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Abstract

Variational calculus is used to determine the integrability of differential equations. A remarkable
unified approach is presented by a single theorem employing variational calculus to determine the
integrability of any ordinary differential equation whether linear or nonlinear. The theorem is also
used to determine the integrating factor for a given equation if it is not directly integrable. Well
established results for determining integrating factors obtained by various methods can be combined
in a single equation of variational calculus. Many sample problems are extensively treated to show
the power and applicability of the theorem. The method is applied to a variety of problems stemming
from physical phenomena.
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1 Introduction

O
ne of the most important issues in solving or-

dinary differential equations is their integra-

bility. A first integral of the equation reduces the

order of the equation by one and if successive in-

tegrals can be taken one by one, the final solution

can be achieved. If the integral of the equation ex-

ists, then we can speak of the integrability of the

differential equation. Direct integrability is rarely

encountered in differential equations. If the first

integral is possible, then the next integration may

not be performed for most of the time because
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the outcoming differential equation is not inte-

grable. Non-integrable equations usually accept

an integration factor to make it integrable. The

integrating factor is mainly exploited under the

topics of first order linear non-homogenous differ-

ential equations and the so-called exact nonlinear

differential equations of first order. See Edwards

et al. [9], Bissell [5], Roman-Miller & Smith [16]

and Cortez and Oliveria [7] for information on the

topic.

In this work, a unified approach employing the

calculus of variations is presented in determining

the integrability of any ordinary differential equa-

tion of arbitrary order, whether linear or nonlin-

ear. Calculus of variations is usually employed in

determining the extrema of a functional, mostly

in integral form and found application areas such
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as the optimization problems, entropy, mechan-

ics of motion, elastic behaviour of structural sys-

tems etc. (O’Neil, [12]). In fact, calculus of vari-

ations is a highly effective tool in determining the

integrability of an ordinary differential equation

which is not emphasised in relevant textbooks.

With the aid of a single theorem, for the first or-

der, second order and higher order linear differ-

ential equations, the integrability conditions are

given. Then the main theorem which is valid for

linear and nonlinear equations are given and non-

linear examples are treated. For equations which

are not integrable, the systematic way of deter-

mining an integral factor is depicted using the

main theorem. The ideas presented here are ba-

sic, easily applicable, valid for all equations and

do not require extensive calculations in the case

of advanced methods such as Lie Group Theory

(Bluman and Kumei, [6]). Finally, mathematical

models varying from heat transfer to dynamics

and astrophysics are treated using the formalism

developed here.

2 Linear Ordinary Differential
Equations

In this section, first the linear equations will be

treated starting from the first order and advanc-

ing towards the arbitrary orders.

2.1 Linear First Order Equations

For a first order linear equation, the following the-

orem is proposed:

Theorem 2.1. If for the first order linear ho-

mogenous differential equation

F (x, y, y ) = A (x) y′ +B (x) y = 0 (2.1)

the variation of its integral is identically equiva-

lent to zero, i.e.,

δ

∫
F
(
x, y, y′

)
dx ≡ 0 (2.2)

then the equation is exactly integrable with no

need for an integrating factor and the coefficients

satisfy the relationship

B −A′ = 0 . (2.3)

Proof. The variational equation (2.2) leads to the

Euler equation (O’Neil, [12])

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0 (2.4)

or

B −A′ = 0 (2.5)

which can be verified by substituting for B into

the original equation

A (x) y′ + A′y = (A (x) y)′ = 0, the integral of

which is Ay = c with c an arbitrary constant

2.2 Linear Second Order Equations

Theorem 2.2. If for the second order linear ho-

mogenous differential equation

F
(
x, y, y′, y′′

)
= A (x) y′′ +B (x) y′ + C(x)y = 0

(2.6)

the variation of its integral is identically equiva-

lent to zero, i.e.,

δ

∫
F
(
x, y, y′, y′′

)
dx ≡ 0 (2.7)

then the equation is exactly integrable once with

no need for an integrating factor and the coeffi-

cients satisfy the relationship

C (x)−B′ (x) +A′′(x) = 0 . (2.8)

