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Abstract

In this article, a fast numerical approach is proposed for finding the solution of nonlinear delay
differential equations by using hybrid Taylor and Block-pulse Functions (HTBPFs). Firstly, some
features of hybrid functions which are a combination of Block-Pulse functions and Taylor polynomials
on the interval are introduced [0, 1) . In this spectral approach, the operational matrices of stretch,
derivation and coefficient matrices are utilized. Based on these piecewise functions, we transfer delay
differential equations (DDEs) into a system of linear or nonlinear algebraic equations. Also, in this
numerical approach, it is shown that these operational matrices are sparse which is an effective
advantage of the fast implementation of numerical computation. Then, error analysis is done. Finally,
three examples are solved to show that the new proposed approach is comparable with other methods
of high accuracy and efficiency.

Keywords : Delay differential equations; Hybrid functions; Operation matrix; Taylor function; Block-
Pulse function; Coefficient matrix.
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1 Preliminaries and problem
formulation

I
n recent years, extensive scientific research has
been done on DDEs. These equations play

an important role in the modeling and analyz-
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ing of many problems that arise in the fields
of population dynamics, physiological, infections
and chemical kinetics [1, 4, 5, 28]. The first
delay models in engineering were introduced by
Von Schlippe and Dietrich for modelling wheel
Shimmy [24], and Minorsky for ship stabilization
[20]. Special calculation and theorems for DDEs
are quite well-developed by publishing articles,
text books, useful software packages. Some of
them are shown in [6, 22, 26]. Time delay is
also a key element of the population of machine
tool chatter [8]. Most of all sophisticated models
have been appeared for turning and milling ap-
plications in the last decade [2]. Therefore, the
application and performance of these equations
in different fields of science and engineering like
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transmission lines, communication networks, bio-
logical models and population dynamics [18, 27]
have caused many authors and researchers to be
interested in solving DDEs with various methods,
such as the process of solutions the material, en-
ergy balances and electrodynamics are presented
by a delay dynamical system including delayed
states [10, 17].

Since DDEs are used in different fields and
many scientists are interested in them, the no-
tion of analytical and numerical method has been
used to solve these equations. For example, au-
thors of [14] presented a computer algebra system
for solving DDEs. In [3], M. Behroozifar and S.
A. Yosefi solved DDEs by using operational ma-
trices of hybrid Block-Pulse function and Bern-
stein. Musa Cakir et al. [7] have applied Ado-
mian decomposition method and the differential
transform method for solving multi-pantograph
DDEs. Also, researchers of [31, 32] employed a
direct method for solving time-varying delay sys-
tems and linear delay differential equations. Also,
M.S. Hafshejani et al. in [13] obtained numerical
solution of DDE using Legendre wavelet method.
The main purpose of this paper is to express
a new spectral approach based on HTBPFs for
solving DDE of the from

d

dt
y(t) = p(t) y(

t

λ
) + q(t)y(t), 0 < t ≤ tf

y(0) = y0,
(1.1)

where p, q are known continuous functions on
I (tf ) := [0, tf ] and λ > 1 is stretched argument
that plays an important role in modeling with
DDEs.
This paper is organized as follows:
In Section 2, some preliminaries and basic defini-
tions of the HTBPFs are given. Section 3 is de-
voted to introduce the operational matrices such
as stretch, product and derivative of HTBPFs.
In Section 4, a numerical approach is proposed to
solve problem (1.1) using the results obtained for
the first time. Section 5 has been estimated the
error analysis of our proposed technique. In Sec-
tion 6, the scheme is applied on three examples.
Also some graphs and tables are presented to
show the applicability and accuracy of our tech-
nique. Finally, in Section 7 the conclusion of this

paper is presented.

2 The HTBPFs and Their
Properties

In this section, we describe the important def-
inition and attributes that are required for the
computation and implementation of the new nu-
merical method.

Definition 2.1. A set {bi (t) : i = 1, 2, . . . ,m} of
Block-Pulse functions are defined on [0, 1) by [9].

bi(t) =

 1,
i− 1

m
≤ t <

i

m
,

0, otherwise.
(2.2)

Also, these piecewise functions are disjoint and
orthogonal. Also, we have bi (t) bj (t) = δijbi(t).
By considering Taylor polynomials Tm (t) = tm

on the interval [0, 1], the HTBPFs can be pre-
sented as follows.

