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Abstract

For an analytic self-map ¢ of the unit disk D in the complex plane C, a nonnegative integer n, and
u analytic function on D, weighted differentiation composition operator is defined by (D7, f)(z) =

u(2)f™(p(2)), where f is an analytic function on D and z € D. In this paper, we study the

boundedness and compactness of Dg ,,,
Bloch-type spaces.
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1 Introduction

Et Hol(D) be the class of all analytic func-

tions in the unit disc D of the complex plane
C. Let T denote the boundary of D. A pos-
itive integrable function w over D), is called a
weight function or simply a weight. It is radial,
if w(z) = w(|z|), for all z € D. For 0 < p < oo,
and a weight w, the weighted Bergman space AL
consists of those f € Hol(D) for which

/ () Pw(2)dA(z) < oo,
D

dxdy
™

11

where dA(z) = stands for the normalized
Lebesgue area measure on D. As usual for stan-
dard radial weights w(z) = (1 — |2]?)®, a > —1,
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A, is the well known classical Bergman space
AL(D) (see, e.g., [1, 2, 7,9, 10]). Tt is also worth
noting that the Bergman spaces with weights
other than the classical weight are defined, (see,
e.g., [19, 21, 22, 25, 32]).

Recall that a positive continuous function p on
[0, 1) is called normal, if there exist positive num-
bers a and b, 0 < a < b < 0o, and ¢ € [0,1) such
that

p(r)

® G-z s decreasing on [0,1) and
lim, . {43 =0,
. % is increasing on [§,1) and
lim,.; (iu_(:))b = 00,

were first studied by shields and williams in [30].
Note that a normal function g : [0,1) — [0, 00) is
decreasing in the neighborhood of 1 and satisfies
lim, _,1- p(r) = 0. For example,
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e u(r)=(1-7)% a>0,
1
.M() loglog
o u(r)= (1—r)°‘10g = TQ,a>O,B>O

are such kind of normal functions.

For a normal function g on [0,1), the Bloch-
type space B, is the space of all f € Hol(D) such
that

ilelpu(IZI)lf( z)|< o0.

It is easy to see that B, is a Banach space with
the norm

1f1ls,:= \f(O)\+ilelgu(|Z!)|f'(2)!~

For p(r) = 1 — 72, we obtain the classical Bloch
space (see, e.g., [29]).

Let u € Hol(D), ¢ be an analytic self-map of
D, £ denote the n-th derivative of f and f(©) =
f. For f € Hol(D), the weighted differentiation
composition operator is defined by

(DL, f)(2) = u(z) ™ (p(2)),

In fact, if n = 0 and u(z) = 1, then DJ , is the
composition operator Cy. If u(z) = 1, then D,
is the operator C, D", which was studied, for ex-
ample, in [11, 24, 33]. If n = 0, then D7, is just
the weighted composition operator uCy,. If n =1
and u(z) = ¢'(2), then D}, = DC,, which was
studied in [11, 13, 15, 16, 17, 24, 26]. The opera-
tor D7} ,, was introduced by Zhu in [36], and stud-
ied in [12, 14, 23, 26, 27, 28, 31, 34, 35, 36, 37].

This paper focuses on the boundedness and
compactness of D” from AP, spaces with admis-
sible weights to the Bloch type spaces. Note that,
throughout the remainder of this paper, C' will
stand for a positive constant and may differ from
one occurrence to the other. As usual, for two
positive real-valued functions f; and fs we write
f1 = fo, if there exists a positive constant C in-
dependent of the parameters such that f; < C'fs,
and from f; =< f5 is understood that both f; <X fo
and fo < f; hold.

z € D.

2 Preliminaries

Let us first gather some auxiliary definitions and
lemmas.
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The distortion function of a radial weight w :
[0,1) — (0,00) is defined by

1
w(r)

and was introduced by siskakis in [20]. A radial
weight w is called regular, if w is continuous and
its distortion function satisfies

Yo(r) <

The class of all regular weights is denoted by R.
By [19, Section 1.4], if w € R, Then

Yo(r) = /1w(s)ds, 0<r<li,

(1-7r), 0<r<l.