Proof. F (x, y, y′, y′′) satisfies the Euler equation

∂F

∂y
− d

dx

(
∂F

∂y′

)
+

d2

dx2

(
∂F

∂y′′

)
= 0 (2.9)

or substituting (2.6) yields

C (x)−B′ (x) +A′′(x) = 0 (2.10)

which is the integrability condition. Under this

condition, the equation can be cast into the di-

rectly integrable form

(A (x) y′ )′ + (D (x) y)′ = 0 (2.11)

where

D (x) =

∫
C (x) dx (2.12)

If one differentiates (2.11) and compares with the

original equation, then

B = A′ +D, C = D′ (2.13)



M. Pakdemirli, /IJIM Vol. 5, No. 2 (2023) 165-174 167

But (2.13) is obtained by integrating (2.10) once

with D given in (2.12).

Note that condition (2.10) for integrability as

well as the suitable form (2.11) for integration was

already given by O’Neil ([12]) obtained by some

other methods.

Example 2.1. Consider the equation

2x2y′′ + 5xy′ + y = 0 (2.14)

which is integrable since A′′(x) = 4 , B′(x) = 5

and C= 1, and the condition (2.8) is already satis-

fied. Since D (x) =
∫
C (x) dx = x, the integrable

form is from (2.11)

(2x2y′ )′ + (xy)′ = 0 (2.15)

for which the first integral is

2x2y′ + xy = c1 (2.16)

From Theorem 2.1, for A = 2x2, B = x, since

A′ ̸= B, this first order equation is not directly

integrable. Nevertheless, multiplying with the in-

tegrating factor of
√
x, the equation becomes in-

tegrable with the solution

y =
c1
x

+
c2√
x

(2.17)

Integrating factors will be discussed later in de-

tail.

The following theorem states the necessary

conditions for a second order linear equation to

be completely integrable:

Theorem 2.3. The second order linear homoge-

nous differential equation

A (x) y′′ +B (x) y′ + C(x)y = 0 (2.18)

is completely integrable (two times integrable)

with no need for an integrating factor at each step

if the coefficients satisfy the relationships

A′′(x) = C(x), B′(x) = 2C(x) (2.19)

Proof. From Theorem 2.2, for the first integra-

tion, the condition is

C (x)−B′ (x) +A′′(x) = 0 (2.20)

and the first integral of the original equation is

Ay′ +Dy = c1 (2.21)

with D =
∫
Cdx. For (2.21) to be integrable,

from Theorem 2.1, A′ = D =
∫
Cdx. Differenti-

ate once

A′′(x) = C(x) (2.22)

and substitute into (2.20) yielding

B′(x) = 2C(x) (2.23)

with (2.22) and (2.23) satisfying both conditions

of the Theorems 2.1 and 2.2 and hence constitutes

the necessary conditions for the twice integrabil-

ity.

Example 2.2. Consider the equation

x3y′′ + 6x2y′ + 6xy = 0 (2.24)

which is twice integrable since the conditions in

(2.19) are satisfied for A = x3, B = 6x2, C = 6x.

The suitable form for the first integration is

(x3y′)′ + (3x2y)′ = 0 (2.25)

for which the first integral is

x3y′ + 3x2y = c1 (2.26)

This can be expressed as(
x3y

)′
= c1 (2.27)

with a final solution

y =
c1
x2

+
c2
x3

. (2.28)

2.3 Higher Order Linear Equations

Theorems for the third order and for the arbitrary

orders are given in this section with applications.

Theorem 2.4. If for the third order linear

homogenous differential equation

F (x, y, y′, y′′, y′′′) =

A (x) y′′′+B (x) y′′+C (x) y′+D(x)y = 0 (2.29)
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the variation of its integral is identically equiva-

lent to zero, i.e.,

δ

∫
F
(
x, y, y

′
, y

′ ′, y
′ ′′
)
dx ≡ 0 (2.30)

then the equation is exactly integrable once with

no need for an integrating factor and the coeffi-

cients satisfy the relationship

D (x)−C ′ (x)+B′′ (x)−A′′′ (x) = 0 . (2.31)

