
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 14, No. 3, 2022 Article ID IJIM-1470, 14 pages

DOI: http://dx.doi.org/10.30495/ijim.2022.19684

Research Article

Classifying Flexible Measures in Two-Stage Network DEA

S. N. Hosseini Monfared ∗, M. R. Mozaffari †‡, M. Rostami-Malkhslifrh §

Received Date: 2020-11-01 Revised Date: 2021-01-24 Accepted Date: 2021-08-11

————————————————————————————————–

Abstract

Standard Data Envelopment Analysis (DEA) supposes that the performance measure status from
the point of view of input or output is known. Nevertheless, in some situations, determining the
status of a performance measure in two-stage network is not easy. Measures with unknown status
of input/output are called flexible measures. In all of the previous studies did not point to classify
flexible measures in two-stage network DEA. In this paper we propose FNDEA models based on the
multiplier model under constant returns to scale (CRS) and variable returns to scale (VRS) in general
two-stage network structures. Our models classify flexible measures, in which each one of the flexible
measure is treated as either input or output to maximize the overall network efficiency of the DMU
under evaluation. The current paper develops an additive efficiency decomposition approach wherein
the overall efficiency is expressed as a (weighted) sum of the efficiencies of the individual stages. This
approach can be applied under both CRS and (VRS) assumptions. Numerical examples are used to
illustrate the procedures.

Keywords : Data envelopment analysis; Flexible measures; CRS and VRS assumptions; General two-
stage network.

—————————————————————————————————–

1 Introduction

D
ata envelopment analysis (DEA) is a non-

parametric technique to measure the relative

efficiency of a set of similar units referred to as

decision making units (DMUs). In the standard

DEA, it is assumed that the input and output

status of each performance measure related to
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the DMUs has been known. However, in some

situations the role of a variable may be flexible.

Cook and Zhu [5] considered flexible variables

and proposed a mixed integer linear program-

ming (MILP) problem for classifying these vari-

ables. Also, they introduced the aggregate model

from the perspective of the manager of the col-

lection of DMUs. Toloo [16] claimed in practice

their individual method may produce incorrect

efficiency scores due to a computational problem

as a result of introducing a large positive num-

ber to the model and introduces a revised model

that does not need such a large positive number.

Amirteimoori and Emrouznejad [1] proposed a

mixed integer linear programming model by fo-
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cusing on the impact of flexible measures on the

definition of the production set and the assess-

ment of technical efficiency. Toloo [17] considered

alternative solutions for classifying input and out-

put in data envelopment analysis. Kordrostami

and Noveiri [11] proposed a model to evaluate the

efficiency of decision-making units where flexible

and negative data exist. Amirteimoori et al. [2]

suggested a flexible slack-based measure of effi-

ciency to maximize the performance. The perfor-

mance measurement in the presence of interval

and flexible factors have also been addressed by

Kordrostami and Noveiri [12]. Tohidi and Ma-

troud [15] proposed a new non-oriented model

that not only selected the status of each flexi-

ble measure as an input or output but also de-

termined returns to scale status. Toloo et al.

[18] proposed a non-radial directional distance

method to classify flexible factors, including an

application of the banking industry. Recently,

Kordrostami et al. [13] proposed the integer-

valued FSBM approach for evaluating the rela-

tive efficiency of DMUs where flexible and integer

measures are present.

In recent years, a number of DEA studies have

focused on DMUs with internal network struc-

tures. Among a wide variety of internal struc-

tures studied, one basic and popular internal

structure is called a two-stage network struc-

ture. Kao and Hwang [10] modeled the over-

all efficiency of two-stage process as the prod-

uct of the efficiencies of two individual stages. A

closer examination by Chen et al. [4] revealed

that Kao and Hwang [10]s two-stage DEA model

assumed constant returns to scale (CRS) and

was not applicable to variable returns to scale

(VRS) assumption. They thus introduced an ad-

ditive approach for aggregating the efficiencies

in two-stage process. Specifically, they modeled

the overall efficiency of two-stage process as a

weighted sum of the efficiencies of the two indi-

vidual stages. Cook et al. [6] extended the ap-

proach to a general network structures. The addi-

tive efficiency decomposition approach was devel-

oped wherein the overall efficiency was expressed

as a (weighted) average of individual stage effi-

ciencies. Li et al. [14] proposed models to evalu-

ate the performance of general two-stage network

structures. Despotis et al. [7] showed that the

weighting technique used in Chen et al. [4] was

biased toward the second stage. They presented

a new approach to estimate unique and unbiased

efficiency scores for the individual stages. Their

results were made implicitly reference about the

monotonic property of decomposition weights for

the two-stage DEA model without exogenous in-

puts and outputs. Ang and Chen [3] developed

this property to a general two-stage and a multi-

stage model. They found that the decomposition

weights for the input-oriented multi-stage models

were non-increasing in the sequence of stages and

the monotonic property of decomposition weights

can interfere with the estimated stage and over-

all efficiency scores. Then they proposed to use

constant weights to calculate additive overall effi-

ciency. They showed the differences between the

efficiency scores of additive model with constant

weights and Chen et al. [4] model by the dif-

ferences between the product of stage efficiency

scores and weights. Gue et al. [9] examined ad-

ditive efficiency decomposition where the overall

efficiency was defined as a weighted average of

stage efficiencies and the weights were used to

reflect relative importance of individual stages.

Fang [8] developed a methodology for assessing

the overall and stage efficiencies by considering

the different and DMU-specific degree of priority

given to the stages.

Flexible measures are encountered in many real

world situations in two-stage network structures.

