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Abstract

Here, based on the Fibonacci polynomials, a new collocation method is presented in order to solve
the system of linear fuzzy Volterra integral equations of the second kind. By using this method, these
systems are reduced to a linear system of algebraic equations which are simply solvable. Also, the
error analysis and existence of the solution of the suggested method are discussed. Finally, to show
the importance and application of this method, we have used some rational examples. The method
is computationally very attractive and gives very accurate results. Easy implementation and simple
operations are the essential features of the Fibonacci polynomials.

Keywords : Fuzzy; Volterra integral equations; Collocation method; Convergence; Fibonacci polyno-
mials.
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1 Introduction

T
he solutions of integral and integro-differntial

equations play a important role in the fields

of Science, such as elasticity, plasticity, heat and

mass transfer, oscillation theory, fluid dynamics,

filtration theory, electrostatics, electrodynamics,

biomechanics, glass forming process, electrical en-

gineering, economics, and medicine [14, 19].
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The concept of fuzzy numbers and fuzzy arith-

metic operations were first introduced by Zadeh

[41, 42], Dubois and Prade [12, 13]. It was Brun-

ner and Kauthen who introduced the colloca-

tion method to solve Fredholm-Volterra integral

equations [10, 21]. Later, the essential arith-

metic structure for fuzzy numbers was studied

by Tanaka, Mizumoto and Nahmias [30, 31, 32].

The Fibonacci collocation method has been used

to find the approximate solutions of differen-

tial, integral, and integro-differential equations

[17, 23, 24, 28, 29]. The fuzzy method is suitable

for systems with non-specific models, and there-

fore, suits well to a process where the model is un-

determined or indefinite and especially to systems

with unknown or complex dynamics [40]. Since,

many important problems are expressed by fuzzy

number rather than crisp case, then it is impor-
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tant to expand mathematical numerical methods

and model that would formulated general fuzzy

integral equations and solve them. The study of

these equations started with the investigations by

Kaleva [20], Nanda [33], Goetschel, Seikkala [36]

and Voxman [18] for the fuzzy Volterra integral

equations. Also, the existence and uniqueness of

the solution of these equations are proved using

the fixed point theorems like the Banach’s prin-

ciple and the Darbo’s theorem [6, 7, 8].

A problem which has long been of fundamental

interest in classical analysis is the expansion of a

given function v(y) in a series of the form:

v(y) =

∞∑
m=0

ampm(y),

where pm(y) is a prescribed sequence of polyno-

mials and the coefficients am are the numbers cor-

respond to v(x). The innumerable investigations

on expansions of ”arbitrary” functions have led

to many important convergence and summability

theorems and various interesting results in the

theory of approximation [29].

In this paper, based on the Fibonacci polynomi-

als, a new collocation method is presented to solve

the system of linear fuzzy Volterra integral equa-

tions of the second kind. By using this method,

these systems are reduced to a linear system of al-

gebraic equations which are simply solvable. The

method is computationally very attractive and

gives very accurate results.

In Section 2, we introduce the Fibonacci polyno-

mials and some of its features. In the third sec-

tion, some basic definitions and notations of fuzzy

number are mentioned. In Section 4 we study

the fuzzy systems of Volterra integral equations

of the second kind. Then we explain the colloca-

tion method formed on Fibonacci polynomials to

solve fuzzy Volterra integral equations in Section

5. Then, the existence theorem of the solution for

the linear fuzzy Volterra integral equations are

proved in Section 6. Convergence analysis is es-

tablished in Section 7. This new method is used

to numerical examples in next section. Finally,

conclusion is presented in Section 9.

2 Fibonacci polynomials

2.1 The Fibonacci polynomials

The Fibonacci polynomials Fn(x) for n = 1, 2, · · ·,
studied by Catalan [17] are defined by the recur-

sion

Fn+2(x) = xFn+1(x) + Fn(x), n ≥ 1,

with preliminary conditions F1(x) = 1 and

F2(x) = x. They are given by the obvious for-

mula

Fn+1(x) =

[n
2

]
∑
i=0

(
n− i

i

)
xn−2i, n ≥ 0,

where

[n
2

]
=


(n− 1)

2
, n even,

n

2
, n odd.