Definition 2.2. For m = 0, 1, . . . ,M − 1 and
n = 1, 2, ..., N , the orthogonal set of HTBPFs
b (n,m, t) are defined on [0, 1) as

b(n,m, t) =

Tm(Nt− (n− 1)),
n− 1

N
≤ t <

n

N
,

0, otherwise.

(2.3)

On the other hand, this Hybrid functions can be
expressed in the following way. The piecewise
function for fixed a ∈ [0, 1) is defined as follows

Ua(t) =

{
Tm(Nt− (n− 1)), t ≥ a,

0, t < a,
(2.4)

where t ∈ [0, 1). From Equation (2.4), one can
write

Un−1
N

(t) =


Tm(Nt− (n− 1)), t ≥ n− 1

N
,

0, t <
n− 1

N
,

(2.5)
and

U n
N
(t) =

Tm(Nt− (n− 1)), t ≥ n

N
,

0, t <
n

N
.

(2.6)

Using functions Un−1
N

(t), U n
N
(t) yields

b(n,m, t) = Un−1
N

(t)− U n
N
(t) . (2.7)
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2.1 Function approximation

In this section, an arbitrary function f ∈
CM [0, 1] may be approximated in terms of
HTBPFs as follows

f (t) =

∞∑
n=1

∞∑
m=0

cnmbnm (t) . (2.8)

Here, coefficient cnm can be calculated in two
ways

cnm =
⟨f, bnm⟩

⟨bnm, bnm⟩
, (2.9)

where m = 0, 1, . . . ,M − 1, n = 1, 2, . . . , N, and
⟨., .⟩ denotes the inner product. Coefficient cnm
can be obtained as

cnm =
1

Nmm!

[
dmf (t)

dtm

]
t=(n−1

N )
. (2.10)

Therefore, the function f can be estimated by
truncating the infinite series in (2.8) as [19]

f (t) ≃
N∑

n=1

M−1∑
m=0

cn mbn m (t) = CTB(t), (2.11)

where

C = [c10, . . . , c1(M−1), c20, c21, . . . ,

c2(M−1), . . . , cN0, cN1, . . . , cN(M−1)]
T ,
(2.12)

and

B(t) = [b10(t), . . . , b1(M−1)(t), b20(t), . . . ,

b2(M−1)(t), . . . , bN0(t), . . . , bN(M−1)(t)]
T .

(2.13)

3 Operational matrices of
HTBPFs

In this part of the study, operational matrices
stretch and derivative that play an important
role in simplifying types of DDEs and the
implementation of the proposed framework are
introduced.
The operational matrix of derivative D is ex-
pressed by

d

dt
B (t) ≃ DB (t) , (3.14)

where d
dtbnm(t) is approximated by

N∑
i=1

M−1∑
j=0

cij
(n,m)bij (t) and,

cij
(n,m) = 1

Njj!

[
dj

dtj

(
d
dtbnm (t)

)]
t= i−1

N

, (3.15)

where i, n = 1, ..., N and j,m = 0, ...,M − 1. For
example, for N = 2, M = 3

D =



0 0 0 0 0 0
2 0 0 0 0 0
2 4 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 2 4 0

 .

Also, stretch operational matrix of HTBPFs is
defined as matrix S satisfying in the relation

B

(
t

λ

)
≃ SB (t) , (3.16)

here, vector B( t
λ) can be written as

B

(
t

λ

)
= [b10(

t

λ
), . . . , b1(M−1)(

t

λ
), b20(

t

λ
), . . . ,

b2(M−1)(
t

λ
), . . . , bN0(

t

λ
), . . . , bN(M−1)(

t

λ
)]T .

(3.17)

Then, vector elements B( t
λ) in equation (3.16)

can be approximated by using HTBPFs as

N∑
i=1

M−1∑
j=0

rnm,ijbij (t) = RT
nmB (t) , (3.18)

where

rnm,ij =
1

N jj!

[
dj

dtj
bnm

(
t

λ

)]
t=( i−1

N )
, (3.19)

where n, i = 1, . . . , N and m, j = 0, 1, . . . ,M − 1.
Hence,

S =
[
RT

10, . . . , R
T
1M−1, . . . , R

T
N0, . . . , R

T
NM−1

]
.

