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Abstract

In this paper, the first, second and third Zagreb indices, the first and second multiplicative Zagreb
indices, the F-index and F-polynomial of benzyl ether dendrimer with C60H core and benzyl ether
dendrimer with porphyrin core are calculated. In addition, the first and second Zagreb coindices, the
first and second multiplicative Zagreb coindices of these graphs are computed as well. Finally, the
multiplicative Zagreb index of these graphs is computed through the link of graphs.

Keywords : Zagreb indices; Multiplicative Zagreb indices; Zagreb coindices; Multiplicative Zagreb
coindices; F-index; F-polynomial.
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1 Introduction

D
endrimers are highly branched nanostruc-
tures considered as building blocks in nan-

otechnology with a variety of appropriate ap-
plications. Chemical graph theory is a branch
of mathematical chemistry concerned with the
study of chemical graphs. The basic idea of chem-
ical graph theory is that physico-chemical proper-
ties of molecules can be studied by using the infor-
mation encoded in their corresponding chemical
graphs. A molecular graph is a simple graph, such
that its vertices correspond to the atoms and the
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edges to the bonds. Molecular descriptors play a
significant role in chemistry, pharmacology, etc.
Among them, topological indices have a promi-
nent place [17]. In organic chemistry, topological
indices have been found to be useful in chemical
documentation, isomer discrimination, structure-
property relationships (SPR), structure-activity
relationships (SAR) and pharmaceutical drug de-
sign [11]. Throughout this article all graphs are
simple and connected. Let G = (V,E) be a sim-
ple connected graph with vertex set V and edge
set E. The degree d(u) = dG(u) of a vertex u ∈ V
is the number of vertices of G adjacent to u. The
edge connecting the vertices u and v will be ex-
pressed by uv. The complement G of the graph
G is the graph with vertex set V , where two ver-
tices are adjacent if and only if they are not ad-
jacent in G. In 1972, Gutman and Trinajsti [12]
defined the first and second Zagreb indices to as-
sess the structure-dependency of the total amount
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of π-electron energy unconjugated systems. Soon
after that, it was found that the Zagreb indices
provided a measure of the underlying molecules
of carbon skeleton branching. The two Zagreb in-
dices belong to the oldest molecular structure de-
scriptors, the properties of which are extensively
assessed. The first and second Zagreb indices are
defined as follow:

M1(G) =
∑
u∈V

d(u)2,

M2(G) =
∑
uv∈E

d(u).d(v).

The alternative expression of the first Zagreb
index is M1(G) =

∑
uv∈E(d(u) + d(v)). The

first general Zagreb index [13, 20] of a graph
G is defined as Mα

1 (G) =
∑

u∈V d(u)α =∑
uv∈E(d(u)

α−1 + d(v)α−1), where α ∈ R and
α ̸= 0, 1. If α = 3, the F-index is neglected.
Abdo et al. [1] assessed the extremal trees with
respect to F-index . In symbolic notation, the
F-index is expressed as F (G) =

∑
v∈V d(v)3 =∑

uv∈E [d(u)
2 + d(v)2]. Analogous to other topo-

logical polynomial, the F-Polynomial of graph
G is defined as F (G, x) =

∑
uv∈E x[d(u)

2+d(v)2].
Ashrafi et al. [4, 5] defined the first and second
Zagreb coindices as follows:

M1(G) =
∑
uv/∈E

(d(u) + d(v)),

M2(G) =
∑
uv/∈E

(d(u).d(v)).

In 2013, Xu. et, al. [19] defined the multiplicative
Zagreb coindices by

PM1(G) =
∏
uv/∈E

(d(u) + d(v)),

PM2(G) =
∏
uv/∈E

(d(u).d(v)).

They defined the multiplicative sum Zagreb index
and the total multiplicative sum Zagreb index by

PM∗
1 (G) =

∏
uv∈E

(d(u) + d(v),

PMT (G) =
∏

u,v∈V
(d(u) + d(v)).