Note that x = 0 is the only real root of F2n(0) =

0, while F2n+1(0) = 1 is without real roots. Fur-

thermore for x = k ∈ N, the elements of the

k-Fibonacci sequences is obtained [16].

The Fibonacci polynomials have generating func-

tion [21]

W (x, y) =
y

1− y2 − yx

=

∞∑
n=1

Fn(x)y
n

= y + xy2 + (x2 + 1)y3 + (x3 + 2x)y4 + · · · .

The Fibonacci polynomials are normalized so

that Fn(1) = Fn, where Fn is nth Fibonacci num-

ber. The first few Fibonacci polynomials are

F1(x) = 1,

F2(x) = x,

F3(x) = x2 + 1,

F4(x) = x3 + 2x,

F5(x) = x4 + 3x2 + 1.

This equations can be written in the matrix form

as follows

F (x) = GH(x), (2.1)
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where

F (x) = [F1(x), F2(x), · · · , Fm+1(x)]
T ,

H(x) = [1, x, x2, · · · , xm]T ,

and G is the lower triangular matrix with input

the coefficients appearing in the expansion Fi-

bonacci polynomials at increasing powers of x.

When m = 7 we have

G =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 2 0 1 0 0 0 0
1 0 3 0 1 0 0 0
0 3 0 4 0 1 0 0
1 0 6 0 5 0 1 0
0 4 0 10 0 6 0 1


.

Notice that in matrix G, the non-zero inputs are

made exactly the diagonals of the Pascal trian-

gle precisely and the sum of the elements in the

same row gives the classical Fibonacci sequence.

Further, matrix G is irreverible so, xn may be

written as linear composition of Fibonacci poly-

nomials [16].

2.2 Approximation of function

Suppose that a function f(x) can be expressed

in terms of the Fibonacci polynomials. In partic-

ular, only the first-(m+1)-term of Fibonacci poly-

nomials are considered. Hence, the function f(x)

can be written in the matrix form f(x) = CF (x),

where C = [c1, c2, · · · , cm+1]. So, from Eq.(2.1),

we have

f(x) ≃ CGH(x).

First, by truncated Taylor series we can approx-

imate the function u(x, t). In the next step we

apply the truncated Fibonacci series as follows

[23]

u(x, y) ≃
m∑
p=0

m∑
q=0

upqx
pyq, (2.2)

u(x, y) ≃
m∑
p=0

m∑
q=0

upqFp(x)Fq(y), (2.3)

where

upq =
1

p! q!

∂p+qu(0, 0)

∂xp∂yq
, p, q = 0, 1, · · · ,m.

We can write Eqs.(2.2) and (2.3) in the matrix

form as follows:

u(x, y) = HT (x)upqH(y), (2.4)

and

u(x, y) = F T (x)upqF (y). (2.5)

From relations (2.4) and (2.5), we have

HT (x)upqH(y) = F T (x)upqF (y)

→ HT (x)upqH(y) = HT (x)GTupqGH(y).

Also

Bx =

∫ x

a
F (t)F T (t)dt

=

∫ x

a
GH(t)HT (t)GTdt

= GKxG
T , x ∈ [a, b], (2.6)

where

Kx =

∫ x

a
H(t)HT (t)dt = [ki,j ],

ki,j =
xi+j+1 − ai+j+1

i+ j + 1
, i, j = 0, 1, . . . ,m.

(2.7)

3 Preliminaries in fuzzy calcu-
lus

From the different definitions of the concept of

fuzzy number we choose for this article the defi-

nitions below:

Definition 3.1. ([3]). The parametric form of

fuzzy number ỹ is given by an ordered pair of

functions (y, y) Which satisfying to the following

conditions

i) y : r → y−r ∈ R is a left-continuous, bounded

and non-decreasing function on [0, 1].

ii) y : r → y+r ∈ R is a left-continuous, bounded

and non-increasing function on[0, 1].

iii) y ≤ y for all 0 ≤ r ≤ 1.

Furthermore, for any fuzzy numbers ỹ =

(y(r), y(r)) and x̃ = (x(r), x(r)) we have
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(i) y(r)⊕ x(r) = y(r)⊕ x(r) and y(r)⊕ x(r) =

y(r)⊕ x(r).

(ii) y(r)⊖ x(r) = y(r)⊖ x(r) and y(r)⊖ x(r) =

y(r)⊖ x(r).