0<r<t<r+s(l-r)<1, (2.1)
where the constants of comparison depend on s €

[0,1) and w. This implies

ww(r) P

for some constant C' > 0. However does not imply
the existence of C' > 0 such that ¢, (r) < C(1—-r),
0 < r < 1. Note that a normal continuous
weight w is regular and for regular weight w
the weighted Bergman space AP lies between two
classical weighted Bergman spaces [19].

We will use the following lemma for construct-
ing two family of test functions that allows us to
show main results.

Cl-r), 0<r<l,

Lemma 2.1 [19] If w € R, then there exists
Y0 = Yo(w) such that

1
[ = fizoe
D — AZ

(=P
L ey
R

(2) =

for all v > ~p.

The proof of [19, Lemma 1.1] gives

o (=

S VY (2.2)
[A|—=1 f|/\| r)rdr

if v > ~ is enough large.

Bekollé and Bonami introduced the following
set of weights in [3, 4].

Let 1 < po,p < oo such that - —|— =1, and

let n > —1. The class Bekolle Bonaml By, (1)
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consists of the weights w with the property that
there exists a constant C' > 0 such that

( /S 0~ EaA)

= o
([ W (@)~ JalaA)
S(I)
< C|1)Hmeo
for any Carleson square

S(I)={re® eD:e? eI,1—|I|<r <1},

where |I| denote the Lebesgue measure of the
measurable set I C 7. Bekollé and Bonami
showed that w € B, (n) if and only if the
Bergman projection

Py(f)(z) =

is bounded from L’ to AL’ [4]. Thus the dual

space of AL is AZ(). Authors in [19, Lemma 1.4]
showed that, if w € R, then for each py > 1 there
exists n > —1 depend only on py and w such that
ﬁ belongs to Bp,(n) and , if a countinous

radial weight w satisfies (2.1) and (1°i(é f)n

to Bp,(n) for some pyp > 0 and n > —1, then
w € R.

In order to state our main results we introduce
the following larger class of weights.

For pg > 1, a weight function w belongs to Cy,,
if there exists a constant C' > 0 such that

( /D w()dA(2))
% ( /D e (At
< C AP (D)\,a)a

[€1%)"dA(8),

belongs

for every disc Dy o = {z € D : |z—A|< a(1—|A|)},
where p% + i = 1. Here a € (0,1) is fixed, but
the class Cp, is actually independent of o € (0, 1).
Moreover, By, (1) C Cp, for every n > —1 and the
inclusion is strict [5, 18].

We fix the basic notation and introduce the
following classes of radial weights that are used
in the remainder of this paper.

A weight function w is called admissible weight
if
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(w1) :u)((z)) =<1, where 0 <r<t<r+s(l—r) <1,
s€0,1).
(w2) (1W(i))n belongs to By, (n) for some py > 0
and n > —1.

w(2) € C2[0,1) and A(25 w(z) ) = 0, where

(1—|z" (1—[z])7
A stands for the Laplace operator.

(w3)

Since w € C2[0,1), (w1) and (w2) imply that w €

Let now 7 be the constant in Lemma 2.1 and
let a,p > 1 be the constant large enough such
that ap+1 > ~g. Then for each A € D, define the
functions

PR (|
WO~ R2) T
and L
Maslz) = (120 1, (2)

Lemma 2.1 immediately yields the following
lemma.

Lemma 2.2 Let w be a reqular weight. Then we

have ||f>\7p||A5x 1, and ||h>\,p||A5x 1.
Proof. Using Lemma 2.1, we have

/ w(z)idA(z) _ o w)
D ’1 _ )\Z|ap+2 -

(1= A])er

Then

O [ e()dAG)
sl = S )

) el
w(A) (L =[]
= 1.
Also
— A
sl = [ =g slPo()aAC)

DT [ w(2)dA(:)
<o, 1= Azforpr2)
= 1.