Gutman and Furtula [10] determine relations be-
tween the first Zagreb index and the first Za-
greb coindex of graph G and its complement Ḡ
as M1(Ḡ) = M1(G) + n(n − 1)2 − 4m(n − 1),
M1(Ḡ) = 2m(n − 1) − M1(G) and M1(G) =
2m(n − 1) − M1(G), where n = n(G) and m =
m(G) are the number of vertices and edges of G,
respectively. Moreover, there exist known corre-
lations between the first and second Zagreb in-
dices and the second Zagreb coindex of graph G
and its complement Ḡ, that expressed as follow:

M2(Ḡ) =
1

2
n(n− 1)3 − 3m(n− 1)2 + 2m2

+
2n− 3

2
M1(G)−M2(G),

M2(Ḡ) = m(n− 1)2 − (n− 1)M1(G) +M2(G),

M2(G) = 2m2 − 1

2
M1(G)−M2(G).

In addition, Fath-Tabar [9] defined the third Za-
greb index, as M3(G) =

∑
uv∈E | d(u) − d(v) |.

Todeschine et al. [16, 18] defined the first and
second multiplicative Zagreb indices as follow:

PM1(G) =
∏
u∈V

d(u)2,

PM2(G) =
∏
u∈V

d(u)d(u).

The alternative expression of the second mul-
tiplicative Zagreb index can be expressed as
PM2(G) =

∏
uv∈E d(u).d(v). Iranmaesh et al.

[14] computed multiplicative Zagreb indices for a
class of dendrimers by applying the link of graphs.
In some recent papers [2, 3, 6, 7, 8, 15], the au-
thors calculated the Zagreb indices and coindices
of some chemical graphs and nanotubes.

In this article, we compute the Zagreb indices,
the first and second multiplicative Zagreb indices,
the first and second Zagreb coindices, the first
and second multiplicative Zagreb coindices, the
multiplicative sum Zagreb index and the total
multiplicative sum Zagreb index of benzyl ether
dendrimer with C60H core and benzyl ether den-
drimer with porphyrin core.

2 Preliminaries

Let G be a simple connected graph. The number
of vertices with degree i, expressed di and eij , i ̸=
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j, constitutes the number of edges connecting the
vertex of degree i with a vertex of degree j and eii
constitutes the number of edges connecting two
vertices of degree i. The symbol d′i is the number
of vertices with degree i in a branch and e′ij , i ̸= j,
constitutes the number of edges connecting the
vertex of degree i with a vertex of degree j in a
branch. The symbol n′ constitutes the number
of vertices in a branch and m′ is the number of
edges in a branch.

Lemma 2.1. The number of two element subsets

with vertices of degree i is

(
di
2

)
=

di(di − 1)

2
and

the number of subsets with vertices of degrees i

and j is

(
di
1

)(
dj
1

)
= didj.

Proof. For i ̸= j, let Di and Dj be the sets of
vertices of degrees i and j, respectively. Then
|Di|= di, |Dj |= dj | and the number of two ele-
ment subsets with vertices of degrees i and j is
|Di||Dj |= didj =

(
di
1

)(dj
1

)
. In addition, Di has(

di
2

)
two element subsets. Thus the number of

two element subsets with vertices of degree i is(
di
2

)
= di(di−1)

2 .

Lemma 2.2. Let eij be the number of two ele-
ment subsets of not adjacent vertices of degrees
i and j, so that eij does not include the number
of edges that connect vertices i and j and eii be
the number of two element subsets of not adjacent
vertices of degrees i, so that eii does not include
the number of edges that connect two vertices of
degree i. Then the following relations are hold:

eij =

(
di
1

)(
dj
1

)
− eij = didj − eij ,

eii =

(
di
2

)
− eii =

di(di − 1)

2
− eii.

Proof. By definition, the number of two element
subsets of adjacent vertices of degree i is eii and
the number of two element subsets of adjacent
vertices of degrees i and j is eij . In addition,
eii is the number of two element subsets of not
adjacent vertices of degree i and eij is the number
of two element subsets of not adjacent vertices of
degrees i and j. Therefore, by Lemma 2.1 eij =(
di
1

)(dj
1

)
− eij and eii =

(
di
2

)
− eii.

The above lemmas are applied to obtain
PMT (G), the Zagreb and the multiplicative Za-
greb coindices .

Definition 2.1. Let G and H be the two graphs,
u ∈ V (G) and v ∈ V (H). A link of G and
H by vertices u and v is defined as the graph
(G□H)(u, v) obtained by joining u and v by an
edge in the union of these graphs.