(iii)

t.ỹ =

{
(ty(r), ty(r)), t ≥ 0,

(ty(r), ty(r)), t < 0.

(iv)

ỹ ⊙ x̃ =

(y.x)(r) = max{y(r).x(r), y(r).x(r),
y(r).x(r), y(r).x(r)},

(y.x)(r) = min{y(r).x(r), y(r).x(r),
y(r).x(r), y(r).x(r)}.

Definition 3.2. For arbitrary fuzzy numbers ỹ =

(y(r), y(r)) and x̃ = (x(r), x(r)), the quantity

D(ỹ, x̃) = max
{

sup
r∈[0,1]

|y(r)− x(r)|,

sup
r∈[0,1]

|y(r)− x(r)|
}
,

is the distance between ỹ and x̃ [2].

The above metric is equivalent to the metrics

defined by Puri, Ralescu and Kaleva [20, 34]. It

is proven that (E1, D) is a complete metric space

[35].

In the following, we define the integral of a fuzzy

function using the Riemann integral concept, is

defined.

Definition 3.3. The fuzzy function

ỹ : [a, b] → E1 is said to be continuous if for any

fixed x0 ∈ [a, b] and ε > 0, there exists some δ > 0

such that if |x− x0|< δ, then D(ỹ(x), ỹ(x0)) < ε.

Definition 3.4. Let ỹ : [a, b] → E1.

(Definite integral of y(x) on [a, b] is
∫ b

a
y(x)dx =

limN→0 Rq =
∑n

i=0 ỹ(η)(xi − xi−1) for each partition
q = {x0, x1, · · · , xn} of [a, b] and arbitrary ηi : xi−1 ≤
ηi ≤ xi, i = 1, 2, · · · ,m and N = max1≤i≤n|xi −
xi−1|.) If the fuzzy function ỹ(x) is continuous whit

respect to metric D, then its definite integral exists.
Also, ∫ b

a

y(x; r)dx =

∫ b

a

y(x; r)dx,

∫ b

a

y(x; r)dx =

∫ b

a

y(x; r)dx,

where (y(x, r), y(x, r)) is the parametric form of y(x)
[11]. It should be noted that the fuzzy integral can also
be defined by using the Lebesgue-type approach [20].

Definition 3.5. ([39]). ỹ : [a, b] → E1 is fuzzy-

Riemann integrable to I(ỹ) ∈ E1 if for any ϵ > 0,

there exists δ > 0 such that for any division Z =

{[f, g]; ξ} of [a, b] with the norms ∆(Z) < δ, we

have

D
( ∗∑

Z

(g − f)⊙ ỹ(ξ), I(ỹ)
)
< ϵ,

where
∑∗

Z denotes the fuzzy summation.

Lemma 3.1. ([4]). If f̃ and g̃ : [a, b] ⊆ R → E1

are fuzzy continuous function, then the function
F : [a, b] → R+ by F(x) = D(f̃(x), g̃(x)) is con-
tinuous on [a, b], and

D
(∫ b

a

f̃(x)dx,

∫ b

a

g̃(x)dx
)
≤

∫ b

a

D(f̃(x), g̃(x))dx.

Theorem 3.1. ([5, 9]).

(i) The pair (E1,⊕) is a commutative semigroup

with 0̃ = χ{0} zero element.

(ii) For fuzzy numbers which are not crisp, there

is no opposite element (that is, (E1,⊕) can-

not be a group).

(iii) The function of ∥.∥F : E1 → R by ∥f∥F=
D(0̃, f̃) has the usual properties of norm,

that is, ∥f̃∥F= 0 if and only if f̃ = 0̃, ∥α ⊙
f̃∥= |α|∥f̃∥F and ∥f̃ ⊕ g̃∥F≤ ∥f̃∥F+∥g̃∥F .

(iv) |∥f̃∥F−∥g̃∥F |≤ D(f̃ , g̃) and D(f̃ , g̃) ≤
∥f̃∥F+∥f̃∥F for any f̃ , g̃ ∈ E1.

Definition 3.6. ([26]). The fuzzy linear system

A⊙ x̃ = B ⊙ x̃⊕ ỹ, (3.8)

where ỹ is a fuzzy number vector and A = (aij),

and B = (bij) for 1 ≤ i, j ≤ m, are crisp coeffi-

cient matrices, is called dual fuzzy linear system.