We will use of the following characterization for
AP functions.
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Lemma 2.3 Let w be an admissible weight.
Then for f € AL, we have

/1 Aur
(W(2))7 (1= [22)" "

1M (z)< C (2.3)

with constant independent of f.

Proof. For f analytic in D, by the Cauchy for-
mula together with subharmonicity, and, subse-
quently, by Holder’s inequality we have

P C .
£ (2)]0 < sz/ | flrodA
(1= [2[*)" 70 /Do

C

S ——
(1—[212)* %
» w(§) 1
<(f, P g g
" (e
D0 x ( /D () aA©)

Since By, (n) C Cp, for every n > —1, therefore

% belongs to C,, and we deduce

AP (D:,q)
(1 — |z|?)?potnp
1

(D /Dz,a’f Fudd)

w(€) )
. </D Ty Ae™

(Jp. . ToghmdA©)™
(1—[zP)mwtn

< [ 1rpwda,
Dz,a

here we have used the estimate A(D, o) =< (1 —
|z|2)2. We also notice that by (ws), % is
subharmonic on D (see [8]). Thus

FM()P=C

X (

=C

(2.4)

w(z) 1
(L= lzh)7 “ma2(1—|z])?

(€
<o T O

Using estimates (2.4) and (2.5) we deduce (2.3).
The proof lemma 2.4 is based on a well-known
method that has been used in the existing litera-
ture, see, for example [6].

(2.5)

Sh. Rezaei, /IJIM Vol. 13, No. 2 (2021) 115-121

Lemma 2.4 Let p > 1 and w be an admissible
weight. Assume that ¢ is an analytic self-map of
D, u € Hol(D), p is normal and n is a nonneg-
ative integer. Then D, : Al — B, is compact
if and only of Dy, AL, — By, is bounded and for
any bounded sequence (fy)ken in AL, which con-
verges to zero uniformly on compact subsets of D,
we have ||Dg , fx|lB,— 0 as k — oo.

3 Main Results

In this section we give our main results and
proofs.

Theorem 3.1 Assume that @ is an analytic self-
map of D, u € Hol(D), u is normal and n is
a nonnegative integer. Let w be an admissible
weight. Then D}, : AL — By, is bounded if and
only if

sup M(JZI)\U’(ZN — < oo, (3.6)
€D (w(p(2)))? (1 — |p(2)[2)"
s p(l2Dlu(z)¢'(2)| (3.7)

2€D (w(p(2)))7 (1 — |p(2)]2)" 17

Proof. Suppose that D7, AL, — B, is
bounded. Let us first show (3.6). By Lemma
2.2, we see that for each A € D, fun) ps hpn)p €
Al Moreover || foopllaz and [[hpen pll 4z are
bounded by constants independent of A. The
boundedness of D, : AL, — B, implies that

ilelgHDZ,uf@m,pHsﬂ < HDZ,uHilénggo()\),pHAﬁ
< C||Dg < o0,
and
ilelgllDZ,uhgo(A),pHB# < IIDZ,uHilelth<p<A),pllAg
< C||DglI< oo,

as desired. Also by elementary calculations, we
see that

n—1

=0

(1- |g<x>|2)am” Ny
(@((W)))7 (1= p(N)z) """

(3.8)



Sh. Rezaei, /IJIM Vol. 13, No. 2 (2021) 113-121

and
hf:()A)’p(z) =[]+ 129 +4)
i=1
(1= WA o))" |
(W((,O()\)))E (1 _ WZ)GJFTHLIJF;

We use the fact that

(Dguf) (2) = u(z)d (2) f "D (0(2))
+4(2)f ™ (p(2))

), for any A € D we obtain

(3.9)

with (3.8

mﬂ»=ﬂ1m+?+w
=0 p

(>\)1 P (Nu(N) i
(@ ()7 (1= (W)™

n—1

2
-l-[H(a-f—};—l—z)