Lemma 2.3. [12] Let G1 and G2 be the two
graphs. The first and second Zagreb indices of
G1 and G2 link satisfies the following relations:

PM1(G1□G2)(v1, v2) =

(
(dG1(v1) + 1)(dG2(v2) + 1)

dG1(v1)dG2(v2)
)2

× PM1(G1)PM1(G2),

PM2(G1□G2)(v1, v2) =

(dG1(v1) + 1)dG1
(v1)+1(dG2(v2) + 1)dG2

(v2)+1

(dG1(v1))
dG1

(v1)(dG2(v2))
dG2

(v2)

× PM2(G1)PM2(G2).

3 Main results

In this section, we derive the main results of this
paper. If G is a graph and u1, ..., un ∈ V , then we
use the truncated versions of two multiplicative
Zagreb indices as

PM
(u1,...,un)
1 (G) =

∏
u∈V

u̸=u1,...un

d(u)2,

PM
(u1,...,un)
2 (G) =

∏
u∈V

u̸=u1,...un

d(u)d(u).

Theorem 3.1. Let G be the Molecular graph of
benzyl ether dendrimers with C60H core (see Fig.
1). Then the following relations are hold:

M1(G) = 21.2k+2 + 500,

M2(G) = 3.2k+5 + 779,
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M3(G) = 3.2k+2 − 6,

PM1(G) = 23.2
k+3−6.32

k+3+110,

PM2(G) = 23.2
k+3+2.33.2

k+2+165,

M1(G) = 9.22k+6 + 1069.2k+2 + 7500,

M2(G) = 1089.22k+1 − 1719.2k+1 + 1356,

PM1(G) =219.2
2k+3+29.2k+1+1550

.32
2k+3+127.2k+1+1377

.53.2
2k+4+155.2k+2−370.72

k+3+105,

PM2(G) =23.2
2k+6+33.2k+4−152

.32
2k+6+267.2k+2+2585,

PM∗
1 (G) =23.2

k+2+90.387.53.2
k+2−13.75,

PMT (G) =219.2
2k+3+35.2k+1+1637

.32
2k+3+127.2k+1+1464

.53.2
2k+4+158.2k+2−383.72

k+3+110.

Figure 1: Molecular graph of benzyl-ether
type dendrimers from the first to three gen-
erations having a fullerene cage as an elec-
troactive core GkC60H(k = 1− 3)

Proof. The growth of two similar branches and
three stages are shown in Fig. 1. These indices
are computed from the stage k. The central part
of Fig. 1 is shown in Fig. 2 and it is easy to
see that d1 = 1, d2 = 3, d3 = 61, d4 = 2. Thus
d1 = 1, d2 = 2d′2 + 3, d3 = 2d′3 + 61, d4 = 2. For
example, for k = 1, the d1 = 1, d2 = 17, d3 = 63,
d4 = 2 are yield. Now, calculations indicate that
d′2 = 3.2k+1−5, d′3 = 2k+1−3. Therefore, d1 = 1,

Figure 2: The central part of Fig. 1

Figure 3: G1 and G2 = G1□G1

d2 = 3.2k+2 − 7, d3 = 2k+2 + 55 and d4 = 2. The
following relations are yield now:

M1(G) = 21.2k+2 + 500,

PM1(G) = 23.2
k+3−6.32

k+3+110,

PM2(G) = 23.2
k+3+2.33.2

k+2+165.

As to Fig. 2, it is obvious that e14 = 1, e22 = 2,
e23 = 2, e33 = 87, e34 = 5, e44 = 1. So e22 =
2e′22 + 2, e23 = 2e′23 + 2. For example, for k = 1,
e14 = 1, e22 = 12, e23 = 10, e33 = 87, e34 = 5,
e44 = 1 are yield. Here, calculations show that
e′22 = 3.2k − 1, e′23 = 3.2k+1− 8. Therefore, e14 =
1, e22 = 3.2k+1, e23 = 3.2k+2 − 14, e33 = 87,
e34 = 5, e44 = 1. The followings are derived now:

M2(G) = 3.2k+5 + 779,

M3(G) = 3.2k+2 − 6.