Proof. F (x, y, y′, y′′, y′′′) satisfies the Euler equa-

tion

∂F

∂y
− d

dx

(
∂F

∂y′

)
+

d2

dx2

(
∂F

∂y′′

)
− d3

dx3

(
∂F

∂y′′′

)
= 0

(2.32)

or substituting (2.29) yields

D (x)− C ′ (x) +B′′ (x)−A′′′ (x) = 0 (2.33)

which is the integrability condition. Under this

condition, the equation can be cast into the di-

rectly integrable form

(A (x) y′′)′ + (E (x) y′)′ + (G (x) y)′ = 0 (2.34)

where

E (x) =

∫
C (x) dx−

∫ ∫
D (x) dx, (2.35)

G (x) =
∫
D (x) dx

If one differentiates (2.34), compares the

coefficients with the original equation, and uses

(2.35), eventually (2.33) is retrieved.

Theorem 2.5. If for the k’th order linear

homogenous differential equation

F
(
x, y, y′, y′′, . . . , y(k)

)
= Ak (x) y

(k)+

Ak−1 (x) y
(k−1) + · · ·+A1 (x) y

′ +A0(x)y = 0

(2.36)

the variation of its integral is identically equiva-

lent to zero, i.e.,

δ

∫
F
(
x, y, y′, y′′, . . . , y(k)

)
dx ≡ 0 (2.37)

then the equation is exactly integrable once

with no need for an integrating factor and the

coefficients satisfy the relationship

A0 (x)−A′
1 (x)+

A′′
2 (x)−. . . (−1)k−1A

(k−1)

k−1 (x)+(−1)kA
(k)

k (x) = 0 .

(2.38)

Proof. The theorem is an induction of the previ-

ous theorems and can be proven in a similar way

as stated before.

3 Nonlinear Ordinary Differen-
tial Equations

The main theorem for nonlinear equations of ar-

bitrary order is given in this section. The theorem

was already applied to specific linear equations in

the previous section. Some nonlinear problems

are treated as examples.

Theorem 3.1. Main Theorem

If for the k’th order nonlinear differential equa-

tion

F
(
x, y, y′, y′′, . . . , y(k)

)
= 0 (3.39)

the variation of its integral is identically equal to

zero, i.e.,

δ

∫
F
(
x, y, y′, y′′, . . . , y(k)

)
dx ≡ 0 (3.40)

then the equation is exactly integrable once with

no need for an integrating factor.

Proof. If F=0 is integrable, then

F =
dG

dx
(3.41)

for some function G
(
x, y, y′, y′′, . . . , y(k−1)

)
and

G
(
x, y, y′, y′′, . . . , y(k−1)

)
= c (3.42)

is the first integral. Multiplying both sides of

(3.41) by dx and integrating yields∫
Fdx =

∫
dG = G = c (3.43)

Taking the variation of both sides

δ

∫
Fdx = δc = 0 (3.44)

since the variation of a constant is zero.
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Theorem 3.1 is the main theorem which applies

to all ordinary differential equations. The theo-

rem is applied to sample problems

Example 3.1. F = y′′ − 2yy′ = 0 possesses a

first integral y′ − y2 = c. This can be verified by

substituting F into the Euler equation

∂F

∂y
− d

dx

(
∂F

∂y′

)
+

d2

dx2

(
∂F

∂y′′

)
= 0 (3.45)

or −2y′ + 2y′ + 0 = 0

Example 3.2. F = y′′+ y2 = 0 has no first inte-

gral since the Euler equation produces 2y ̸= 0. If

the equation is of the form F = y′′ + a(x)y2 = 0,

the condition to have a first integral can be deter-

mined from the Euler equation which is a(x) = 0.

Example 3.3. F = sinyy′′ + cosyy′ 2 = 0 pos-

sesses a first integral y′siny = c. This can be

verified by substituting F into the Euler equation

cos yy′′−sin yy′2− d

dx

(
2y′ cos y

)
+

d2

dx2
(sin y) = 0

or

cos yy′′ − sin yy′2−

2y′′ cos y + 2 sin yy′2 − sin yy′2 + cos yy′′ = 0 .

