Dη(t)w(t) ≃ Dη(t)(ATΦT,N (t) ) =

ATDη(t)ΦT,N (t) =

ATB(α,β)Q(t)B−1
(α,β)ΦT,N (t).

(4.29)

By using Eq. (4.29), hence the equation (1.1)
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turned into

ATB(α,β)Q(t)B−1
(α,β)ΦT,N (t) =

F (t, ATΦT,N (t), ATΦT,N (p1t), A
TΦT,N (p2t),

..., ATΦT,N (pkt)) , 0 ≤ t ≤ T ,

(4.30)

with condition

ATΦ
(i)
T,N (0) = λi, i = 0, 1, · · · , n− 1.

that Φ
(i)
T,N (0) is the i-th derivative of each element

of ΦT,N (t) at point t = 0.

Finally, we use tj (j = 0, 1, 2, · · · ,m.) where

they are the roots of P
(α,β)
T,m+1(t). Therefore Eq.

(4.30) converted into the following form

ATB(α,β)Q(tj)B
−1
(α,β)ΦT,N (tj) =

F (tj , A
TΦT,N (tj), A

TΦT,N (p1tj),

ATΦT,N (p2tj), ..., A
TΦT,N (pktj)) ,

0 ≤ t ≤ T , j = 0, 1, 2, · · · ,m. (4.31)

So, we can solve the system in Eq. (4.31) with

the conditions mentioned numerically for deter-

mining the vector A. Therefore, the numerical

solution that presented in Eq. (3.18) can be ob-

tained.

5 Error Analysis

In this part of paper, we use the Lagrange inter-

polation polynomials to stimate an upper bound

for the absolute error. On other hand, via applyin

the current technique (NSJOM) with error ap-

proximation and the residual correction scheme

[39, 45], an effiective error approximation will be

obtained for the variable-order FDEs.

5.1 Error bound

Now, consider the smooth function w(t) on [0, T ]

and assume that wN (t) ∈
∏α,β

N is the best ap-

proximation for it. Our goal is to gain an analyt-

ical form of error norm for wN (t) via expanding

it into Jacobi polynomials. Let

α,β∏
N

= span
{
P

(α,β)
T,i (t), i = 0, 1, 2, · · · , N

}
.

Here, by using the definition and concept of the

best approximation, one can write

∀vN (t) ∈
∏α,β

N

∥w(t)− wN (t)∥∞ ≤ ∥w(t)− vN (t)∥∞.

(5.32)

Suposse the interpolating polynomials at node

points ti (i = 0, 1, · · · ,m) be vN (t) , ( where ti

are the roots of P
(α,β)
T,m+1(t) ). It is obvious that

vN (t) satisfies in the above inequality. Then by

the Lagrange interpolation polynomials formula

and its error formula, we will have

w(t)− vN (t) =
w(N+1)(ξ)

(N + 1)!

N∏
j=0

(t− tj) , (5.33)

where 0 < ξ < T ], and hence we will have

∥ w(t)− vN (t) ∥∞≤

max0≤t≤T | w(N+1)(ξ) |
∥
∏N

j=0(t− tj) ∥∞
(N + 1)!

.

(5.34)

We note that w(t) on [0, T ] is smooth, therefore,

there is a constant C1, as

max
0≤t≤T

| w(N+1)(ξ) |≤ C1 . (5.35)

We minimize the factor ∥
∏N

j=0(t − tj) ∥∞ as

shown below:

One-to-one mapping t =
T

2
(x+1) between the in-

terval [−1, 1] and [0, T ] is used to conclude that

[8, 51]

min0≤tj≤T max0≤t≤T |
∏N

j=0(t− tj) |

= min−1≤xj≤1

max−1≤x≤1 |
∏N

j=0

T

2
(x− xj) |

= (
T

2
)N+1min−1≤xj≤1

max−1≤x≤1 |
∏N

j=0(x− xj) |

= (
T

2
)N+1min−1≤xj≤1

max−1≤x≤1 |
P

(α,β)
N+1 (x)