We apply Lemma 2.1 and Lemma 2.2, then simi-
lar calculations indicate that

M1(G) = 9.22k+6 + 1069.2k+2 + 7500,

M2(G) = 81.22k+3 + 2811.2k+1 + 11771,
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PM1(G) =219.2
2k+3+29.2k+1+1550

.32
2k+3+127.2k+1+1377

.53.2
2k+4+155.2k+2−370.72

k+3+105,

PM2(G) =23.2
2k+6+33.2k+4−152

.32
2k+6+267.2k+2+2585,

PM∗
1 (G) = 23.2

k+2+90.387.53.2
k+2−13.75,

PMT (G) =219.2
2k+3+35.2k+1+1637

.32
2k+3+127.2k+1+1464

.53.2
2k+4+158.2k+2−383.72

k+3+110.

Now, the multiplicative Zagreb indices are
computed through the link of graph G1 and G1

as observe in Fig. 3. It is easy to see that for
1 ≤ i ≤ k − 1, 1 ≤ j ≤ k − 1 the followings are
hold:

PM1(G1) = 214.32,

PM
(ui)
1 (G1) = PM

(vj)
1 (G1) = 212.32,

PM
(vi,ui+1)
1 (G1) = 210.32.

We define Gk, k ≥ 2 as follow:

Gk = (Gk−1□G1)(v1, u1),

Gk−1 = (Gk−2□G1)(v2, u2),

.

.

.

G2 = (G1□G1)(vk−1, uk−1).

According to Lemma 2.3, the following rela-
tions are derived:

PM1(Gk) =PM
(v1)
1 (Gk−1)

.PM
(u1)
1 (G1).2

2.32,

PM
(v1)
1 (Gk−1) =PM

(v2)
1 (Gk−2)

.PM
(v1,u2)
1 (G1).2

2.32,

.

.

.

PM
(vk−2)
1 (G2) =PM

(vk−1)
1 (G1)

.PM
(vk−2,uk−1)
1 (G1).2

232.

Therefore the following relations are yield:

PM1(Gk) = PM
(vk−1)
1 (G1).PM

(u1)
1 (G1)

k−1∏
i=2

PM
(vi−1,ui)
1 (G1).2

2(k−1).32(k−1)

= PM
(vk−1)
1 (G1).PM

(u1)
1 (G1)

.(PM
(v1,u2)
1 (G1))

k−2.22(k−1).32(k−1)

= 28k38k−2.

One branch like G1 is added in the second layer
and three branches are added in the third layer.
The total number of added branches in all lay-
ers is equal to 2k − k − 1. The first multiplica-
tive Zagreb index for a branch of graph of Fig.
1 is equal to 23.2

k+2−10.32
k+2−6. As the graph

has two main branches, we obtain high values
for two main branches and we consider the ob-
tained number with the first multiplicative Za-
greb index which has the central part value of
figure that is 12.26.3122.44. Therefore PM1(G) =

23.2
k+3−6.32

k+3+110. Now, it is easy to see that for
1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − 1, we have

PM2(G1) = 214.33,

PM
(ui)
2 (G1) = PM

(vj)
2 (G1) = 212.33,

PM
(vi,ui+1)
2 (G1) = 210.33.

Again Lemma 2.3 show that the following rela-
tions are hold too:

PM2(Gk) =PM
(v1)
2 (Gk−1)

.PM
(u1)
2 (G1).2

2.33,

PM
(v1)
2 (Gk−1) =PM

(v2)
2 (Gk−2)

.PM
(v1,u2)
2 (G1).2

2.33,

.

.

.

PM
(vk−2)
2 (G2) =PM

(vk−1)
2 (G1)

.PM
(vk−2,uk−1)
2 (G1).2

2.33.
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Therefore the following relations are yield:

PM2(Gk) = PM
(vk−1)
2 (G1).PM

(u1)
2 (G1)

k−1∏
i=2

PM
(vi−1,ui)
2 (G1).(2

2.33)(k−1)

=PM
(vk−1)
2 (G1).PM

(u1)
2 (G1)

.(PM
(v1,u2)
2 (G1))

k−2.(22.33)(k−1)

=212k+2.36k−3.