4 Integrating Factors

If the differential equation is not directly inte-

grable, then it can be cast into an integrable form

with multiplying by an integrating factor. A uni-

fied and simple approach combining the results of

various methods for determining the integration

factors is presented in this section based on the

main theorem.

Theorem 4.1. Integrating Factor

For the k’th order nonlinear differential equa-

tion

F
(
x, y, y′, y′′, . . . , y(k)

)
= 0 (4.46)

if there exists an integrating factor

µ
(
x, y, y′, y′′, . . . , y(k−1)

)
, then it should sat-

isfy

δ

∫
µFdx ≡ 0 (4.47)

Proof. From Theorem 3.1 if F=0 is integrable,

then δ
∫
Fdx ≡ 0. If F cannot be integrated di-

rectly, then multiplying by an integrating factor

µ makes the equation µF=0 integrable, hence

δ
∫
µFdx ≡ 0 would give the integrating factor for

the equation

Note that the theorem does not guarantee

the existence of the integrating factor, yet it

states that if there exists an integrating factor

for the equation, it must obey (4.47). Gener-

ally speaking, the form of the integrating fac-

tor µ
(
x, y, y′, y′′, . . . , y(k−1)

)
is the most general

form which may lead to complex equations hard

to solve. Simplifications by dropping some of the

dependencies from the integrating function which

do not lead to inconsistencies may be possible for

the specific form of the equations. To summa-

rize, for the equation δ
∫
µFdx ≡ 0, three distinct

cases exist

i) µ=0, hence no integrating factor exists for

the equation F=0.

ii) µ=µ0, a constant or µ=1 without loss of

generality and the equation is directly inte-

grable.

iii) µ is a function of its variables, at least one

of them, and the equation is integrable after

multiplying by µ.

4.1 First Order Equations

The well-established results given for first order

equations in standard textbooks on differential

equations can be traced through the unified ap-

proach presented in this work.

Example 4.1. Consider the first order linear

non-homogenous differential equation

F = y′ + a (x) y − h (x) = 0 (4.48)

Multiplying by the integrating factor, the Euler

equation should be satisfied by the application of

Theorem 4.1

∂

∂y
(µF )− d

dx

(
∂

∂y′
(µF )

)
= 0 (4.49)
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Rather than taking µ = µ (x, y), the most general

form, for simplicity, try µ = µ(x). Then

µa− d

dx
(µ) = 0 (4.50)

with a solution µ = e
∫
adx which is the well-known

result given in textbooks.

Example 4.2. Consider the nonlinear first order

differential equation of the form

M (x, y) dx+N(x, y)dy = 0 (4.51)

which is examined under the title of exact differ-

entials. F can be defined by dividing the equa-

tion with dx, F = Ny′ + M = 0 and µF =

µNy′ + µM = 0. If the equation is integrable,

then it should satisfy the Euler equation which

leads to, after simplification

∂

∂y
(µM) =

∂

∂x
(µN) (4.52)

which is the well-known result derived from the

exactness condition in textbooks.

Example 4.3. Bernoulli Equation

For the Bernoulli equation

F = P (x)y′ +Q (x) y −R (x) yα = 0 (4.53)

assume the integrating factor of µ = µ(x, y) in its

most general form. Substituting into the Euler

equation for µF and simplifying yields

∂µ

∂y
(Qy −Ryα)−∂µ

∂x
P+µ

(
Q−Rαyα−1 − P ′) = 0

(4.54)

which is exactly the equation given by O’Neil [12]

obtained from exact differential method. The so-

lution of the above equation is (O’Neil [12])

µ =
y−α

P (x)
e(1−α)

∫
Q(x)/P (x)dx . (4.55)

4.2 Second Order Equations

For the second order differential equations, some

examples to determine the integrating factors are

depicted.