For example, in a conventional study of efficiency

of bank branch operations, inputs to the first

stage are resources such as various staff types,

and outputs to the second stage are the standard

counter transactions such as deposits and with-

drawals. In order to explain the possible appli-

cation of our proposed model, assume a factor

such as the number of worthwhile customers that

can be considered as a flexible measure to the

first stage to evaluate bank branch operations.

Cook and Zhu [5] declared ”from one prospec-

tive, such a measuring plays the role of proxy for

future investment, hence can reasonably be clas-

sified as an output. On the other hand, it can
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legitimately be considered as an environmental

input that aids the branch in generating its exist-

ing investment portfolio”. In this case, a factor

such as deposits can be assumed as a flexible mea-

sure to the second stage. According to Cook and

Zhu [5], it is a source of revenue for the branch

and can thus also be regarded as an output. It

should be considered here that arguments have

been made claiming that staff time expended in

processing customers who are making deposits or

opening deposit accounts could also be used ad-

vantageously to sell more profitable products to

customers at the same time; this factor can be

supposed as an input.

The presentation of models with flexible measures

in two-stage network structures is essential and

beneficial because there are many situations in

the real world such as that described above. So

here we propose FNDEA models in which each

one of the flexible measures is treated as either

input or output to maximize the overall network

efficiency of the DMU under evaluation in two-

stage network structures. The current paper de-

velops an additive efficiency decomposition ap-

proach wherein the overall efficiency is expressed

as a (weighted) sum of the efficiencies of the indi-

vidual stages. This approach can be applied un-

der both CRS and variable returns to scale (VRS)

assumptions. The status of one flexible measure

in two CRS and VRS environments in general

two-stage network structures may have different

results. In other words, a flexible measure is con-

sidered as input in CRS environment, whereas it

is selected as output in VRS environment.

The paper is organized as follows. In Section 2

we review the previous studies on flexible mea-

sures. Section 3 provides FNDEA models under

the CRS and VRS assumptions to evaluate the

performance of DMUo and to classify exible mea-

sures in general two-stage network structure. In

Section 4, numerical examples are used for clar-

ication. Finally, conclusions are given in Section

5.

2 Flexible measures

Cook and Zhu [5] proposed the following classi-

fier MILP program to determine the status of L

flexible measures:

max

s∑
r=1

uryro +

L∑
l=1

δlwlo

s.t:

s∑
r=1

uryrj + 2

L∑
l=1

δlwlj −
m∑
i=1

vixij −
L∑
l=1

γlwlj ≤ 0,

j = 1, . . . , n,

m∑
i=1

vixi0 +
L∑
l=1

γlwlo −
L∑
l=1

δlwlo = 1, (2.1)

0 ≤ δ1 ≤ Mdl, ∀l

δl ≤ γl ≤ δl +M (1− dl) , ∀l

dl ∈ {0, 1}, γl, δl ≥ 0, ∀l

ur ≥ 0, vi ≥ 0, ∀r, i.

For each L, a binary variable dl ∈ {0, 1} is intro-

duced to identify that factor l is an input,dl = 0

, or an output dl = 1 and M is a large positive

number.

3 The proposed FNDEA mod-
els

In this section new models under the CRS and

VRS assumption are suggested to evaluate the

performance of DMUo and to classify flexible

measures in general two-stage network struc-

tures. We consider a general two-stage net-

work structure shown in Figure 1 . Each

DMUj , (j = 1, . . . , n) has m inputs xij , (i =

1, . . . ,m) to the first stage and H outputs

y′hj , (h = 1, . . . , H) that leave the system. In

addition to these H outputs, the first stage has

K outputs zkj , (k = 1, . . . ,K) called intermedi-

ate measures or links that become inputs to the

second stage. The second stage has its own in-

puts x′tj , (t = 1, . . . , T ). The outputs from the

second stage are yrj(r = 1, . . . , s). Suppose also

that there exist L1 flexible measures to the first
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Table 1: Data in general two-stage network with flexible measures.