One branch like G1 is added in the second layer
and three branches are added in the third layer.
The total number of added branches in all layers
is equal to 2k − k − 1. The second multiplica-
tive Zagreb index for a branch of graph of Fig. 1
is equal to 23.2

k+1−10.33.2
k+1−9. As the graph has

two main branches then we obtain high values for
two main branches and we consider the obtained
number with the second multiplicative Zagreb in-
dex which has the central part value of figure is
11.26.3183.48. Thus

PM2(G) = 23.2
k+3+2.33.2

k+2+165.

Theorem 3.2. Let G be the benzyl ether den-
drimer with C60H core (see Fig. 1). Then the
first Zagreb index and the first Zagreb coindex of
Ḡ are computed as follow:

M1(Ḡ) =23k+12 + 293.22k+7

+ 28241.2k+2 + 112000,

M1(Ḡ) =9.22k+6 + 1069.2k+2 + 7500.

Proof. For the graph of Fig. 2, it is obvious that
n = 67 and m = 98. Thus n = 2n′ + 67 and
m = 2m′ + 98. For example, if k = 1 , then
n = 83, m = 116 . Now, calculations indicate
that n′ = 2k+3 − 8 and m′ = 9.2k − 9. Therefore,
n = 2k+4 + 51 and m = 9.2k+1 + 80. Thus, we
obtain

M1(Ḡ) =23k+12 + 293.22k+7

+ 28241.2k+2 + 112000,

M1(Ḡ) =9.22k+6 + 1069.2k+2 + 7500.

Theorem 3.3. Suppose G be the benzyl ether
dendrimer with C60H core (see Fig. 1). Then

F (G) =51.2k+2 + 1558,

F (G, x) =x17 + (3.2k+1).x8

+ (3.2k+2 − 14).x13

+ 87.x18 + 5.x25 + x32.

Proof. Let the edge set of G be divided into six
classes based on the degree of the end vertices as
e14 = 1, e22 = 3.2k+1, e23 = 3.2k+2−14, e33 = 87,
e34 = 5, e44 = 1. In the following, we calculate
the F-index of benzyl ether dendrimer with C60H
core (see Fig. 1) as:

F (G) =17.e14 + 8.e22 + 13.e23

+ 18.e33 + 25.e34 + 32.e44

=51.2k+2 + 1558.

The F-Polynomial is calculated as

F (G, x) =e14.x
17 + e22.x

8 + e23.x
13

+ e33.x
18 + e34.x

25 + e44.x
32.

So, we obtain

F (G, x) =x17 + (3.2k+1).x8

+ (3.2k+2 − 14).x13

+ 87.x18 + 5.x25 + x32.

Theorem 3.4. Let G be the benzyl ether den-
drimers with porphyrin core. Then the first and
second Zagreb, multiplicative Zagreb indices and
coindices are computed as follow:

M1(G) = 13.22k+6 − 512,

M2(G) = 119.22k+3 − 564,

M3(G) = 9.22k+4 − 88,

PM1(G) = 213.2
2k+4−160.3

17.22k+4−128
3 ,
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PM2(G) = 213.2
2k+4−160317.2

2k+3−64,

M1(G) =
649.24k+8 − 6759.22k+5 + 70304

3
,

M2(G) = 121.24k+9 − 10027.22k+3 + 25908,

PM1(G) =2
443.24k+8+20447.22k+3+61004

9

.3
523.24k+5−3667.22k+2+2036

9

.5
221.24k+6−35.22k+9+5384

3 ,

PM2(G) =2
767.24k+6−8789.22k+3+25040

3

.3
1003.24k+6−2287.22k+5+20224

9 ,

PM∗
1 (G) =23.2

2k+5−60.312.52
2k+7−88,

PMT (G) =2
443.24k+8−20339.22k+3+60464

9

.3
523.24k+5−3667.22k+2+2144

9

.5
221.24k+6−137.22k+7+5120

3 .

Figure 4: Molecular graph of benzyle ether
dendrimers with porphyrin core

Proof. The growth of eight similar branches and
one stages are shown in Fig. 4. Now these indices
can be computed from the stage k. The graph in
Fig. 5 shows the central part of Fig. 4. Form
the graph of Fig. 5, it is obvious that d2 = 32
and d3 = 24. Thus d1 = 8d′1, d2 = 8d′2 + 32
and d3 = 8d′3 + 24. For example, for k = 1, the
d1 = 32, d2 = 336 and d3 = 160 are yield. Now,
calculations show that d′1 = 22k, d′2 = 13.22k −
14, d′3 = 17.22k−17

3 . Therefore, d1 = 22k+3, d2 =

13.22k+3 − 80 and d3 =
17.22k+3−64

3 . On the other

Figure 5: The central part of Fig. 4

hand, elementary computation gives

M1(G) =13.22k+6 − 512,

PM1(G) =213.2
2k+4−160.3

17.22k+4−128
3 ,

PM2(G) =213.2
2k+4−160.317.2

2k+3−64.