T. Sheverini et. al., /IJIM Vol. 14, No. 2 (2022) 197-207 201

4 Fuzzy Volterra integral equa-
tions

Here, we consider the system of Volterra integral

equations as follows:

V (y) = F (y) + λ

∫ y

a
K(y, t)V (t)dt, (4.9)

where

V (y) = [v1(y), v2(y), · · · , vm(y)]T ,

F (y) = [f1(y), f2(y), · · · , fm(y)]T ,

K(y, t) = [ki,j(y, t)], i, j = 1, 2, · · · ,m,

where λ and a are suitable constants, vi(y), i =
1, 2, · · · ,m is indeterminate function, while fi(y)
and kernels ki,j(y, t), i, j = 1, 2, · · · ,m are known

functions. Let F̃ (y) and Ṽ (y) be the parametric
form of F (y) and V (y), respectively (see Defini-
tion 3.1). The fuzzy Volterra integral equations
of the second kind for y ∈ [a, b] are as follows:

Ṽ (y) = F̃ (y)⊕ λ

∫ y

a

K(y, t)⊙ Ṽ (t)dt, (4.10)

where

Ṽ (y) = [ṽ1(y), ṽ2(y), · · · , ṽm(y)]T ,

ṽi(y) = (vi(y, s), vi(y, s)),

F̃ (y) = [f̃1(y), f̃2(y), · · · , f̃m(y)]T ,

f̃i(y) = (f
i
(y, s), f i(y, s)),

ki,j(y, t)⊙ vj(t, s) ={
ki,j(y, t)vj(t, s), ki,j(y, t) ≥ 0

ki,j(y, t)vj(t, s), ki,j(y, t) < 0
,

and

ki,j(y, t)⊙ vj(t, s) ={
ki,j(y, t)vj(t, s), ki,j(y, t) ≥ 0

ki,j(y, t)vj(t, s), ki,j(y, t) < 0
.

5 Collocation method based on
Fibonacci operational matrix

Now, we have solved the fuzzy system of linear
Volterra integral equations by collocation method
based on Fibonacci polynomials. Let P (y) =

[p1(y), p2(y), · · · , pm(y)] be a Fibonacci polynomial.
Then, we have

m∑
i=1

aipi(y) = fj(y)⊕
m∑
i=1

(
λ

∫ y

a

ki,j(yi, t)⊙ aipi(y)
)
dt, j = 1, · · · ,m. (5.11)

Let us consider

vm(y) =

m∑
i=1

aiFi(y).

We assume that the system (4.10) has a unique solu-
tion. Therefore we have

(f
1
(y, s), f1(y, s))

(f
2
(y, s), f2(y, s))

...

(f
m
(y, s), fm(y, s))

 =


(v1(y, s), v1(y, s))
(v2(y, s), v2(y, s))

...
(vm(y, s), vm(y, s))

−


(Z1, Z1)
(Z2, Z2)

...
(Zm, Zm)

 , (5.12)

where

(Zi,Zi) =
( m∑

j=1

∫ y

a

ki,j(y, t)vj(t, s)dt,

m∑
j=1

∫ y

a

ki,j(y, t)vj(t, s)dt
)
, i = 1, 2, · · · ,m.

(5.13)

By using Eq.(2.5), we can approximate functions
(vi(y, s), v(y, s)), and ki,j(y, t), i, j = 1, 2, · · · ,m as fol-
lows

vi(y, s) = FT (y)V̌iF (s), (5.14)

vi(y, s) = FT (y)V̌iF (s), (5.15)

ki,j(y, t) = FT (y)ki,jF (t). (5.16)

Applying Eqs.(5.14)-(5.16), in Eq.(5.13) we have

(Zi, Zi) =
( m∑

j=1

∫ y

a

FT (y)ki,jF (t)FT (t)VjF (s)dt,

m∑
j=1

∫ y

a

FT (y)ki,jF (t)FT (t)V̌jF (s)dt
)
,

=
(
FT (y)

m∑
j=1

ki,j

(∫ y

a

F (t)FT (t)dt
)
VjF (s),

FT (y)
m∑
j=1

ki,j

(∫ y

a

F (t)FT (t)dt
)
V̌jF (s)

)
,
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therefore, according to Eqs.(2.6) and (2.7), we have

(Zi, Zi) =
(
FT (y)

m∑
j=1

ki,jByVjF (s),

FT (y)

m∑
j=1

ki,jByV̌jF (s)
)
.