X1 X2 X3 Z1 Z2 Y ′1 Y’2 X’1 X’2 Y1 Y2 w1 w2

DMU01 22.3 13.2 54.6 110.1 66.1 21.8 44.6 18 31 13.3 12.5 22.02 17.73
DMU02 68.3 8.3 15.8 75.4 116.4 19.8 12 19.6 25.8 2.4 18.2 69.03 45.17
DMU03 52 19.2 31.2 94.3 59.9 47.3 47.4 11.5 22.5 2.3 36 48.53 21.21
DMU04 31.8 12 40.3 66.4 127.2 10.5 35.8 16.8 37.1 37 19.5 31.08 71.07
DMU05 95.3 12 29 108.9 52.3 15 22.5 14 27.2 15.8 36.7 30.45 28.56
DMU06 52.8 6.1 22.6 102.4 78.8 69.6 27 14.8 44.9 12.6 20.4 15.68 30.01
DMU07 50.5 9.3 48.7 124.6 120.6 52.2 49.8 5.9 38.5 9.5 20.5 34.49 11.58
DMU08 80.1 17.4 58.4 64.5 131.2 37.7 14.6 10.3 65.6 16.7 39.9 69.94 10.59
DMU09 53.9 14 36.9 129.8 122.1 60.9 24.1 11.9 49.5 16.8 15 14.7 53.98
DMU10 20.9 9.5 48.8 66.4 132.5 12.2 68.7 10.1 54.5 10 28.3 45.01 12.47
DMU11 82.5 7.1 16.8 71.9 138.9 47.7 60.7 5.6 19.1 19.7 33.6 79.87 38.93
DMU12 27 10.6 25.6 51.9 84.4 47.3 63.3 11 39.6 12.2 43.7 50.51 18.24
DMU13 49.6 10.7 20.6 125.5 97.3 15.3 32.6 17.7 38.9 18.9 24.7 79.38 31.99
DMU14 55.7 19.4 46.6 91.5 117.3 79 60.3 11.8 26.4 7.5 38.7 63.36 13.26
DMU15 55.1 18.2 52.5 90.1 61 12.2 24.9 17 33.5 17.2 43.9 19.15 33.7
DMU16 66.3 8 34.9 131.1 63.7 57 30.7 10.7 12.5 11.2 15.5 54.78 22.75
DMU17 93.3 6.3 43.5 53.5 133.9 38.6 32.1 13.4 45 19.7 15.4 21.17 15.2
DMU18 10.8 11.9 31.5 118.7 89.4 34.9 23.6 11 67.3 8 20.5 27.51 49.25
DMU19 98.5 6.8 21.3 75.4 133 28 28.9 16.1 26.7 9.5 20.3 56.83 13.9
DMU20 27.8 17.1 24.9 81 52.2 30.6 14.3 16.9 35.3 17.4 15.4 40.47 30.85
DMU21 42 7.2 59.7 98.4 147.5 29.2 39.4 14.8 42.3 10.7 44.5 35.18 56.28
DMU22 98.7 8.5 51 132.8 60.6 27.3 69.3 19.8 61.9 19.9 33.3 34.6 62.91
DMU23 53.5 15.6 25.7 93.5 121.6 31.3 34.6 19.7 56.5 13 47.6 8.2 53.92
DMU24 25.1 16.7 56.8 81.6 145.6 62.1 74.8 11.7 17.4 77.6 29.9 20.51 29.87
DMU25 96.3 15.3 45.1 120.5 133.6 25.7 56.8 19.7 16.9 14.9 38.5 51.24 16.05
DMU26 97.9 6.8 53.1 103.8 89.8 45.7 49.6 17.7 56.3 44.9 12.5 68.16 17.18
DMU27 37.4 15 15.5 63.1 128.2 53.1 22 5.5 57.7 5.8 11.8 26.16 54.89
DMU28 70 12.8 21.5 126.1 97.2 28.3 44.3 11.4 56.7 4.9 47.2 56.6 48.17
DMU29 24 5.8 33.8 91.2 82.6 73.7 76.2 19.4 42.4 7.8 10.3 64.31 12.21
DMU30 48.6 18.6 55.9 126 73.8 15.4 57.6 17.1 76.2 13.2 25.6 31.26 65.47

stage w1
l1j

, (l1 = 1, . . . , L1) and L2 flexible mea-

sures to the second stage w2
l2j

, (l2 = 1, . . . , L2)

whose input/output statuses are not known, some

DMUs may use these measures as inputs and

other DMUs may use them as outputs. Let γ1l1 be

the weight for each measure l1 to the first stage

and γ2l2 be the weight for each measure l2 to the

second stage.

3.1 Under the CRS assumption

We propose the following mathematical program-

ming model for evaluating the overall efficiency

and determining the status of exible measures

in general two-stage network structure under the

CRS assumption.

θ∗o = max



w1

K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho +

L1∑
l1=1

d1l1γ
1
l1w

1
l10

m∑
i=1

vixio +

L1∑
l1=1

(
1− d1l1

)
γ1l1w

1
l10

+ w2

 s∑
r=1

uryro +

L2∑
l2=1

d2l2γ
2
l2w

2
l2o

/
 K∑

k=1

ηkzko +
T∑
t=1

v′tx
′
to +

L2∑
l2=1

(
1− d2l2

)
γ2l2w

2
l20

+

L1∑
l1=1

d1l1γ
1
l1w

1
l1o

  (3.2)
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Table 2: The results obtained from the models (3.4), (3.5) and (3.6) under CRS.

DMU θ∗o θ1∗o θ2∗o d1∗ d2∗

1 0.7241 1 0.2311 0 0
2 0.9617 0.9617 0.745 1 0
3 0.9678 0.8086 0.9679 0 1
4 0.997 0.9462 1 0 1
5 0.8325 0.714 0.8782 1 0
6 0.9999 1 0.5028 0 1
7 0.8322 0.883 0.7714 1 0
8 0.9996 0.5803 0.9999 1 0
9 0.9636 1 0.8444 0 1
10 0.9999 1 0.4743 1 0
11 1 1 1 0 1
12 1 1 1 1 0
13 0.9999 1 0.5081 1 0
14 0.9998 0.7321 1 0 1
15 0.8324 0.5787 0.9999 1 0
16 0.8928 1 0.8927 0 1
17 0.8419 1 0.4289 1 0
18 0.9999 1 0.8584 0 1
19 0.7429 0.743 0.4018 1 0
20 0.7555 0.7393 0.7974 0 1
21 0.9931 1 0.9851 0 1
22 1 1 1 0 0
23 1 1 0.935 1 0
24 1 1 1 1 0
25 0.9999 0.7673 0.9999 0 1
26 0.9998 0.9646 0.9999 0 1
27 1 1 1 1 0
28 0.9987 1 0.7654 0 1
29 0.9998 1 0.2453 0 1
30 0.8131 0.8746 0.7272 0 0

s.t:

K∑
k=1

ηkzkj +

H∑
h=1

u′hy
′
hj +

L1∑
l1=1

d1l1γ
1
l1w

1
l1j

m∑
i=1

vixij +

L1∑
l1=1

(
1− d1l1

)
γ1l1w

1
l1j

≤ 1,

j = 1, . . . , n, s∑
r=1

uryrj +

L2∑
l2=1

d2l2γ
2
l2w

2
l2j

/
 K∑

k=1

ηkzkj +

T∑
t=1

v′tx
′
ty +

L2∑
l2=1

(
1− d2l2

)
γ2l2w

2
l22

+

L1∑
l1=1

d1l1γ
1
l1w

1
l1,j

 ≤ 1,

j = 1, . . . , n

d1l1 ∈ {0, 1}, d2l2 ∈ {0, 1}, γ1l1 ≥ ε, γ2l2 ≥ ε, ∀l1, l2

ηk ≥ ε, vi ≥ ε, ur ≥ ε,

k = 1, . . . ,K; i = 1, . . . ,m; r = 1, . . . , s;

v′t ≥ ε, u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H.

For each L1 and L2, binary variables d1l1 ∈ {0, 1}
and d2l2 ∈ {0, 1} are introduced to identify that

factor l1 and l2 are inputs to the first and second

stage, d1l1 = 0 and d2l2 = 0 or outputs to the first

and second stage d1l1 = 1 and d2l2 = 1. If d1l1 = 1

then the factor l1 is considered as an output to

the first stage and as an input to the second stage

so the factor l1 is an intermediate measure. If

d2l2 = 0 then the factor l2 is an input to the second

stage.
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Table 3: The results obtained from the models (3.8),(3.9) and (3.10) under VRS

DMU θ∗o θ1∗o θ2∗o d1∗ d2∗

1 1 1 1 0 0
2 0.9999 1 0.7965 1 1
3 0.9871 0.8218 0.9872 0 0
4 0.9999 0.9663 0.9999 0 1
5 0.8515 0.5636 0.9117 0 0
6 0.9999 1 0.7359 1 1
7 0.8799 0.7654 0.9876 0 0
8 0.9999 0.7613 0.9999 1 0
9 0.9808 1 0.903 0 1
10 1 1 1 0 0
11 1 1 1 1 1
12 1 1 1 1 1
13 0.9999 1 0.6903 1 1
14 1 1 1 0 0
15 0.9998 0.7499 0.9999 0 0
16 0.8765 0.8987 0.5678 1 1
17 0.9876 1 0.98 0 0
18 1 1 1 1 1
19 0.9956 0.8767 0.6756 0 0
20 0.9662 0.9748 0.8697 1 0
21 1 1 1 1 1
22 1 1 1 1 1
23 1 1 1 0 0
24 1 1 1 1 1
25 0.9745 0.9856 0.8854 1 1
26 0.9878 0.6754 0.9570 1 0
27 1 1 1 1 1
28 1 1 1 1 1
29 0.8996 0.7658 0.8999 1 0
30 0.8869 1 0.8869 0 1

Model (3.2) is clearly nonlinear. It can, how-

ever, be linearized by way of the change of vari-

ables d1l1γ
1
l1
= δ1l1 and d2l2γ

2
l2
= δ2l2 for each l1 and

l2 and imposing the following constraints.

0 ≤ δ1l1 ≤ Md1l1 ,

δ1l1 ≤ γ1l1 ≤ δ1l1 +M
(
1− d1l1

)
l1 = 1, . . . , L1

0 ≤ δ2l2 ≤ Md2l2 ,

δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)
l2 = 1, . . . , L2

Note that if d1l1 = 1 and d2l2 = 1 then γ1l1 = δ1l1
and γ2l2 = δ2l2 and if d1l1 = 0 and d2l2 = 0 then δ1l1 =

0 and δ2l2 = 0. In these constraints M is a large

positive number. In this model, w1 and w2 are

weights satisfying w1 + w2 = 1. We let

w =

m∑
i=1

vixio +

L1∑
l1=1

γ1l1w
1
l10−

L1∑
l1=1

δ1l1w
1
l10 +

K∑
k=1

ηkzko +

T∑
t=1

v′tx
′
to+

L2∑
l2=1

γ2l2w
2
l20 −

L2∑
l2=1

δ2l2w
2
l20 +

L1∑
l1=1

δ1l1w
1
l1o,

w1 =

m∑
i=1

vixio +

L1∑
l1=1

γ1l1w
1
l10 −

L1∑
l1=1

δ1l1w
1
l1o

W
,
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Figure 1: General two-stage network struc-
ture

and

w2 =

 K∑
k=1

ηkzko +

T∑
t=1

v′tx
′
to +

L2∑
l2=1

γ2l2w
2
l20

−
L2∑
l2=1

δ2l2w
2
l20 +

L1∑
l1=1

δ1l1w
1
l1o

/(w). (3.3)

We, therefore, have the following mixed integer

linear program Model (3.4):

θ∗o = max
K∑
k=1

ηkzko +
H∑

h=1

u′hy
′
ho +

L1∑
l1=1

δ1l1w
1
l10

+

s∑
r=1

uryro +

L2∑
l2=1

δ2l2w
2
l2o

s.t.

m∑
i=1

vixio +

L1∑
l1=1

γ1l1w
1
l1o −

L1∑
l1=1

δ1l1w
1
l1o

+

K∑
k=1

ηkzko +

T∑
t=1

v′tx
′
to +

L2∑
l2=1

γ2l2w
2
l2o

−
L2∑
l2=1

δ2l2w
2
l2o +

L1∑
l1=1

δ1l1w
1
l1o = 1 (3.4)