For the graph in Fig. 5, it is obvious that e22 =
4, e23 = 48 and e33 = 12. Thus e13 = 8.e′13,
e22 = 8.e′22+4, e23 = 8.e′23+48 and e33 = 8.e′33+
12. For example, if k = 1, then e13 = 32, e22 =
124, e23 = 424 and e33 = 12 are yield. Now,
calculations show that e′13 = 22k, e′22 = 5.22k − 5,
e′23 = 22k+4 − 17 and e′33 = 0. Therefore, e13 =
22k+3, e22 = 5.22k+3 − 36, e23 = 22k+7 − 88 and
e33 = 12. So elementary computation gives

M2(G) =119.22k+3 − 564,

M3(G) =9.22k+4 − 88.

Now, we apply Lemma 2.1 and Lemma 2.2, then
Similar calculations reveal that

M1(G) =
649.24k+8 − 6759.22k+5 + 70304

3
,

M2(G) = 121.24k+9 − 10027.22k+3 + 25908,
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PM1(G) =2
443.24k+8+20447.22k+3+61004

9

.3
523.24k+5−3667.22k+2+2036

9

.5
221.24k+6−35.22k+9+5384

3 ,

PM2(G) =2
767.24k+6−8789.22k+3+25040

3

.3
1003.24k+6−2287.22k+5+20224

9 ,

PM∗
1 (G) =23.2

2k+5−60.312.52
2k+7−88,

PMT (G) =2
443.24k+8−20339.22k+3+60464

9

.3
523.24k+5−3667.22k+2+2144

9

.5
221.24k+6−137.22k+7+5120

3 .

Now, the multiplicative Zagreb indices can be
computed through the link of graph G1 and G1

as shown in Fig. 6. It is easy to observe that for
1 ≤ i ≤ k − 1, 1 ≤ j ≤ k − 1 we have

PM1(G1) = 278.334,

PM
(ui)
1 (G1) = PM

(vj)
1 (G1) = 276.334,

PM
(vi,ui+1)
1 (G1) = 274.334.

We define Gk, k ≥ 2 as follow:

Gk = (Gk−1□G1)(v1, u1),

Gk−1 = (Gk−2□G1)(v2, u2),

.

.

.

G2 = (G1□G1)(vk−1, uk−1).

According to Lemma 2.3, the following rela-
tions are derived:

PM1(Gk) =PM
(v1)
1 (Gk−1)

.PM
(u1)
1 (G1).2

4,

PM
(v1)
1 (Gk−1) =PM

(v2)
1 (Gk−2)

.PM
(v1,u2)
1 (G1).2

4,

.

.

.

PM
(vk−2)
1 (G2) =PM

(vk−1)
1 (G1)

.PM
(vk−2,uk−1)
1 (G1).2

4.

Therefore

PM1(Gk) =PM
(vk−1)
1 (G1).PM

(u1)
1 (G1)

k−1∏
i=2

PM
(vi−1,ui)
1 (G1).2

4(k−1)

=PM
(vk−1)
1 (G1).PM

(u1)
1 (G1)

.(PM
(v1,u2)
1 (G1))

k−2.24(k−1)

=278k.334k.

Three branches like G1 are added in the second
layer and fifteen branches are added in the third
layer. The total number of added branches in
all layers is equal to 4k−3k−1

3 . The first multi-
plicative Zagreb index for a branch of graph of

Fig. 4 is equal to 213.2
2k+1−26.3

17.22k+1−34
3 . As

this graph has eight main branches, high val-
ues for eight main branches are obtained and
the obtained number with the first multiplicative
Zagreb index which has the central part value
of figure is 2−16.264.348. Therefore PM1(G) =

2(13.2
2k+4−160).3

17.22k+4−128
3 . Now, it is easy to ob-

serve that for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k − 1
the followings are hold:

PM2(G1) = 278.351,

PM
(ui)
2 (G1) = PM

(vj)
2 (G1) = 276.351,

PM
(vi,ui+1)
2 (G1) = 274.351.