µ
(α,β)
N

|,

(5.36)
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where µ
(α,β)
N =

Γ(2N + α+ β + 1)

2NN ! Γ(N + α+ β + 1)
is the

last factor of P
(α,β)
N+1 (x) and xj are the roots of

P
(α,β)
N+1 (x). It is clear that

max
−1≤x≤1

| P (α,β)
N+1 (x) |=

P
(α,β)
N+1 (1) =

Γ(β +N + 2)

Γ(β + 1)(N + 1)!
,

Using Eqs.(5.35) and (5.36), gives the following

result

∥ w(t)− wN (t) ∥∞≤

C1

(
T

2
)N+1Γ(β +N + 2)

µ
(α,β)
N ((N + 1)! )2 Γ(β + 1)

.

(5.37)

Therefore, we estimate an upper bound for abso-

lute error between the true and numerical solu-

tions.

5.2 Error function estimation

In this subsection, we have introduced the er-

ror approximation based on the error function of

residual of the presented technique and the es-

timate solution (3.18) is refined via the residual

correction scheme. The error approxmation of

residual was employed to estimate the error of

some schemes for various equations [1, 45, 55, 56].

At first, we denote eN (t) = wN (t) − w(t) be

the function of error for the NSJOM estimation

wN (t) to w(t), that w(t) is the true solution of

Eq. (1.1).

Therefore, wN (t) satisfies the below equation

Dη(t)wN (t) = F (t, wN (t), wN (p1t),
wN (p2t), ..., wN (pkt)) +RN (t),

0 ≤ t ≤ T ,w
(i)
N (0) = λi,

i = 0, 1, · · · , n− 1

(5.38)

where RN (t) is the function of residual of Eq.

(1.1), which is estimated by replacing the wN (t)

with w(t) in Eq. (1.1).

By subtracting Eq. (1.1) from Eq. (5.38), the

error problem is constructed in the form of

Dη(t)eN (t) = RN (t) +RN,F (t), 0 ≤ t ≤ T ,

e
(i)
N (0) = 0, i = 0, 1, · · · , n− 1

(5.39)

where

RN,F (t) =

F (t, wN (t), wN (p1t), wN (p2t), ..., wN (pkt))

−F (t, w(t), w(p1t), w(p2t), ..., w(pkt)).
(5.40)

Thus, the (5.39) can be solved like the way it was

presented in the previous section and we obtain

the following estimation to eN (t).

eN (t) =

N∑
i=0

diP
(α,β)
T,i (t) = DTΦT,N (t), (5.41)

then the maximum absolute error can be obtained

approximately by

EN (t) = max{eN (t) , 0 ≤ t ≤ T}. (5.42)

The above estimation of error, is influenced by

the rate of expansions convergence in Jacobi poly-

nomials. Thus, the rates of sesible convergence

in temporal discretizations, are providad by it

[8, 56].

It is worth to mention here that if the exact

solution of the problem (1.1) is unknown, in real

practical experiment, we have trouble with com-

puting RN,F . But, the replacement strategy is

to be approximated by its bound, say D|eN (t)|
with D as positive constant. In fact, it is possible

by supposing that the non-linear term F satisfies

Lipschitz condition with respect to its all argu-

ments.

6 Numerical experiences

In this section, based on the previous discus-

sion, several numerical examples are provided to

demonstrate the accuracy, efficiency, applicabil-

ity, generality and validity of the presented tech-

nique. In all examples, the results of the present
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method are computed by Mathematica 10 soft-

ware. In order to test our scheme, we com-

pared it with Reproducing kernel Hilbert space

method in terms of absolute errors which defined

as: | wexact(t)− wn(t) |.
Collation of the results gained by this technique

with the accurate solution of each example shows

that this new technique has a better agreement

than other methods. The stability, consistency

and easy implementation of this technique cause

this method to be more applicable and reliable.

