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Abstract

In this paper a new method of parameter estimation was employed for extended Burr XII parameters
using the principle of maximum entropy (POME) based on k-record values. Exact solutions for
expectations were obtained. Monte Carlo simulation method were applied to assess the performance
of this method.
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1 Introduction

S
hannon [4] founded information theory and in-

troduced entropy as a measure of uncertainty

and formulated it as follows

H (f) = −
∫ ∞

−∞
f(X;ϑ)log (f(X;ϑ)) dx (1.1)

where f is the probability distribution function

(PDF) of random variable X with parameters

ϑ. Many of authors have used shannon entropy.

Jaynes [2] applied it for choosing PDF that max-

imizing entropy given information in the form of

constraints, which is called POME. Also Levine

and Tribus [7] stated that, if anyone needs a par-

ticular probability distribution to be appropriate
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with a sample of data, POME can uniquely de-

termine the constraints that are appropriate for

extracting the distribution. On the other hand,

distribution parameters can be related to these

constraints. Using this sort of relation, the esti-

mation of parameters will be realized. Given that

Ci be m linear independent constraint at the form

of

Ci =

∫
wi(x)f(X;ϑ)dx, i = 1, 2, ,m (1.2)

where wi(x)’s are the functions which their ex-

pectation is achieved for f(X;ϑ), then maximum

of H is as follows

f (X;ϑ) = exp

(
−a0 −

m∑
i=1

aiwi(x)

)
(1.3)

where ai’s are lagrange multipliers. Substituting

recent equation (1.3) in the entropy (1.1) gives
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following equation

H (f) = a0 +
m∑
i=1

aiCi. (1.4)

By maximizing the relation (1.4) we get to re-

quired relation of constraints and parameters.

Extended Burr XII has introduced by Shao [5] as

generalization of some well-known distributions.

Its PDF is as follows

f(x|α, λ, c) =
c

λ

(x
λ

)c−1 [
1− α

(x
λ

)c] 1
α
−1

α ̸= 0

=
c

λ

(x
λ

)c−1
exp

{
−
(x
λ

)c}
α = 0,

also CDF of EBXII is given by

F (x|α, λ, c) = 1−
[
1− α

(x
λ

)c] 1
α
α ̸= 0

= 1− exp
{
−
(x
λ

)c}
α = 0.

Upper k-record values extend ordinary upper

record values. Let T1(k) = k,R1(k) = X1:k and

for n ≥ 2, let

Tn(k) = min{j : j > Tn−1(k), Xj

> XTn−1(k)−k+1:Tn−1(k)
, }

where Xi:n indicates i − th order statistics in a

sample of size n. For n ≥ 1, the sequence of upper

k-records is defined by Rn(k) = XTn(k)−k+1:Tn(k)
.

Note that for k = 1 the ordinary upper record

values can be recovered. The PDF of n−th upper

k-record value Rn(k) for n ≥ 1 is given by

fn(k)(r) =
kn

Γ(n)

[
− ln(F̄ (r))

]n−1

F̄ k−1(r)f(r), r ≥ 0, (1.5)

and joint pdf of R1(k), R2(k), ..., Rn(k) is given by

f(r1, r2, ..., rm) = kmF̄ k(xm))

m∏
i=1

f(x)

F̄ (x)
,

r1 < r2 < · · · < rm. (1.6)

For more details one can refer to [8], [1] and [9].

2 Specification of Constraints

Distribution of nth k-record value of EBXII dis-

tribution will be attained by substituting (1.5)

and (1.5) in (1.5), which is as follows:

fn(k) (x) =
cknxc−1

λcαn−1Γ (n)
(
1− α

(
x
λ

)c)
×
(
1− α

(x
λ

)c)k/α (
− ln

(
1− α

(x
λ

)c))n−1
,

0 ≤ x ≤ λ

α1/c
, α > 0.