K∑
k=1

ηkzkj +
H∑

h=1

u′hy
′
hj + 2

L1∑
l1=1

δ1l1w
1
l1j −

m∑
i=1

vixij

−
L1∑
l1=1

γ1l1w
1
l1j ≤ 0, j = 1, . . . , n,

s∑
r=1

uryrj + 2

L2∑
l2=1

δ2l2w
2
l2j −

K∑
k=1

ηkzkj −
T∑
t=1

v′tx
′
tj

−
L2∑
l2=1

γ2l2w
2
l2j −

L1∑
l1=1

δ1l1w
1
l1j ≤ 0,

j = 1, . . . , n, 0 ≤ δ1l1 ≤ Md1l1 ,

δ1l1 ≤ γ1l1 ≤ δ1l1 +M
(
1− d1l1

)
l1 = 1, . . . , L1

0 ≤ δ2l2 ≤ Md2l2 , δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)
l2 = 1, . . . , L2, d

1
l1 ∈ {0, 1}, d2l2 ∈ {0, 1}, γ1l1 ≥ ε,

δ1l1 ≥ ε, γ2l2 ≥ ε, δ2l2 ≥ ε,∀l1, l2, ηk ≥ ε, vi ≥ ε,

ur ≥ ε, k = 1, . . . ,K; i = 1, . . . ,m; r = 1, . . . , s;

v′t ≥ ε, u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H

Definition 3.1. DMUo is overall efficient if and

only if θ∗o = 1. θ1∗o is determined by solving the

following LP model (3.5).

θ1∗o = max

K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho +

L1∑
l1=1

δ1l1w
1
l1o

s.t:

m∑
i=1

vixio +

L1∑
l1=1

γ1l1w
1
l1o −

L1∑
l1=1

δ1l1w
1
l1o = 1 (3.5)

θ∗o = (1− θ∗o)

K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho+

L1∑
l1=1

δ1l1w
1
l1o +

s∑
r=1

uryro + (1 + θ∗o)

L2∑
l2=1

δ2l2w
2
l2o

−θ∗o

L2∑
l2=1

γ2l2w
2
l20 − θ∗o

T∑
t=1

v′tx
′
to − θ∗o

L1∑
l1=1

δ1l1w
1
l1o

K∑
k=1

ηkzkj +

H∑
h=1

u′hy
′
hj + 2

L1∑
l1=1

δ1l1w
1
l1j

−
m∑
i=1

vixij −
L1∑
l1=1

γ1l1w
1
l1j ≤ 0, j = 1, . . . , n

s∑
r=1

uryrj + 2

L2∑
l2=1

δ2l2w
2
l2j −

K∑
k=1

ηkzkj
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−
T∑
t=1

v′tx
′
tj −

L2∑
l2=1

γ2l2w
2
l2j −

L1∑
l1=1

δ1l1w
1
l1j ≤ 0,

j = 1, . . . , n, 0 ≤ δ1l1 ≤ Md1l1 ,

δ1l1 ≤ γ1l1 ≤ δ1l1 +M
(
1− d1l1

)
, l1 = 1, . . . , L1

0 ≤ δ2l2 ≤ Md2l2 , δ
2
l2 ≤ γ2l2 ≤ δ2l2 +M

(
1− d2l2

)
l2 = 1, . . . , L2, d

1
l1 ∈ {0, 1}, d2l2 ∈ {0, 1}

γ1l1 ≥ 0, δ1l1 ≥ 0, γ2l2 ≥ 0, δ2l2 ≥ 0 ∀l1, l2

ηk ≥ ε, vi ≥ ε, ur ≥ ε, k = 1, . . . ,K;

i = 1, . . . ,m; r = 1, . . . , s; v′t ≥ ε,

u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H.

Definition 3.2. DMUo is efficient to the first

stage if and only if θ1∗o = 1

θ2∗o is computed by

θ2∗o =
(
θ∗o − w∗

1θ
1∗
o

)
/w∗

2,

where w∗
1 and w∗

2 are the weights obtained from

model (3.4) by way of (3.3). θ2∗o can also be de-

termined by solving the following LP model (3.6)

θ2∗o = max

s∑
r=1

uryro +

L2∑
l2=1

δ2l2w
2
l2o

s.t.

K∑
k=1

ηkzko +

T∑
t=1

v′tx
′
to +

L2∑
l2=1

γ2l2w
2
l2o

−
L2∑
l2=1

δ2l2w
2
l2o +

L1∑
l1=1

δ1l1w
1
l1o = 1 (3.6)

θ∗o =

K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho+

(1 + θ∗o)

L1∑
l1=1

δ1l1w
1
l1o +

s∑
r=1

uryro+

L2∑
l2=1

δ2l2w
2
l2o − θ∗o

m∑
i=1

vixio − θ∗o

L1∑
l1=1

γ1l1w
1
l1o

K∑
k=1

ηkzkj +

H∑
h=1

u′hy
′
hj + 2

L1∑
l1=1

δ1l1w
1
l1j−

m∑
i=1

vixij −
L1∑
l1=1

γ1l1w
1
l1j ≤ 0, j = 1, . . . , n

s∑
r=1

uryrj + 2

L2∑
l2=1

δ2l2w
2
l2j −

K∑
k=1

ηkzkj−

T∑
t=1

v′tx
′
tj −

L2∑
l2=1

γ2l2w
2
l2j −

L1∑
l1=1

δ1l1w
1
l1j ≤ 0,

j = 1, . . . , n, 0 ≤ δ1l1 ≤ Md1l1 ,

δ1l1 ≤ γ1l1 ≤ δ1l1 +M
(
1− d1l1

)
l1 = 1, . . . , L1, 0 ≤ δ2l2 ≤ Md2l2 ,

δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)
l2 = 1, . . . , L2d

1
l1 ∈ {0, 1}, d2l2 ∈ {0, 1}

γ1l1 ≥ ε, δ1l1 ≥ ε, γ2l2 ≥ ε, δ2l2 ≥ ε ∀l1, l2
ηk ≥ ε, vi ≥ ε, ur ≥ ε, k = 1, . . . ,K;