So we can rewrite the system (4.10) in the following
form

V = F +KByV, (5.17)

where

KBy =


k1,1By k1,2By k1,3By · · · k1,mBy

k2,1By k2,2By k2,3By · · · k2,mBy

...
...

...
. . .

...
km,1By km,2By km,3By · · · km,mBy

 ,

V =


(V1, V̌1)
(V2, V̌2)
(V3, V̌3)

...
(Vm, V̌m)

 , F =


(F1, F̌1)
(F2, F̌2)
(F3, F̌3)

...
(Fm, F̌m)

 ,

and

f
i
(y, s) = FT (y)FiF (s),

f i(y, s) = FT (y)F̌iF (s), i = 1, 2, · · · ,m.

Thus, we can write system (5.17) as follows

(Z −KBy)V = F , (5.18)

where Z is an identity matrix. After solving this lin-
ear system, we approximate the solution of system
(5.12) using Vi and V̌i, i = 1, 2, · · · ,m in Eqs.(5.14)
and (5.15), respectively.

6 Existence of the solution

Here, before proving the existence theorem for the lin-
ear fuzzy Volterra integral equation (4.10), we give
some useful notations. Given an n × n matrix, or a
vector, P with (i, j) arriving pi,j , we define |P |, the
absolute value of P , to be the n × n, matrix whose
(i, j) arriving is |pij |. Also, given two n×m matrices
P and Q, we will write P ≤ Q if and only if pij ≤ qij
for all i and j. Therefore, we can show [38]

(i) If |P |≤ |Q| then ∥P∥∞≤ ∥Q∥∞.

(ii) ∥P∥∞= ∥ |P | ∥∞.

Theorem 6.1. Suppose that f̃i(y), i =
1, 2, · · · ,m, y ∈ [a, b] be the fuzzy continuous func-
tions and ki,j(y, t), i, j = 1, 2, · · · ,m be continuous
for a ≤ y, t ≤ b, and τi,j = max

a≤y,t≤b
|ki,j(y, t)|.

Let τ1 = max{ki,j, i, j = 1, 2, · · · ,m} and
A = {g̃ : [0, 1] → E1 : g̃ is continuous} be a
space of fuzzy continuous functions with the metric
D∗(g̃, h̃) = sup

a≤y≤b
D(g̃(y), h̃(y)) (that is called the

uniform distance between fuzzy number value func-
tions). If B = m(b − a)τ1 < 1, then the fuzzy system
(4.10) has an unique solution Ṽ ∗ in Am which can be
obtained by the following successive approximations
method

Ṽ0(y) = F̃ (y),

Ṽm(y) = F̃ (y)⊕
∫ y

a

k(y, t)⊙ Ṽm−1(t)dt,

a ≤ y, t ≤ b, m ≥ 1.

Furthermore, the sequence of successive approxima-
tions, F̃m converges to the solution F̃ ∗. Moreover,
the following error bound holds

∥D
(
Ṽ ∗(t), Ṽm(t)

)
∥∞≤ Bn+1

1− B
τ0,

where

τ0 = sup
y∈[a,b]

∥D(0̃, f̃i(y))∥∞, i = 1, 2, · · · ,m.

Proof. See [42].

7 Convergence analysis

Now, we show that our numerical method converges
to the exact solution.

Theorem 7.1. Let ṽ(y)i,M and ṽi(y), i = 1, 2, · · · ,m
be the A.S and E.S of system (4.10), respectivly. If
ki,j(y, t), i, j = 1, 2, · · · ,m and a ≤ y, t ≤ b are
bounded and continuous, then ṽ(y)i,M → ṽi(y), as
M → ∞.

Proof. Take

ω = max
a≤y,t≤b

|ki,j(y, t)|< ∞,

i, j = 1, 2, · · · ,m.