=0

(Dz,ufcp(k

X

o(N)"W'(N)
5 (1

5] (3.10)
(@(()))7 (1= (X))o

and

( :ol,uhtp(/\),p)/()‘) -

< n

p(A
(w(p(N))

T u)
(1= [p)2)™He

P N

VW) )
(PP (1 — [

Multiplying both sides of equality (3.10) by p(|A])
then using the triangle inequality to obtain

(AL (V)]
(@eM)P (1 — [R5
1D uf o) 0115,
i 0(a+ +1)
(ot 3 (A W)

(W(SO()\)))% (1—|e(\) ‘2)n+1+%

(3.11)

. (3.12)
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In addition, we first multiply (3.10) by a + % +n

and (3.11) by a + %, then subtract such obtained
equalities and subsequently, we use the triangle

inequality to obtain
- 2 . o)™ " (M u(N)]
(CL + -+ Z) 1 2
g P (@) (1= )"

2 n
< (@t +ml(Dhafe) O

+%a+2WDwﬂwm@%ML (3.13)

Hence, multiplying both sides of inequality (3.13)
by pu(|A]), we get

“(’)")\<Pg)\)\n+lW(A)u()\)\ 2
(w(p(N)))? (1 — ](p()\)|2)n+1+;

Dn
175 (a+ 2 +1) 1D uf o) .55,
* 1 H
H?:1(a + % +1)
Replace now inequality (3.1) in (3.12), we de-
duce

(3.14)

D3 whopllB,-

RN N
()7 (1 - (V)"

a+ 2 n +1 n
H ( + 24 Z) HD%UﬁP()\)zPHBM
=0 P
1 n
| so,uhso(k),pHBu' (3.15)

+ - 00
TS (a + 24)
Let r € (0,1) be fix.
(3.15) we obtain
p(AD[w (V)]
T ot 2 S
(W(eW))7 (1 = [e(A)[2)" e
a+Zn+1
[Ty (e + 3 +1)
1
+ —~| D,
I (a+ % +i) 7

< Q.

If |p(A\)|> r, then from

HDg,ufw(/\),pHBu

h@()‘)vp HB#

(3.16)

Let us now turn to the case |p(\)|< r. For this
we take the function f(z) = 2", which belong to
Af. So by the boundedness of D7, , we have

Ly =supu(|Z!)IU( )< 0. (3.17)

zeD
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Hence, by the condition (w;) we get

M(P\WUI(AN i
(@(()))7 (1= (X))

(w( ))1(11_ 2)n+2 ilég:u(p\\)]u’()\”

< 00.

=

(3.18)

Take (3.16) and (3.18) we deduce (3.6). To show

(3.7), taking the function f(z) = z"*!. By the
boundedness of D7, and (3.17) we get
Ly := Sugu(|z|)\u(z)cp’(z)\< 00. (3.19)
zE

Now using similar arguments, from (3.14) and
(3.19) we can obtain (3.7).

It remains to prove the sufficiency of (3.6) and
(3.7). For any z € D and f € A%, we have

p(2DI(DE 1) (2)]<

u(l2D) 1D (p(2)¢ (2)u(z)
+ " (p(2)u(2)]

1 2 )”f” Py
W(p()r (- e

where the last step above follows by Lemma 2.3.
Taking the supremum with respect to z € D, then
applying (3.6) and (3.7), we deduce

sup u(|2))[(Dj . ) (2)|< o0,
zeD
Also

5 (0(0))u(0)]<
Clu(O)[[[f] 4z
(@(p(0))7 (1 = O™
we get that D, is bounded from A to By,.