Example 4.4. Consider the second order differ-

ential equation

yy′′ − y′2 = 0 (4.56)

for which a simplified integrating factor µ = µ(y)

is suggested. The Euler equation yields(
2µ′y + 4µ

)
y′′ + (3µ′ + µ′′y)y′2 = 0 (4.57)

The equation is a polynomial in terms of y′′ and y′

for which the coefficients should vanish separating

into two equations

2µ′y + 4µ = 0, 3µ′ + µ′′y = 0 (4.58)

µ = 1/y2 satisfies both equations which is the

integrating factor. The equation

yy′′ − y′2

y2
= 0 (4.59)

possesses the first integral

y′

y
= c . (4.60)

If one encounters with inconsistencies in the equa-

tions with the simpler form of the integrating fac-

tors, then resort to selecting a more complex form

is required.

Example 4.5. Consider the second order differ-

ential equation

yy′′ + 3y′2 = 0 (4.61)

for which a simplified integrating factor µ = µ(y)

is suggested. The Euler equation yields(
2µ′y − 4µ

)
y′′ + (µ′′y − µ′ )y′2 = 0 (4.62)

The terms in the parenthesis should vanish lead-

ing to a solution µ = y2. Multiplying by the

integration factor

y3y′′ + 3y2y′
2
= 0 (4.63)

the first integral comes out to be

y3y′ = c . (4.64)
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Example 4.6. Consider the second order differ-

ential equation

y′′ + f(y) = 0 (4.65)

for which a simplified integrating factor µ = µ(y′)

is suggested. The Euler equation yields

µf ′ − µ′′fy′′ − µ′f ′y′ = 0 (4.66)

Coefficient of y′′ should vanish leading to a so-

lution µ = y′ which also satisfies the remaining

part of the equations. Hence

y′y′′ + y′f(y) = 0 (4.67)

can be integrable leading to

y′2

2
= −

∫
fdy+c . (4.68)

4.3 Complete Integrability

For the tools given in the previous sections, a

complete integrability can be defined in the the-

orem

Theorem 4.2. Complete Integrability

If the k’th order nonlinear differential equation

Fk

(
x, y, y′, y′′, . . . , y(k)

)
= 0 (4.69)

is completely integrable with the aid of possible

integrating factors, then each integrating factor

µi

(
x, y, y′, y′′, . . . , y(i−1)

)
satisfies

δ

∫
µiFidx ≡ 0 i = k, k − 1, k − 2, . . . , 2, 1

(4.70)

with

Fi−1 =

∫
µiFidx ≡ 0 i = k, k − 1, k − 2, . . . , 2, 1

(4.71)

and the final result is

F0 (x, y) = 0 . (4.72)

Proof is the successive application of Theorem 4.1

which is omitted here.

Example 4.7. Consider the second order differ-

ential equation

y′′ +
y′2

y
= 0 (4.73)

The equation is completely integrable. Assume

µ2 = µ2(y). The Euler equation yields

µ2 = y (4.74)

for the integrating factor. The first integral is

yy′ = c1. This equation is directly integrable

without an integration factor or µ1 = 1 leading

to the final solution

F0 = y2 − c1x− c2 = 0 . (4.75)

5 Mathematical Physics Prob-
lems

In this section, real-life problems arising in math-

ematical physics are treated with respect to their

integrability.

5.1 Emden-Fowler Type Equations

Emden-Fowler type equations (Khalique et al.,

[11]; Wazwaz, [20], Dolapci and Pakdemirli, [8])

may stem from the theory of stellar structure,

the thermal behaviour of a spherical cloud of

gas, isothermal gas spheres and the theory of

thermionic currents

y′′ +
α

x
y′ + f (x) g (y) = h(x) . (5.76)

Applying Theorem 3.1 to the equation leads to a

condition
dg

dy
= − α

x2f(x)
. (5.77)

The left-hand side of the equation is a pure func-

tion of y whereas the right-hand side is a pure

function of x. For the equation to hold, both

parts should be equivalent to a constant. This

may happen if g = ay and f = b/x2 for some

constants a and b with a relationship between

the constants a = −α/b. The equation reduces

to

y′′ +
α

x
y′ − α

x2
y = h(x) (5.78)



172 M. Pakdemirli, /IJIM Vol. 15, No. 2 (2023) 165-174

which is the Cauchy-Euler equation (O’Neil, P.

V., [12]) well-known for its integrability proper-

ties. The first integral of the equation is

y′ +
α

x
y =

∫
h(x)dx (5.79)

which now needs an integrating factor µ = xα for

further integration.