Therefore, we have

D(ṽi(y), ṽi,M ) = D
( m∑

j=1

∫ y

a

ki,j(y, t)⊙ ṽj(t)dt,

m∑
j=1

∫ y

a

ki,j(y, t)⊙
( M∗∑

p=1

aj,m ⊙ Fm(t)
)
dt
)

≤ ω
m∑
j=1

∫ y

a

D
(
ṽj(t),

M∗∑
m=1

aj,m ⊙ Fm(t))
)
dt.
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So, we have

lim
M→∞

D(ṽi(y), ṽi,M (y)) ≤

ω lim
M→∞

m∑
j=1

∫ y

a

D
(
ṽj(t),

M∗∑
m=1

aj,m ⊙ Fm(t)
)
dt.

By using Eq.(2.1), we deduce that

ṽi(y) = lim
M→∞

M∗∑
m=1

aj,m ⊙ Fm(x).

Thus

lim
M→∞

D
(
ṽi(y),

M∗∑
m=1

ai,m ⊙ Fm(y)
)
→ 0,

i = 1, · · · ,m.

Finally, since ω is bounded value, we conclude the
expected result as follows

lim
M→∞

D
(
ṽi(y), ṽi,M (x)

)
→ 0,

i = 1, · · · ,m.

8 Some numerical examples

To show the effectiveness of the proposed method, we
consider three examples of equations of fuzzy Volterra
integral with the proposed method. All numerical cal-
culations are performed using Mathematica program.
As can be seen from Tables 1, 2 and 3, the absolute
error (A.E) of (v(y, s), v(y, s)) is represented by the
presented method and Figures 1, 2, 3, 4, 5 and 6 dis-
play exact (E.S) and approximate solutions (A.S) and
absolute error functions obtained from the presented
method for m = 8, 9 and m = 7 and y = 0.5, 0.2 and
y = 0.8, respectively.

Example 8.1. Assume in the following fuzzy Volterra
integral equation

f(y, s) =
1

2
y2ey(3s2 − 1) + ey(3s2 − 1) + (1− 3s2),

f(y, s) = 2y2ey + ey(3− s3) + (s3 − 3),

and kernel functions

k(y, t) = t, λ =
−1

2
.

The exact solution in this case is given by

V (y, s) =
(
v(y, s), v(y, s)

)
=

(
yey(3s2 − 1), yey(3− s2)

)
.

The results are shown in Table 1 and Figures 1 and 2
for m = 8 and y = 0.5.
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Figure 1: A.E functions from the presented
method for m = 8 of Example (8.1)
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Figure 2: E.S and A.S functions from the
presented method for m = 8 of Example
(8.1)

Example 8.2. Assume in the following fuzzy Volterra
integral equation

f(y, s) = (s2 + s− 1)(y + y2 +
1

12
y4

+ 2 cos y + sin y − 2),

f̄(y, s) = (2− s)(y2 +
1

12
y4 + 2 cos y − 2)

+ (2− s)(y + sin y),

and kernel functions

K(y, t) = (y − t)2

and λ = −1. We get

V (y, s) =
(
v(y, s), v(y, s)

)
=

(
(sin y + y)(s2 + s− 1), (y + sin y)(2− s)

)
,

that is the exact solution. The results for m = 9 and
y = 0.2 are shown in Table 2 and Figures 3 and 4.
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Table 1: The errors of (v(y, s), v(y, s)) of Example 8.1 for m = 8.

s A.S A.S A.E A.E
v8(y, s) v8(y, s) |v − v8| |v − v8|

0. −0.8243610 0.4730800 3.66058× 10−10 1.098170× 10−9

0.1 −0.7996300 0.3898200 3.55076× 10−10 1.061200× 10−9

0.2 −0.7254370 0.3016100 3.22131× 10−10 1.022030× 10−9

0.3 −0.6017830 0.2035200 2.67222× 10−10 9.78472× 10−10

0.4 −0.4286680 0.0905800 1.90350× 10−10 9.28322× 10−10

0.5 −0.2060900 0.9578600 9.15145× 10−11 8.69387× 10−10

0.6 0.0659489 0.8004000 2.92847× 10−11 7.99470× 10−10

0.7 0.3874490 0.6132700 1.72047× 10−10 7.16375× 10−10

0.8 0.7584120 0.3915200 3.36773× 10−10 6.17906× 10−10

0.9 0.1788400 0.1302000 5.23462× 10−10 5.01865× 10−10

1. 0.6487200 0.8243610 7.32115× 10−10 3.66057× 10−10

Table 2: The errors of (v(y, s), v(y, s)) of Example 8.2 for m = 9.