(2.7)

Taking logarithm of equation (2.7) and integrat-

ing after multiplying at
(
−fn(k) (x)

)
yields

S = −n ln k + lnΓ (n)− ln c+ lnλ+ (n− 1) lnα

− (c− 1)E

(
ln

(
X

λ

))
+ E

(
ln

(
1− α

(
X

λ

)c))
− (n− 1)E

(
ln

(
− ln

(
1− α

(
X

λ

)c)))
− k

α
E

(
ln

(
1− α

(
X

λ

)c))
(2.8)

in which E[∗] denotes expectation of bracketed

quantity. For maximization of function S, (2.8)

the following constraints must satisfied.∫ λ

α1/c

0
fn(k) (x) dx = 1, (2.9)

∫ λ

α1/c

0
ln
(x
λ

)
fn(k) (x) dx = E

(
ln

(
X

λ

))
,

(2.10)∫ λ

α1/c

0
ln

(
1− α

(
X

λ

)c)
fn(k) (x) dx

= E

(
ln

(
1− α

(
X

λ

)c))
, (2.11)

∫ λ

α1/c

0
ln

(
− ln

(
1− α

(
X

λ

)c))
fn(k) (x) dx

= E

(
ln

(
− ln

(
1− α

(
X

λ

)c)))
,

the information which is sufficient to specify of

EBXII distribution uniquely are in these con-

straints. The distribution parameters are related

to these constraints.
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3 Construction of Entropy
Function

The form of PDF for EBXII distribution corre-

sponding to the maximum entropy function which

is consistent with constraints (2.9)-(2.12) is as fol-

lows:

f (X) = exp(−w0 − w1 ln
(x
λ

)
− w2 ln

(
1− α

(x
λ

)c)
− w3 ln

(
− ln

(
1− α

(x
λ

)c))
),

where w0 to w3 are lagrangian multipliers. By

applying equation (3.12) to the equation (2.9) we

have

ew0 =

∫ λ

α1/c

0
e−w1 ln( x

λ)−w2 ln(1−α( x
λ)

c
)

× e−w3 ln(− ln(1−α( x
λ)

c
))dx. (3.12)

By taking change of the variables Y =

− ln
(
1− α

(
x
λ

)c)
and u = e−y we obtain

ew0 =
λ

cα
1−w1

c

×
∫ 1

0
(− lnu)−w3 u−w2 (1− u)

1−w1
c

−1 du.

Using relation (2.4) page 18 [3] and by setting

r =
1− w1

c
− 1, (3.13)

we get to this integration,

ew0 =
λ

cα
1−w1

c

∞∑
i=0

(−r)i
i!

×
∫ 1

0
(− lnu)−w3 ui−w3du, (3.14)

where (a)n = a (a− 1) (a− 2) ... (a+ n− 1) in

which (a)0 = 1 is pochhammer symbol. Using

change of the variable u = e−z alongside with

relation (3.13) and taking logarithm, zeroth La-

grange multiplier is given as

w0 = lnλ− ln c+ lnΓ (1− w3)−
(
1− w1

c

)
lnα

+ ln
∞∑
i=0

(
1− 1−w1

c

)
i

i! (1 + i− w2)
1−w3

. (3.15)

Inserting equation (3.15) in equation (3.12)

yields:

f (x) =
cα

1−w1
c

λΓ (1− w3)

( ∞∑
i=0

(
1− 1−w1

c

)
i

i! (1 + i− w2)
1−w3

)−1

×
(x
λ

)−w1
(
1− α

(x
λ

)c)−w2

×
(
− ln

(
1− α

(x
λ

)c))−w3

. (3.16)

By comparing equations (3.16) and (1.5)one ob-

tains w1 = 1− c, w2 = 1− k
α , w3 = 1− n. Taking

logarithm from both sides of equation (3.16) and

using relation (1.1) yields:

S (f) = lnλ+ lnΓ (1− w3)− ln c− 1− w1

c
lnα

+ ln

∞∑
i=0

(
1− 1−w3

c

)
i

i! (1 + i− w2)
1−w3

+ w1E

(
ln

X

λ

)
+ w2E(ln

(
1− α

(
X

λ

c))
+ w3E

(
ln

(
− ln

(
1− α

(
X

λ

)c)))
.(3.17)

4 Relation Between Distribu-
tion Parameters and Con-
straints

In order to obtain relations between distribution

parameters and constraints it is enough to taking

partial derivatives of entropy function (3.17)with

respect to Lagrangian multipliers as well as pa-

rameters and equating them to the zero, and

applying constraints. To that goal, taking par-

tial derivatives of equation (3.17) with respect

to w1, w2, w3, α, λ and c separately and equating

each of them to the zero gives:

∂S

∂w1
=

lnα

c

+

∑∞
i=0

(
1− 1−w1

c

)
i

(
Ψ
(
1+i− 1−w1

c

)
−Ψ

(
1− 1−w1

c

))
i!(1+i−w2)

1−w3

c
∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

+E

(
ln

(
X

λ

))
= 0, (4.18)
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∂S

∂w2
=

∑∞
i=0

(
1− 1−w1

c

)
i
(1−w3)

i!(1+i−w2)
2−w3∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

+ E

(
ln

(
1− α

(
X

λ

)c))
= 0,

∂S

∂w3
=

∑∞
i=0

(
1− 1−w1

c

)
i
(ln(1+i−w2))

i!(1+i−w2)
1−w3∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

− Ψ(1− w3)

+ E

(
ln

(
− ln

(
1− α

(
X

λ

)c)))
= 0,

∂S

∂α
=

w1 − 1

cα
− w2E

( (
X
λ

)c
1− α

(
X
λ

)c
)

− w3E

 (X
λ )

c

1−α(X
λ )

c

ln
(
1− α

(
X
λ

)c)
 = 0,

∂S

∂λ
=

1− w1

λ
+

αcw2

λ
E

( (
X
λ

)c
1− α

(
X
λ

)c
)

+
αcw3

λ
E

 (X
λ )

c

1−α(X
λ )

c

ln
(
1− α

(
X
λ

)c)
 = 0,

∂S

∂c
= −1

c
+

1− w1

c2
lnα

− w2αE

((
X
λ

)c
ln
(
X
λ

)
1− α

(
X
λ

)c
)

− w3αE

 (X
λ )

c
ln(X

λ )
1−α(X

λ )
c

ln
(
1− α

(
X
λ

)c)
+ (1− w1) (4.27)

∑∞
i=0

(
1− 1−w1

c

)
i

(
Ψ
(
1+i− 1−w1

c

)
−Ψ

(
1− 1−w1

c

))
i!(1+i−w2)

1−w3

c2
∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

= 0.

By simple calculation for equations (4.18)-

(4.19)it’s been obtained that

E

(
ln

(
X

λ

))
=

Ψ
(
1− 1−w1

c

)
c

− lnα

c

−

∑∞
i=0

(
1− 1−w1

c

)
i
Ψ
(
1+i− 1−w1

c

)
i!(1+i−w2)

1−w3

c
∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

,

E

(
ln

(
1− α

(
X

λ

)c))

=
(w3 − 1)

∑∞
i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
2−w3∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

,

E

(
ln

(
− ln

(
1− α

(
X

λ

)c)))

= Ψ(1− w3)−

∑∞
i=0

(
1− 1−w1

c

)
i
ln(1+i−w2)

i!(1+i−w2)
1−w3∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

,

w1 − 1

cα
= w2E

( (
X
λ

)c
1− α

(
X
λ

)c
)

+ w3E

 (X
λ )

c

1−α(X
λ )

c

ln
(
1− α

(
X
λ

)c)
 ,

w1 − 1

λ
=

αcw2

λ
E

( (
X
λ

)c
1− α

(
X
λ

)c
)