Example 6.1. [26] Consider the below delay

fractional order equation with 0 < η ≤ 1

Dηw(t) =
Γ(4)w(t)3−η

Γ(4− η)

−w(t) + w(
t

2
) +

7

8
t3,

w(0) = 0,

(6.43)

Note that w(t) = t3 is the exact solution and

0 ≤ t ≤ T , T = 1, η = 0.5.

By the concepts presented in Section 4, we con-

sider the approximate solution with (N+1) finite

terms that presented in Eq. (3.18) for this prob-

lem and substitute in main problem. Then by

using Eq. (4.29), this problem is converted to

form of the Eq. (4.30), finally using ti, there-

fore, a equations system emerges that we can

solve it via known numerical methods to detect

the unknown vector A. The solution of the Eq.

(6.43) approximated using new method compared

to other method(RKHS), is in the best agree-

ment with the accurate solution. The absolute

errors ( at some nodal points) of this technique

and method in [26] are recorded and compared

in Table 1. From this Table, it is observed that

the numerical results which obtained via our tech-

nique, are much closer to the true solution and we

gained an excellent approximation for the accu-

rate solution by employing current scheme and

it was found the our method in comparison with

mentioned method is better with view to utiliza-

tion, accuracy and more time efficiency. Fig.

1 compares the exact and approximated solu-

tion which confirms the reliability of NSJOM

method. Moreover, in Fig. 2 we draw the abso-

lute error for this instance. Not that the Figs. 1

and 2 show a proper agreement between estimate

and true solution. In this instance for N = 3 and

N = 5, we have A = [0.25, 0.45, 0.25, 0.05]T , A =

[0.25, 0.45, 0.25, 0.05, 0, 0]T , respectively.

Figure 1: Comparison between estimate solu-
tion( w3) of NSJOM method and accurate so-
lution for Example 6.1

Figure 2: The absolute errors comparison be-
tween estimate solution( w3) and accurate solution
for Example 6.1

Example 6.2. [26] Consider the below delay
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Table 1: Comparison the absolute errors between outcoms in [26] and our outcoms with α = 0, β = 0 and
T = 1 for Example 6.1.

t ∈ [0,T] New technique New technique RKHS RKHS
N = 3 N = 5 (w(t) ∈ W 2

2 ),N = 12 (w(t) ∈ W 4
2 ),N = 12

0 9.020× 10−17 0 0 0
0.1 2.775× 10−16 2.168× 10−19 4.210× 10−3 2.206× 10−7

0.2 3.087× 10−16 1.734× 10−18 1.047× 10−2 9.889× 10−7

0.3 2.636× 10−16 0 1.185× 10−2 3.412× 10−6

0.4 2.082× 10−16 1.387× 10−17 5.009× 10−3 1.952× 10−5

0.5 1.665× 10−16 2.775× 10−17 1.112× 10−3 5.622× 10−5

0.6 1.665× 10−16 0 1.739× 10−3 1.204× 10−4

0.7 2.220× 10−16 0 2.125× 10−3 2.253× 10−4

0.8 2.220× 10−16 1.110× 10−16 3.269× 10−2 3.754× 10−4

0.9 2.220× 10−16 1.110× 10−16 6.290× 10−2 5.800× 10−4

1.0 0 2.220× 10−16 5.563× 10−2 8.478× 10−4

fractional order equation for 1 < η ≤ 2

Dηw(t) =
Γ(3)w(t)2−η

Γ(3− η)

+
3

4
w(t) + w(

t

2
)− t2,

w(0) = 0, w′(0) = 0,

(6.44)

In above problem w(t) = t2 is the exact solution

and 0 ≤ t ≤ T , T = 1 , η = 2.