s A.S A.S A.E A.E
v9(y, s) v9(y, s) |v − v9| |v̄ − v9|

0. −0.9794260 1.9588500 2.65836× 10−10 5.31671× 10−10

0.1 −0.8716890 1.8609100 2.36593× 10−10 5.05087× 10−10

0.2 −0.7443630 1.7629700 2.02035× 10−10 4.75804× 10−10

0.3 −0.5974500 1.6650200 1.62160× 10−10 4.51921× 10−10

0.4 −0.4309470 1.5670800 1.16968× 10−10 4.25337× 10−10

0.5 −0.2448560 1.4691400 6.64589× 10−11 3.98753× 10−10

0.6 −0.0391770 1.3712000 1.06334× 10−11 3.72170× 10−10

0.7 0.1860910 1.2732500 5.05087× 10−11 3.45586× 10−10

0.8 0.4309470 1.1753100 1.16968× 10−10 3.19003× 10−10

0.9 0.6953920 1.0773700 1.88743× 10−10 2.92419× 10−10

1. 0.9794260 0.9794260 2.65836× 10−10 2.65836× 10−10

Table 3: The errors of (v(y, s), v(y, s)) of Example 8.3 for m = 7.

s A.S A.S A.E A.E
v7(y, s) v7(y, s) |v − v7| |v − v7|

0. 0.4794260 1.4382800 5.12281× 10−8 1.53684× 10−7

0.1 0.4319620 1.3898500 4.61565× 10−8 1.48510× 10−7

0.2 0.3873760 1.3385600 4.13923× 10−8 1.43029× 10−7

0.3 0.3485420 1.2815000 3.72429× 10−8 1.36933× 10−7

0.4 0.3183990 1.2158200 3.40155× 10−8 1.29915× 10−7

0.5 0.2996410 1.1386400 3.20176× 10−8 1.21667× 10−7

0.6 0.2953260 1.0470700 3.15565× 10−8 1.11882× 10−7

0.7 0.3082710 0.9382360 3.29397× 10−8 1.00253× 10−7

0.8 0.3413510 0.8092700 3.64744× 10−8 8.64731× 10−8

0.9 0.3974440 0.6572920 4.24681× 10−8 7.02338× 10−8

1. 0.4794260 0.4794260 5.12281× 10−8 5.12281× 10−8

Example 8.3. Assume the following fuzzy Volterra integral equation with

f(y, s) = (s3 − s+ 1)(ey − cos y),

f(y, s) = (3− s3 − s)(cos y − ey),
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Figure 3: A.E functions from the presented
method for m = 9 of Example (8.2)

0.2 0.4 0.6 0.8 1.0
s

-0.4

-0.2

0.2

0.4

0.6

0.8

y
Exact and Approx Solution

Figure 4: E.S and A.S functions from the
presented method for m = 9 of Example
(8.2)

and kernel functions

K(y, t) = ey−t, λ = −2.

The exact solution in this case is given by

V (y, s) =
(
v(y, s), v(y, s)

)
=

(
sin y(s3 − s+ 1), (3− s− s3) sin y

)
.

The results are shown in Table 3 and Figures 5 and 6
for m = 7 and y = 0.8.

9 Conclusions

In this work, we have studied a numerical scheme to
solve system of fuzzy Volterra integral equations of the
second kind based on Fibonacci polynomials. More-
over, using a collocation method based on Fibonacci
polynomials, we obtained the existence of the solu-
tion in Theorem (6.1). In Theorem (7.1), we prove
the convergence of the suggested method. Collocation
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Figure 5: A.E functions from the presented
method for m = 7 of Example (8.3)
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Figure 6: E.S and A.S functions from the
presented method for m = 7 of Example
(8.3)

method is simply applicable and is more efficient to
approximate the solution of systems of integral equa-
tion (4.10). Also, the introduced method is quick and
simple to compute. Finally, in the above presented nu-
merical examples, we saw that the suggested method
well preforms for these systems and convergence result
is confirmed.
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