Theorem 3.2 Assume that ¢ is an analytic self-
map of D, u € Hol(D), wu is normal and n is
a nonnegative integer. Let w be an admissible
weight. Then DJ ,, Al — B, is compact if and
only if

. pD
PO (w(p(2))7 (1~ [p(2) 27

=0, (3.20)
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(2D lu(2)¢'(2)] _
(1= lp(z))"
(3.21)

lim

PEI (w(e(2)))

Proof. Let us first show the necessity. Suppose
that D}, : AL, — B, is compact. Let (Ar)ren
be a sequence in I such that limy_,|@(Ax)|= 1
(if such sequence does not exist then conditions
(3.20) and (3.21) are vacuously satisfied). Clearly
(foan) p)ken and (hy(x,) p)ken are bounded in AL
and converge to zero, uniformly on the compact
subsets of I, because by (w1) and (wq), w is regu-
lar hence using (2.2), for ap+1 > 7 large enough,
we deduce

(1 —r)ep _ (1 —r)op
w(r) wwl(r) frl w(s)ds
(1 —r)artt o
N frlw(s)sds 7

as r — 1. On the other hand, for z in compact
subset K of D we have |z|< t for some ¢, since

C( = lp()?)°

(@ (Ae)7 (1 — p(h)2) ™7
C( = lp()?)"

T (wlpw)) P (1= 67

therefore, |f,(\,)pl— 0 as k — oo, on the K. So
the compactness of Dg ,, implies

| for)p(2)] <

(3.22)

1DG ufo(r)pllB.— 0,

and
105 uho(r) w118, 0,

as k — oo, from lemma 2.4. Thus, using the
inequality (3.14), we obtain

LAk e’ (Ar)u(Ar)|
1 " PR
(w(e)P (1 = () [2)" o
( 1
(M) TS (a + 2 +4)
1
o) [P T (@ + 2 +4)
— 0,

B,)

+(
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as k — oo. In addition, applying the inequality
(3.15), we get

p([ Akl (Aw)|
1 nt2
(W(p)F (1= [p(M) )"
( a+24+n+1
)" TSy (a + 2 +1)
XD fo(r)0lB,)
1
eI (@ + 2 + 1)
XHnguhw(Ak)vaBN)
— 0,

<

+(

as k — oco. as k — oo.

Conversely, to prove that Dwu is compact, it
suffices to show that D7 , fi — 0 in B, whenever
(fr)ken is a bounded sequence in A%, which con-
verges to zero uniformly on compact subsets of
D, by lemma 2.4. Suppose (3.20) and (3.21) hold
and let (fx)ren be as above. Then for any € > 0,
there exists a 6 € (0,1) such that

(
)v'(2)]

M(JZ‘ < (3.23)
(w(e(2)7 (L = |p(2)2)" >

pIDEE O] g0y
(w(p(2)))7 (1 = |p(2)]2)" 5

when § < |p(2)|< 1. Since Dg , is bounded, in
a way similar to the proof of Theorem 3.1, by
relations (3.17), (3.19), (3.23) and (3.24), also per
Lemma 2.3, for Q@ = {z € D : |p(2)|< §}, we have

suppi(|2))| (D pufr) (2)]<

igpu<|z|>|fk”+1><go<z>>¢'<z>u<z>|

+§1€1£u(121)!fk N(p(2)d (2)]
(2w (2)]

+ C( sup 1 n+2
2D\ (w(p(2)))7 (1 — |p(2)[?)
L s H(|i|)\ u(2)¢’ (2 )\n+1+2
€D\ () (1 [p(z) 2"
X || frll ar

<Ly sup| "D (p(2)) |+ Ly sup| £ ((2))]
2€Q z2€Q)

+ Cel[ frll az- (3.25)
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Since (fx)ken converges uniformly to zero on
the compact subsets {¢(0)} and |z|< J, apply-
ing Cauchy’s estimate we deduce f,g" — 0 as
k — oo, on compact subsets {¢(0)} and |z|< .
Using our last considerations in (3.25), we have
limkﬁooHD&ukaBM: 0. As e was arbitrary cho-
sen, we obtain that D, is compact.
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