Using the process mentioned in Ex.1, we get

the solution of this problem. The solution of the

Eq. (6.44) approximated using current method

compared to RKHS scheme, is in the best agree-

ment with the true solution. The absolute er-

rors ( at some nodal points) of this technique and

method in [26] are presented and compared in

Table 2 . Also in Table 3 , we reported the ab-

solute errors of current thechnique for Ex2 with

η = 1.7. From these Tables, it is observed that

the numerical outcomes which obtained via our

technique, are much closer to the true solution

and we gained an excellent estimation for the

accurate solution by employing new technique

and it was found the current method in com-

parison with mentioned method is better with

view to utilization, accuracy and more time ef-

ficiency. Fig. 3 compares the exact and ap-

proximated solution which confirms the reliabil-

ity of NSJOM method. Moreover, in Fig. 4

we draw the absolute error for this instance for

η = 1.7. Not that the Figs. 3 and 4 show a

proper agreement between estimate and accurate

solution. In this instance for N = 2 and N = 5,

we have A = [0.33333, 0.5, 0.166667]T , A =

[0.33333, 0.5, 0.166667, 0, 0, 0]T , respectively.

Example 6.3. As the general example, consider

the variable order FDDE

for 1 < η(t) ≤ 2

Dη(t)w(t) =
Γ(3)w(t)2−η(t)

Γ(3− η(t))

+
3

4
w(t) + w(

t

2
)− t2,

w(0) = 0, w′(0) = 0,

(6.45)

Note that w(t) = t2 is the exact solution and

0 ≤ t ≤ T , T = 1, η(t) =
t

5
.

By the concepts presented in Section 4, we con-

sider the approximate solution with (N + 1) fi-

nite terms that presented in Eq. (3.18) for this

problem and substitute in main problem. Then

by using Eq. (4.29), this problem is converted to

form of the Eq. (4.30), finally using ti, there-

fore, a equations system emerges that we can

solve it via known numerical methods to detect

the unknown vector A. The solutions of the Eq.

(6.45) approximated for different values of α and

β, via new method compared to other methods,

is in the best agreement with the true solution.

The absolute and relative errors (at some nodal

points) of this method, also the CPU time needed
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Table 2: Comparison the absolute errors between outcomes in [26] and our outcomes with α = 0, β = 0 and
T = 1 for Example 6.2

t ∈ [0,T] New technique New technique (w(t) ∈ W 5
2 ),N = 20 (w(t) ∈ W 6

2 ),N = 20
N = 2 N = 5 (w(t) ∈ W 5

2 ),N = 20 (w(t) ∈ W 6
2 ),N = 20

0 0 0 0 0
0.1 0 0 1.306× 10−6 7.908× 10−6

0.2 0 0 1.810× 10−5 9.124× 10−5

0.3 0 0 3.045× 10−5 1.523× 10−5

0.4 0 0 2.767× 10−5 1.387× 10−5

0.5 0 0 2.306× 10−5 1.656× 10−5

0.6 0 0 3.364× 10−5 1.686× 10−5

0.7 0 0 4.021× 10−5 2.012× 10−5

0.8 0 0 4.737× 10−5 1.871× 10−5

0.9 0 0 5.082× 10−5 2.543× 10−5

1.0 0 0 5.952× 10−5 2.985× 10−5

Table 3: Absolute errors of w(t) with α = 0, β = 0, η = 1.7 and T = 1 for Example 6.2

t ∈ [0, T ] New technique,N = 2 New technique, N = 5

0 0 7.982× 10−17

0.1 0 9.367× 10−17

0.2 0 1.526× 10−16

0.3 0 2.359× 10−16

0.4 0 3.053× 10−16

0.5 0 3.885× 10−16

0.6 0 4.996× 10−16

0.7 0 5.551× 10−16

0.8 0 6.661× 10−16

0.9 0 8.882× 10−16

1.0 0 8.882× 10−16

CPU time 0 s 0.078001 s

Table 4: Absolute errors of w(t) with α = 0, β = 0 and T = 1 for Example 6.3

t ∈ [0, T ] New technique ,N = 2 New technique ,N = 4

0 0 0
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1.0 0 0

CPU time 0 s 9.516061 s

for our method are shown in Tables. 4 − 9.