i = 1, . . . ,m; r = 1, . . . , s, v′t ≥ ε,

u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H

Definition 3.3. DMUo is efficient to the second

stage if and only if θ2∗o = 1

θ1∗o can then be computed by

θ1∗o =
(
θ∗o − w∗

2θ
2∗
o

)
/w∗

1

3.2 Under the VRS assumption

We propose the following mathematical program-

ming model for evaluating the overall efficiency

and determining the status of flexible measures in

general two-stage network structure under VRS

assumption.

θ∗o = max

 w1

(
K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho

+

L1∑
l1=1

d1l1γ
1
l1w

1
l10 + uA

/( m∑
i=1

vixio

+

L1∑
l1=1

(
1− d1l1

)
γ1l1w

1
l1o


+w2

 s∑
r=1

uryro +

L2∑
l2=1

d2l2γ
2
l2w

2
l2o + uB

/
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(
K∑
k=1

ηkzko+

T∑
t=1

v′tx
′
to

L2∑
l2=1

(
1− d2l2

)
γ2l2w

2
l2o

+

L1∑
l1=1

d1l1γ
1
l1w

1
l1o


 (3.7)

S.t

K∑
k=1

ηkzkj +

H∑
h=1

u′hy
′
hj +

L1∑
l1=1

d1l1γ
1
l1w

1
l1j + uA

m∑
i=1

vixij +

L1∑
l1=1

(
1− d1l1

)
γ1l1w

1
l1j

≤ 1, j = 1, . . . , n

 s∑
r=1

uryrj +

L2∑
l2=1

d2l2γ
2
l2w

2
l2j + uB

/
 K∑

k=1

ηkzkj +

T∑
t=1

v′tx
′
tj +

L2∑
l2=1

(
1− d2l2

)
γ2l2w

2
l2j

+

L1∑
l1=1

d1l1γ
1
l1w

1
l1j

 ≤ 1, j = 1, . . . , n

d1l1 ∈ {0, 1}, d2l2 ∈ {0, 1}, γ1l1 ≥ ε,

γ2l2 ≥ ε ∀l1, l2
ηk ≥ ε, vi ≥ ε, ur ≥ ε, k = 1, . . . ,K;

i = 1, . . . ,m; r = 1, . . . , s, v′t ≥ ε,

u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H

u1, u2 free in sign.

Model (3.7) is clearly nonlinear. It can, how-

ever, be linearized by way of the change of vari-

ables d1l1γ
1
l1
= δ1l1 and d2l2γ

2
l2
= δ2l2 for each l1 and

l2 and imposing the following constraints.

0 ≤ δ1l1 ≤ Md1l1 ,

δ1l1 ≤ γ1l1 ≤ δ1l1 +M
(
1− d1l1

)
l1 = 1, . . . , L1

0 ≤ δ2l2 ≤ Md2l2 ,

δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)

l2 = 1, . . . , L2

Note that if d1l1 = 1 and d2l2 = 1 then γ1l1 = δ1l1
and γ2l2 = δ2l2 and if d1l1 = 0 and d2l2 = 0 then δ1l1 =

0 and δ2l2 = 0. In these constraints M is a large

positive number.

By setting the weights in (3.3) and after do-

ing Charnes and Cooper’s transformation, Model

(3.7) is transformed into the following mixed in-

teger linear program Model (3.8).

θ∗o =

max

K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho +

L1∑
l1=1

δ1l1w
1
l10

+ uA +

s∑
r=1

uryro +

L2∑
l2=1

δ2l2w
2
l20 + uB (3.8)

s.t.

m∑
i=1

vixio +

L1∑
l1=1

γ1l1w
1
l10 −

L1∑
l1=1

δ1l1w
1
l10+

K∑
k=1

ηkzko +

T∑
t=1

v′tx
′
to +

L2∑
l2=1

γ2l2w
2
l20

−
L2∑
l2=1

δ2l2w
2
l2o +

L1∑
l1=1

δ1l1w
1
l1o = 1

K∑
k=1

ηkzkj +
H∑

h=1

u′hy
′
hj + 2

L1∑
l1=1

δ1l1w
1
l1j−

m∑
i=1

vixij −
L1∑
l1=1

γ1l1w
1
l1j + uA ≤ 0, j = 1, . . . , n,

s∑
r=1

uryrj + 2

L2∑
l2=1

δ2l2w
2
l2j −

K∑
k=1

ηkzkj−

T∑
t=1

v′txtj −
L2∑
l2=1

γ2l2w
2
l2j −

L1∑
l1=1

δ1l1w
1
l1j + uB ≤ 0,

j = 1, . . . , n, 0 ≤ δ1l1 ≤ Md1l1 ,

δ1l1 ≤ γ1l1 ≤ δ1l1 +M
(
1− d1l1

)
l1 = 1, . . . , L1

0 ≤ δ2l2 ≤ Md2l2 ,

δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)
l2 = 1, . . . , L2,

d1l1 ∈ {0, 1}, d2l2 ∈ {0, 1} γ1l1 ≥ ε,
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δ1l1 ≥ ε, γ2l2 ≥ ε, δ2l2 ≥ ε ∀l1, l2

ηk ≥ ε, vi ≥ ε, ur ≥ ε, k = 1, . . . ,K;

i = 1, . . . ,m; r = 1, . . . , s

v′t ≥ ε, u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H;

u1, u2 free in sign.