For λ = 2, N = 2,M = 3, we have

S =



1 0 0 1 0 0
1
4

1
2 0 3

4
1
2 0

1
16

1
4

1
4

9
16

3
4

1
4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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Table 1: Comparison of maximum absolute errors between our proposed method for N = 1, M = 25, λ = 2
and other methods for Example 6.1.

t e
SM

h = 0.001[25] e
V IM

, e
ADM

, e
HPM

e
SM

h = 0.001[11] e
LWM

[16] e
(1,25)

0.0 0.00 0.00 0.00 0.00 0.00

0.2 1.37E-11 0.00 3.10E-15 1.00E-15 2.00E-15
0.4 3.27E-11 1.00E-15 7.54E-15 0.00 2.88658E-15
0.6 5.86E-11 2.19E-13 1.39E-14 2.00E-15 3.77476E-16
0.8 9.54E-11 9.36E-12 2.13E-14 5.00E-15 3.55271E-15
0.9 1.43E-10 1.72E-10 3.19E-14 3.00E-15 2.7182E-15

Table 2: The maximum absolute errors for N = 1 and different values of M with λ = 2, for Example 6.2

t e(1,9) e(1,13)

0.0 0.00000000 0.00000000
0.2 6.99828E-8 1.75415E-13
0.4 1.01575E-7 1.76303E-13
0.6 8.95865E-8 2.20046E-13
0.8 1.26004E-8 2.50244E-13
0.9 2.13E-13 1.42035E-14

Table 3: The approximate solutions values of N = 1 and different values M with λ = 1.25 for Example 6.3.

t y(1,10) y(1,12) y(1,15) y(1,20) y(1,25)

0.0 1 1 1 1 1
0.08 0.859908 0.854663 0.851031 0.851092 0.851031
0.16 0.732028 0.725705 0.722282 0.722319 0.722283
0.24 0.617757 0.613116 0.611232 0.611256 0.611232
0.32 0.518054 0.516257 0.515648 0.515673 0.515648
0.4 0.433181 0.433811 0.433561 0.433583 0.433561

Table 4: The approximate solutions values of N = 2 and different values M with λ = 1.25 for Example 6.3.

t y(2,10) y(2,12) y(2,15) y(2,20) y(2,25)

0.0 1 1 1 1 1
0.08 0.855136 0.852321 0.851263 0.851042 0.851032
0.16 0.723588 0.722575 0.722358 0.722292 0.722283
0.24 0.610688 0.611564 0.611387 0.611239 0.611233
0.32 0.518009 0.516583 0.515702 0.515655 0.515649
0.4 0.437755 0.433125 0.433666 0.433562 0.433561

4 Description of spectral
method for solving DDEs

The main objective of this stage of the paper is to
implement a very effective numerical approach to
solve DDE (1.1), with initial conditions y (0) = y0
by employing HTBPFs. Using equation (2.11),

our unknown function y is approximated as

y (t) ≃ CTB (t) , (4.20)

where C and B(t) are given in equations (2.12)
and (2.13). Considering equations (3.14) and
(2.11), we obtain

d

dt
y (t) ≃ CTB′ (t) ≃ CTDB (t) , (4.21)
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Table 5: The approximate solutions absolute errors in solution of N = 1 and different values M with λ = 1.25
for Example 6.3.

t
∥∥y(1,9) − y(1,10)

∥∥
∞

∥∥y(1,10) − y(1,11)
∥∥
∞

∥∥y(1,24) − y(1,25)
∥∥
∞

0.0 0.00000000 0.00000000 0.000000000
0.2 0.00882114 0.00846740 4.318120E-5
0.4 0.00001281 0.00035625 3.622701E-5
0.6 0.00205286 0.00200203 1.166110E-5
0.8 0.00126533 0.00114213 1.167641E-5
0.9 0.00208259 0.00221691 7.534360E-7

Table 6: The approximate solutions absolute errors in solution of N = 2 and different values M with λ = 1.25
for Example 6.3.

t
∥∥y(2,10) − y(2,12)

∥∥
∞

∥∥y(2,12) − y(2,15)
∥∥
∞

∥∥y(2,15) − y(2,20)
∥∥
∞

∥∥y(2,20) − y(2,25)
∥∥
∞

0.0 0.00000000 0.000000000 0.000000000 0.00000000
0.2 0.00245903 0.000012336 0.000098801 8.69526E-6
0.4 0.00463037 0.000541443 0.000103834 9.79565E-7
0.6 0.00052784 0.001049940 0.000182796 1.04518E-5
0.8 0.03337610 0.013465800 0.004002501 1.05292E-3
0.9 0.11131107 0.061628956 0.014736464 0.009576403

also, we use

B

(
t

λ

)
≃ SB (t) , (4.22)

where D and S are defined in equations (3.14)
and (3.15).
Substituting equations (4.20), (4.21) and (4.22)
into the main problem (1.1) and replacing ≃ by
= give

CTDB (t) = P (t)SB (t)+ q (t)CTB (t) . (4.23)

Furthermore, the initial condition in equation
(1.1) has to be used i.e.