From these Tables, it is observed that the nu-

merical outcomes which obtained via our tech-

nique, are much closer to the true solution and
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Table 5: Relative errors of w(t) with α = 0, β = 0 and T = 1 for Example 6.3

t ∈ [0, T ] New technique ,N = 2 New technique ,N = 4

0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1.0 0 0

CPU time 0 s 9.516061 s

Table 6: Absolute errors of w(t) with α = 1, β = 1 and T = 1 for Example 6.3

t ∈ [0, T ] New technique ,N = 2 New technique ,N = 4

0 0 0
0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1.0 0 0

CPU time 0.031200 s 9.890463 s

Table 7: Relative errors of w(t) with α = 1, β = 1 and T = 1 for Example 6.3

t ∈ [0, T ] New technique ,N = 2 New technique ,N = 4

0.1 0 0
0.2 0 0
0.3 0 0
0.4 0 0
0.5 0 0
0.6 0 0
0.7 0 0
0.8 0 0
0.9 0 0
1.0 0 0

CPU time 0.031200 s 9.890463 s

we gained an excellent approximation for the ac-

curate solution by employing current scheme and

it was found the our technique in comparison with

mentioned method(RKHS) is better with view to

utilization, accuracy and more time efficiency.

Fig. 5 compares the accurate and estimated so-

lution which confirms the reliability of NSJOM

method. Moreover, in Fig. 6 we draw the abso-
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Table 8: Relative errors of w(t) with α =
1

2
, β =

1

2
and T = 1 for Example 6.3

t ∈ [0, T ] New technique ,N = 2 New technique ,N = 4

0 5.551× 10−17 0
0.1 2.255× 10−17 0
0.2 5.551× 10−17 0
0.3 3.498× 10−16 0
0.4 4.718× 10−16 0
0.5 7.771× 10−16 0
0.6 1.165× 10−15 0
0.7 1.554× 10−15 0
0.8 2.109× 10−15 0
0.9 2.664× 10−15 0
1.0 3.330× 10−15 0

CPU time 0 s 8.985651 s

Table 9: Relative errors of w(t) with α =
1

2
, β =

1

2
and T = 1 for Example 6.3

t ∈ [0, T ] New technique ,N = 2 New technique ,N = 4

0.1 8.330× 10−16 0
0.2 9.362× 10−16 0
0.3 9.221× 10−16 0
0.4 1.004× 10−15 0
0.5 1.389× 10−15 0
0.6 2.320× 10−15 0
0.7 3.531× 10−15 0
0.8 4.089× 10−15 0
0.9 4.224× 10−15 0
1.0 5.551× 10−15 0

CPU time 0 s 8.985651 s

lute error with α = 1, β = 1 for this instance.

Not that the Figs. 5 and 6 show a proper agree-

ment between approximate and accurate solution.

In this instance, we have

If α = 0, β = 0 and N = 2, then

A = [0.33333, 0.5, 0.16667]T ,

if α = 0, β = 0 and N = 4, then

A = [0.33333, 0.5, 0.16667,

4.03011× 10−14, 1.43774× 10−14]T ,

if α =
1

2
, β =

1

2
and N = 2, then

A = [0.3125, 0.33333, 0.1]T ,

if α =
1

2
, β =

1

2
and N = 4, then

A = [0.3125, 0.33333, 0.1,

7.63278× 10−16, 2.01228× 10−16]T ,

if α = 1, β = 1 and N = 2, then

A = [0.3, 0.25, 0.06667]T ,

if α = 1, β = 1 and N = 4, then

A = [0.3, 0.25, 0.06667,

−9.22873× 10−15,−2.61943× 10−15]T .

7 Conclusions

In the current paper, we have proposed the

novel shifted Jacobi operational matrix (NSJOM)
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Figure 3: Comparison between estimate solu-
tion( w2) of NSJOM method and accurate so-
lution for Example 6.2

scheme for the generalized non-linear variable-

order FDE with proportional delays via convert-

ing the main problem to an algebraic equations

system that this system is solved using the appro-

priate numerical methods. We have shown that

the proposed method has good convergence, is

easy to implement and its concepts are simple.

The obtained results are excellent compared to

other method. Finally, the numerical results have

been reported to clarify the efficiency and validity

of this technique.
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