Definition 3.4. DMUo is overall efficient if and

only if θ∗o = 1

θ1∗o can be determined by solving the following

LP Model (3.9):

θ1∗o =

max

K∑
k=1

ηkzko +

H∑
h=1

u′hy
′
ho +

L1∑
l1=1

δ1l1w
1
l10 + uA

s.t.

m∑
i=1

vixio +

L1∑
l1=1

γ1l1w
1
l1o −

L1∑
l1=1

δ1l1w
1
l1o = 1 (3.9)

θ∗o = (1− θ∗o)
K∑
k=1

ηkzko +
H∑

h=1

u′hy
′
ho +

L1∑
l1=1

δ1l1w
1
l10

+
s∑

r=1

uryro + (1 + θ∗o)

L2∑
l2=1

δ2l2w
2
l2o − θ∗o

L2∑
l2=1

γ2l2w
2
l2o

−θ∗o

T∑
t=1

v′tx
′
to − θ∗o

L1∑
l1=1

δ1l1w
1
l1o + uA + uB

K∑
k=1

ηkzkj +
H∑

h=1

u′hy
′
hj + 2

L1∑
l1=1

δ1l1w
1
l1j−

m∑
i=1

vixij −
L1∑
l1=1

γ1l1w
1
l1j + uA ≤ 0, j = 1, . . . , n

s∑
r=1

uryrj + 2

L2∑
l2=1

δ2l2w
2
l2j −

K∑
k=1

ηkzkj −
T∑
t=1

v′tx
′
tj−

L2∑
l2=1

γ2l2w
2
l2j −

L1∑
l1=1

δ1l1w
1
l1j + uB ≤ 0, j = 1, . . . , n

0 ≤ δ1l1 ≤ Md1l1 , δ
1
l1 ≤ γ1l1 ≤ δ1l1 +M

(
1− d1l1

)
,

l1 = 1, . . . , L1, 0 ≤ δ2l2 ≤ Md2l2 ,

δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)
l2 = 1, . . . , L2,

d1l1 ∈ {0, 1}, d2l2 ∈ {0, 1} γ1l1 ≥ ε, δ1l1 ≥ ε,

γ2l2 ≥ ε, δ2l2 ≥ ε ∀l1, l2ηk ≥ ε, vi ≥ ε, ur ≥ ε,

k = 1, . . . ,K; i = 1, . . . ,m; r = 1, . . . , s;

v′t ≥ ε, u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H;

u1, u2 free in sign.

Definition 3.5. DMUois efficient to the first

stage if and only if θ∗o = 1.

θ2∗o can then be computed by θ2∗o =(
θ∗o − w∗

1θ
1∗
o

)
/w∗

2, where w∗
1 and w∗

2 are the

weights obtained from model (3.8) by way of

(3.3).

θ2∗o can also be determined by solving the fol-

lowing LP Model (3.10) :

θ2∗o = max
s∑

r=1

uryro +

L2∑
l2=1

δ2l2w
2
l2o + uB

s.t.

K∑
k=1

ηkzko +
T∑
t=1

v′tx
′
to +

L2∑
l2=1

γ2l2w
2
l2o−

L2∑
l2=1

δ2l2w
2
l2o +

L1∑
l1=1

δ1l1w
1
l1o = 1 (3.10)

θ∗o =

K∑
k=1

ηkZko +

H∑
h=1

u′hy
′
ho +

s∑
r=1

uryro+

(1 + θ∗o)

L1∑
l1=1

δ1l1w
1
l10 +

L2∑
l2=1

δ2l2w
2
l2o−

θ∗o

m∑
i=1

vixio − θ∗o

L1∑
l1=1

γ1l1w
1
l1o + uA + uB

K∑
k=1

ηkzkj +

H∑
h=1

u′hy
′
hj

+ 2

L1∑
l1=1

δ1l1w
1
l1j −

m∑
i=1

vixij

−
L1∑
l1=1

γ1l1w
1
l1j + uA ≤ 0, j = 1, . . . , n

s∑
r=1

uryrj + 2

L2∑
l2=1

δ2l2w
2
l2j −

K∑
k=1

ηkzkj −
T∑
t=1

v′tx
′
tj−

L2∑
l2=1

γ2l2w
2
l2j −

L1∑
l1=1

δ1l1w
1
l1j + uB ≤ 0, j = 1, . . . , n
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0 ≤ δ1l1 ≤ Md1l1 , δ
1
l1 ≤ γ1l1 ≤ δ1l1 +M

(
1− d1l1

)
l1 = 1, . . . , L1, 0 ≤ δ2l2 ≤ Md2l2 ,

δ2l2 ≤ γ2l2 ≤ δ2l2 +M
(
1− d2l2

)
l2 = 1, . . . , L2,

d1l1 ∈ {0, 1}, d2l2 ∈ {0, 1}, γ1l1 ≥ ε, δ1l1 ≥ ε,

γ2l2 ≥ ε, δ2l2 ≥ ε ∀l1, l2

ηk ≥ ε, vi ≥ ε, ur ≥ ε, k = 1, . . . ,K;

i = 1, . . . ,m; r = 1, . . . , s;

v′t ≥ ε, u′h ≥ ε, t = 1, . . . , T ;h = 1, . . . , H;

u1, u2 free in sign.