5.2 Bratu Type Equations

The Bratu model is encountered in physical ap-

plications such as the fuel ignition of the thermal

combustion theory, the expansion of the universe

(Wazwaz, [20]). Bratu’s initial value problem is

(Wazwaz, [20], Aksoy and Pakdemirli, [3])

u′′ − 2eu = 0. (5.80)

Applying Theorem 3.1 to the equation leads to

− 2eu ̸= 0 (5.81)

which is not identically zero. Hence, the equation

is not integrable unless an integration factor is

employed. Assuming an integration factor of µ =

µ(u′) and applying Eq. (4.47)

−2µeu− d

dx

(
dµ

du

(
u′′ − 2eu

))
+
d2µ

dx2
= 0 (5.82)

the mid-term vanishes due to the original equa-

tion and selecting µ = u′yields

− 2u′eu + u′′′ = 0 (5.83)

which is the derivative of the original equation

and identically equal to zero. Hence the integrat-

ing factor is µ = u′ for the problem with a first

integral
u′2

2
− 2eu = c . (5.84)

5.3 Heat Transfer Equations

A number of nonlinear equations arising from

heat transfer is tested with respect to their in-

tegrability.

The first problem is the combined convection

and radiation cooling of a lumped system

du

dy
+ u+ εu4 = 0 (5.85)

for which the problem is solved by Variational

Iteration Method (Ganji and Sadighi, [10]) and

the Perturbation Iteration Method (Aksoy et al.,

[4]). Applying Theorem 3.1. to the equation

1 + 4εu3 ̸= 0 (5.86)

which states that the equation is not integrable

in its present form.

For the heat transfer problem

d2u

dy2
− εu4 = 0 (5.87)

representing the temperature in a thick rect-

angular fin with radiation, solutions were al-

ready presented approximately (Homotopy Anal-

ysis method due to Abbasbandy [1], Perturbation

Iteration Method due to Aksoy et al. [4], Vari-

ational Iteration Method due to Tari [17]). The

integrability theorem yields

− 4εu3 ̸= 0 (5.88)

which is not integrable in its present form.

Finally, consider the problem

(1 + εu)
d2u

dy2
+ ε

(
du

dy

)2

= 0 (5.89)

which arises in heat transfer of conduction in a

slab with variable thermal conductivity (Rajabi

et al., [15], Aksoy et al., [4]). The integrability

test gives

− ε
d2u

dy2
+ ε

d2u

dy2
= 0 (5.90)

which is identically equal to zero with a first in-

tegral

(1 + εu)
du

dy
= c . (5.91)

5.4 Minimum Drag Work

The mathematical model determining the path

of the minimum drag work of a flying object has

been proposed and solved by a number of analyt-

ical techniques (Pakdemirli, [13]; Abbasbandy et

al., [2]; Pakdemirli & Aksoy, [14])

y′′ − f ′ (y)

f (y)
(1 + y′2) = 0 (5.92)
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where f (y) = ρ (y)Cd (y)A (y)U2(y)with all

physical parameters depending on the altitude y.

The integrability test requires(
1 + 3y′2

)
f ′′f + (1− y′2)f ′2 ̸= 0 (5.93)

which cannot be identically equal to zero unless

the function f is a constant. Hence, the equation

is not integrable in its present form.

6 Concluding Remarks

The integrability of a differential equation is asso-

ciated with the optimality of the functional form

of the equation as depicted with the aid of vari-

ational calculus. One can say that if the dif-

ferential equation is integrable, it is in its op-

timal form. Otherwise, one needs an integrat-

ing factor to transfer the equation into an opti-

mal form. The theorems are presented for deter-

mining the direct integrability of the equations.

Many problems arising in mathematical physics,

such as the Emden-Fowler equation, Bratu equa-

tion, equations arising from heat transfer prob-

lems and drag induced dynamical problems are

tested with respect to their integrability. Before

attempting to solve a mathematical physics prob-

lem, the readers are recommended to test the in-

tegrability of the problem via the theorems pre-

sented in this work.
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