Once again Lemma 2.3 show that the following
relations are hold:

PM2(Gk) =PM
(v1)
2 (Gk−1)

.PM
(u1)
2 (G1).2

2.22,

PM
(v1)
2 (Gk−1) =PM

(v2)
2 (Gk−2)

.PM
(v1,u2)
2 (G1).2

2.22,

.

.

.

PM
(vk−2)
2 (G2) =PM

(vk−1)
2 (G1)

.PM
(vk−2,uk−1)
2 (G1).2

2.22.
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Therefore, we obtain the following relations:

PM2(Gk) =PM
(vk−1)
2 (G1).PM

(u1)
2 (G1)

k−1∏
i=2

PM
(vi−1,ui)
2 (G1).2

4(k−1)

=PM
(vk−1)
2 (G1).PM

(u1)
2 (G1)

.(PM
(v1,u2)
2 (G1))

k−2(22.22)(k−1)

=278k.351k.

Three branches like G1 are added in the second
layer and fifteen branches are added in the third
layer. The total number of added branches in
all layers is equal to 4k−3k−1

3 . The second mul-
tiplicative Zagreb index for a branch of graph
of Fig. 4 is equal to 213.2

2k+1−26.317.2
2k−17. As

the graph has eight main branches, high values
for eight main branches are obtained, where the
obtained number with the second multiplicative
Zagreb index which has the central part value
of figure that is 2−16.264.372. Therefore PM2 =
213.2

2k+4−160.317.2
2k+3−64.

Figure 6: G1 and G2 = G1□G1

Theorem 3.5. Let G be the benzyl ether den-
drimers with porphyrin core. Then

M1(Ḡ) =
1

27
(205379.26k+9 − 1621143.24k+7

+ 17057235.22k+3 − 29903344),

M1(Ḡ) =
649.24k+8 − 6759.22k+5 + 70304

3
.

Proof. For the graph in Fig. 5, it is obvious that
n = 56,m = 64. So n = 8n′ + 56 and m =
8m′ + 64. For example, if k = 1 , then n = 528,
m = 592. Now, the calculations show that n′ =

59.22k−59
3 and m′ = 11.22k+1− 22. Therefore, n =

59.22k+3−304
3 , m = 11.22k+4 − 112 and elementary

computations yield

M1(Ḡ) =
1

27
(205379.26k+9 − 1621143.24k+7

+ 17057235.22k+3 − 29903344),

M1(Ḡ) =
649.24k+8 − 6759.22k+5 + 70304

3
.

Theorem 3.6. Let G be the benzyl ether den-
drimers with porphyrin core. Then

F (G) =129.22k+4 − 1216,

F (G, x) =22k+3.x10 + (5.22k+3 − 36).x8

+ (22k+7 − 88).x13 + 12.x18.

Proof. Let the edge set of G be divided into four
classes based on the degree of the end vertices
e13 = 22k+3, e22 = 5.22k+3 − 36, e23 = 22k+7 −
88 and e33 = 12. The F-index of benzyl ether
dendrimers with porphyrin core is calculated as
follow:

F (G) =10e13 + 8e22 + 13e23 + 18e33

=129.22k+4 − 1216.

The F-polynomial of benzyl ether dendrimers
with porphyrin core is calculated as follow:

F (G, x) = e13.x
10 + e22.x

8 + e23.x
13 + e33.x

18.

So, we obtain the following relation:

F (G, x) =22k+3.x10 + (5.22k+3 − 36).x8

+ (22k+7 − 88).x13 + 12.x18.

4 Conclusion

In this paper, we considered two different den-
drimers. We found the first, second and third
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Zagreb indices and the first and second multi-
plicative Zagreb indices and the F-index and F-
polynomial of benzyl ether dendrimer with C60H
core and benzyl ether dendrimers with porphyrin
core. In addition, the first and second Zagreb
coindices and the first and second multiplicative
Zagreb coindices and first Zagreb index and Za-
greb coindices of complement of this graphs are
also computed. Finally, the multiplicative Zagreb
indices are computed by the link of graphs.
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