Definition 3.6. DMUo is efficient to the sec-

ond stage if and only if θ2∗o = 1

θ1∗o can then be computed by

θ1∗o = (θ∗o−w∗
2θ

2∗
o )/w∗

1

4 Numerical examples

In this section, we apply the proposed models in

general two-stage network structure under CRS

and VRS assumptions for evaluating the over-

all efficiency and classifying flexible measure to

the data sets shown in Table 1. These data

are random. There are 30 DMUs, three inputs

to the first stage (X1, X2, X3), two outputs to

the first stage (Y ′1, Y ′2), that leave the sys-

tem, two intermediate measures (Z1, Z2), two

final outputs from the second stage (Y 1, Y 2).

The second stage has its own inputs (X ′1, X ′2).

There is one flexible measure w1 to the first

stage and one flexible measure w2 to the sec-

ond stage. The results of the models (3.4), (3.5)

and (3.6) in general two-stage network structure

under CRS for classifying flexible measures are

shown in Table 2. As seen in Table 2, the DMU

11, 12, 22, 23, 24 and 27 are overall efficient and

the other DMUs are non-efficient. The DMU

1, 6, 9, 10, 11, 12, 13, 16, 17, 18, 21, 22, 23, 24, 27,28

and 29 are efficient to the first stage and the DMU

4, 11, 12, 14, 22, 24 and 27 are efficient to the sec-

ond stage. In these models, 13 DMUs select the

flexible measure to the first stage as an output

measure
(
d1∗l1 = 1

)
and 17 DMUs select it as an

input measure
(
d1∗l1 = 0

)
and 14 DMUs select the

flexible measure to the second stage as an out-

put measure
(
d2∗l2 = 1

)
and 16 DMUs select it as

an input measure
(
d2∗l2 = 0

)
. Most DMUs select

the flexible measure w1 to the first stage as an

input measure and select the flexible measure w2

to the second stage as an input measure in CRS

environment. Hence the network system selects

the flexible measure w1 to the first stage as an in-

put measure and selects the flexible measure w2

to the second stage as an input measure in CRS

environment.

The results of the models (3.8), (3.9) and

(3.10) in general two-stage network structure

under VRS for classifying flexible measures

are shown in Table 3. As seen in Table

3, the DMU 1, 10, 11, 12, 14, 18, 21, 22, 23, 24, 27

and 28 are overall efficient and the other

DMUs are non-efficient. The DMU 1, 2, 6, 9, 10,

11, 12, 13, 14, 17, 18, 21, 22, 23, 24, 27, 28 and 30

are efficient to the first stage and the DMU

1, 10, 11, 12, 14, 18, 21, 22, 23, 24, 27 and 28 are ef-

ficient to the second stage. In these models, 17

DMUs select the flexible measure w1 to the first

stage as an output measure
(
d1∗l1 = 1

)
and 13

DMUs select it as an input measure
(
d1∗l1 = 0

)
and

16 DMUs select the flexible measure w2 to the

second stage as an output measure
(
d2∗l2 = 1

)
and

14 DMUs select it as an input measure
(
d2∗l2 = 0

)
.

Most DMUs select the flexible measure w1 to the

first stage as an output measure and select the

flexible measure w2 to the second stage as an

output measure in VRS environment. Hence the

network system selects the flexible measure w1 as

an output measure to the first stage and as an

input measure to the second stage so the flexible

measure w1 is an intermediate measure. But the

network system selects the flexible measure w2 to

the second stage as an output measure.

The status of one flexible measure in two CRS

and VRS environments in general two-stage net-

work may have different results. For examples

the DMU 6, 11, 16, 18, 20, 21, 22, 25, 26, 28 and 29

select the flexible measure w1 to the first stage

as an output measure in VRS environment but,

in CRS environment select the flexible measure

w1 to the first stage as an input measure. More-

over, the DMU 2, 12, 13, 22, 24, 27 and 30 select
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the flexible measure w2 to the second stage as an

output measure in VRS environment but, in CRS

environment select the flexible measure w2 to the

second stage as an input measure. On the other

hand the network system selects the flexible mea-

sures w1, w2 to the first and second stage as input

measures in CRS environment but in VRS envi-

ronment the network system selects the flexible

measure w1 as an intermediate measure and se-

lects the flexible measure w2 to the second stage

as an output measure.

5 Conclusion

In conventional DEA models it is assumed that

each measure has to be identified whether it is an

input or output. Nevertheless, in some cases flex-

ible measures can exist which can play the role of

either an input or output in two-stage network.

We propose FNDEA models to evaluate the per-

formance of and to classify exible measures in

which each one of the flexible measures is treated

as either input or output to maximize the network

overall efficiency of the DMU under evaluation in

general two-stage network structure. The cur-

rent paper develops an additive efficiency decom-

position approach wherein the overall efficiency

is expressed as a (weighted) sum of the efficien-

cies of the individual stages. This approach can

be applied under both constant returns to scale

(CRS) and variable returns to scale (VRS) as-

sumptions. The status of one flexible measure in

two CRS and VRS environments may have differ-

ent results. In other words, a flexible measure is

considered as input in CRS environment, whereas

it is selected as output in VRS environment. We

believe that our proposed models can be modified

into multi-stage models and can be developed for

fuzzy flexible measures and interval flexible mea-

sures in two-stage network structures. Future re-

searchers can extend these improvements.
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