CTB (0) ≃ y0. (4.24)

Finally, equations (4.23) and (4.24) give a system
of linear equations. NM−1 Newton-Cotes points
are applied for finding C as

xp =
2p− 1

2NM
, p = 1, 2, . . . , NM − 1, (4.25)

to obtain,

CTDB(xp) = P (xp)S B(xp) + q(xp) C
TB (xp) ,

(4.26)

where p = 1, 2, . . . , NM − 1. Now, with com-
bining equations (4.24) and (4.26), a system of

N × M linear equations is obtained that can be
solved easily. Then vector C is used for finding
the approximate solution as

y (t) ≃ CTB (t) , t ∈ [0, 1) . (4.27)

5 Error Analysis

In this section, error analysis is performed for our
numerical approach, so an upper norm for the
error is found. Consider the following DDE{

y′(t) = ay(t) + by(rt), 0 ≤ t ≤ 1,

y(0) = y0,
(5.28)

where y ∈ PC1 [0, 1), with PC1 [0, 1) as the set
of piecewise functions having continuous First
Derivative, 0 < r < 1 and a, b ∈ R.
Consider arbitrary function f ∈ CM [0, 1] . Tay-
lor polynomial of degree M − 1 is utilized to ap-
proximate f .

en (t) = f (t)−
M−1∑
i=0

f (i) (a)

M !
(t− a)i

=
(t− a)M

M !
f (M) (ξ) ,

(5.29)
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where

∥en∥∞ ≤ (b− a)M

M !

∥∥∥f (M)
∥∥∥
∞
. (5.30)

Now, if the HTBPFs on the interval [0, 1) are
considered, then for ith sub interval

[
i−1
N , i

N

)
, the

truncation error satisfies the following inequality
(see [23]).

∥en∥∞ ≤
(

i
N − i−1

N

)M
M !

∥∥∥f (M)
∥∥∥
∞

=
1

M !NM

∥∥∥f (M)
∥∥∥
∞
,

(5.31)

and

∥en∥∞ ≤ 1

M !NM

∥∥∥f (M)
∥∥∥
∞
. (5.32)

Integrating both sides of DDE (5.28) from 0 to t
yields∫ t

0
y′ (s) ds =

∫ t

0
ay (s) ds

+

∫ t

0
by (rs) ds, 0 ≤ t ≤ 1.

(5.33)
Therefore,

y (t)− y (0) = a

∫ t

0
y (s) ds

+ b

∫ t

0
y (rs) ds,

(5.34)

or

0 = y (t)− y (0)− a

∫ t

0
y (s) ds

− b

∫ t

0
y (rs) ds.

(5.35)

On the other hand, using (2.8), (2.10) and (2.11),
results∥∥∥∥∥y −

N∑
n=1

M−1∑
m=0

cnmbnm

∥∥∥∥∥
∞

≤ 1

M !NM

∥∥∥y(M)
∥∥∥
∞
. (5.36)

Therefore, if the function approximation error

with eJ (t) =

∣∣∣∣y (t)− N∑
n=1

M−1∑
m=0

cnmbnm (t)

∣∣∣∣ is

shown, then (5.36) can be rewritten as follows

∥eJ∥∞≤ 1

M !NM

∥∥∥y(M)
∥∥∥
∞
. (5.37)

On the other hand, we have

y (t)− y (0) ≃ yJ (t)− y (0) . (5.38)

So, using (5.35) yields

e (t) = yJ (t)− y0 − a

∫ t

0

yJ (s) ds

− b

∫ t

0

yJ (rs) ds, 0 ≤ t ≤ 1,

(5.39)

where, yJ is an approximation function of y.
Therefore, applying equations (2.11) and (5.39),
gives

e (t) = cTB (t)− y (0)− a

∫ t

0

cTB (s) ds

− b

∫ t

0

cT sB (s) ds, 0 ≤ t ≤ 1.

(5.40)

Now, we subtract equation (5.40) from equation
(5.35) to obtain

e (t)− 0 = cTB (t)− y (t)

− a

∫ t

0

cTB (s) ds+ a

∫ t

0

y (s) ds

− b

∫ t

0

cT sB (s) ds+ b

∫ t

0

y (rs) ds.