+
αcw3

λ
E

 (X
λ )

c

1−α(X
λ )

c

ln
(
1− α

(
X
λ

)c)
 ,



M. Rajaei Salmasi, /IJIM Vol. 14, No. 2 (2022) 177-182 181

which is similar to relation (4.19). Considering

equation (4.19) we get

w2αE

((
X
λ

)c
ln
(
X
λ

)
1− α

(
X
λ

)c
)

+ w3αE

 (X
λ )

c
ln(X

λ )
1−α(X

λ )
c

ln
(
1− α

(
X
λ

)c)


=
1− w1

c2
lnα− 1

c

− 1− w1

c2
Ψ

(
1− 1− w1

c

)

+
(1− w1)

∑∞
i=0

(
1− 1−w1

c

)
i
Ψ
(
1+i− 1−w1

c

)
i!(1+i−w2)

1−w3

c2
∑∞

i=0

(
1− 1−w1

c

)
i

i!(1+i−w2)
1−w3

.

Substituting obtained values for w1, w2 and w3,

in equalities (4.19) to (4.19) and we get the (0)0.

Srivastava, et. al. [6] showed that (0)0 = 1.

Therefore parameter estimation equations for the

POME are given by

E

(
ln

(
X

λ

))
= − lnα

c
, (4.19)

E

(
ln

(
1− α

(
X

λ

)c))
= −nα

k
, (4.20)

E

(
ln

(
− ln

(
1− α

(
X

λ

)c)))
= Ψ(n)− ln

k

α
, (4.21)

(k − α)E

( (
X
λ

)c
1− α

(
X
λ

)c
)

+ (n− 1)αE

 (X
λ )

c

1−α(X
λ )

c

ln
(
1− α

(
X
λ

)c)
 = 1

(k − α)E

((
X
λ

)c
ln
(
X
λ

)
1− α

(
X
λ

)c
)

+ (n− 1)αE

 (X
λ )

c
ln(X

λ )
1−α(X

λ )
c

ln
(
1− α

(
X
λ

)c)


=
1

c
− lnα. (4.22)

Table 1: POME based parameter estimation

POME

n k r
α
(MSE)

λ
(MSE)

c
(MSE)

2
1.32
(0.46)

2.45
(0.73)

4.17
(1.71)

2 3
1.13
(0.43)

2.29
(0.58)

3.02
(3.64)

2
1.84
0.73

2.69
(0.82)

3.89
(1.5)

10 6 3
1.79
0.85

2.84
(1.13)

3.69
(2.08)

2
1.29
(0.28)

2.37
(0.29)

4.15
(1.44)

2 3
1.12
(0.33)

2.36
(0.47)

3.56
(3.39)

2
1.84
(0.75)

2.76
(0.87)

3.53
(1.09)

25 6 3
1.53
0.5

2.55
(0.56)

3.72
(1.34)

2
1.3
(0.22)

2.38
0.17

4.47
(1.01)

2 3
1.14
(0.23)

2.29
(0.19)

5.14
(2.75)

2
1.89
(0.7)

2.75
(0.74)

3.41
(0.87)

50 6 3
1.49
(0.42)

2.53
(0.49)

3.83
(0.93)

Relations (4.19) to (4.22) will be taken for esti-

mating unknown parameters of EBXII distribu-

tion based on k-record values.

5 Simulation Study and Con-
clusions

In order to assessing the performance of POME

method for parameter estimation, the monte

carlo method has been used. Different sample

sizes applied. Also different k and record number

have been used. Parameters of mentioned dis-

tribution for assessment has considered as: α =

1.5, λ = 2.5, c = 3.5. The record numbers 2 and 3

and also values of k were 2 and 6. Matlab R2019b

with 10000 replications has been used for simu-

lation. The numerical results are presented at

table 1. The numerical values obtained at table
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1 showed followings results:

• While sample size increases, estimation of λ

performs better than two other parameter es-

timators.

• As k decreases(increases) estimator of λ(c)

performs good.

• The estimator of α performs better than esti-

mators of two other parameters when record

number decreases.
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