(5.41)

Then

e (t) = cTB (t)− y (t)

− a(

∫ t

0

(
cTB (s)− y (s)

)
ds)

− b(

∫ t

0

(
cT sB (s)− y (rs)

)
ds,

(5.42)
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and

e (t) = eJ (t)− a

∫ t

0
eJ (s) ds

− b

∫ t

0
eJ (rs) ds.

(5.43)

Thus, according to the property of the absolute
value function, (5.43) is obtained as

|e (t)| ≤
∣∣∣e

J
(t)

∣∣∣+ |a|
∫ t

0
|eJ (s)|ds

+ |b|
∫ t

0
|eJ (rs)|ds.

(5.44)

Finally, following is obtained

∥e∥∞≤ (1 + |a|+|b|)
M !NM

∥∥∥y(M)
∥∥∥
∞
. (5.45)

6 Illustrative examples

In this section, three different examples are solved
which illustrate the accuracy, applicability and
efficiency of the scheme. The error of the new
numerical approach based on HTBPFs is

e (N,M) =
∥∥y − y(N,M)

∥∥
∞

= max0≤t≤1

∣∣y(t)− y(N,M)(t)
∣∣ , (6.46)

where y is the exact solution and y(N,M) is the
approximate solution obtained by the proposed
method, with N,M defined in Definition 2.2. In
our implementation, the calculations are done on
a personal computer with core-i5 processor, 2.67
GHZ frequency, and 4GB memory. In numerical
solution, all examples of this paper are used for
computations of the Mathematica 11 software.

Example 6.1. As the first example, the following
DDE [11, 13, 15, 16, 25] is considered

d
dty (t) =

1
2e

t
2 y

(
t
2

)
+ 1

2y (t) , 0 < t ≤ 1

y (0) = 1,
(6.47)

with the exact solution y(t) = et.

First, this equation with different values of N
and M was solved. The operational matrices of
stretch and derivative for N = 1, M = 3, λ = 2
are obtained in the following forms

S =

 1 0 0
1
4

1
2 0

1
16

1
4

1
4

 , D =

 0 0 0
1 0 0
1 2 0

 ,

and,

c10 = 1, c11 = 0.513467, c11 = 0.568481,

give

y(1,3)(t) =

 1 + 0.513467t+ 0.568481t2, t ∈ (0, 1],

0, t /∈ (0, 1].

(6.48)

Figure 1, compares the exact solution with
the approximate solution obtained by proposed
method for N = 1, M = 25. The absolute errors
for N = 1, M = 25 are shown in Figure 2 where
extremely high accuracy can be seen. In Table

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

t

y
(t
)

Approximate solution

The exact solution

Figure 1: Comparison of the computed and exact
solutions forN = 1, M = 25, with λ = 2 for Example
6.1.

0.0 0.2 0.4 0.6 0.8 1.0

0

1.×10-15

2.×10-15

3.×10-15

4.×10-15

5.×10-15

6.×10-15

t

e
(t
)

Figure 2: Plot of the absolute error for N = 1, M =
25, with λ = 2 for Example 6.1.

1, our results for N = 1, M = 25, λ = 2 are
compared with spline methods [11, 25], Adomian
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decomposition method [30], homotopy perturba-
tion method [29] and Legendre wavelet method
[16].

Example 6.2. Next the pantograph equation is
discussed as follows [4, 15, 16].

d

dt
y(t)− y(

t

2
) = 0, 0 < t ≤ 1,

y (0) = 1,
(6.49)

with the exact solution

y (t) =

∞∑
k=0

(12)
1
2
k(k−1)

k!
tk.

Table 2 shows the maximum errors for Example
6.2.

Example 6.3. Here the third example proposed
in [21] is considered and also is extensively stud-
ied by Fox et al. [12]. Since the exact solution of
this problem is not available, many authors have
tried to solve it.
Consider the following DDE of the form

dy(t)

dt
= ay(t/λ) + by(t), 0 < t ≤ 1,

y(0) = y0.
(6.50)

The numerical solution with the new spectral ap-
proach for this equation is under the following
conditions

a = −1, b = −1, λ = 1.25 and y0 = 1.

7 Conclusion

In this article a spectral method based on
HTBPFs for solving DDEs is presented. The er-
ror analysis of the spectral approach has been
done. The computing time of implementing this
technique compared with other known methods
are very low. Three numerical examples are pro-
vided to confirm the applicability and accuracy
of the scheme.
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