
Available online at http://ijim.srbiau.ac.ir/

Int. J. Industrial Mathematics (ISSN 2008-5621)

Vol. 14, No. 2, 2022 Article ID IJIM-1477, 13 pages

DOI: http://dx.doi.org/10.30495/ijim.2022.19382

Research Article

Construction of Pseudospectral Meshless Radial Point Interpolation

for Sobolev Equation with Error Analysis

S. Abbasbandy ∗†, E. Shivanian ‡

Received Date: 2020-12-17 Revised Date: 2021-01-14 Accepted Date: 2021-01-19

————————————————————————————————–

Abstract

This work studies (2D) Sobolev equations by pseudospectral meshless radial point interpolation (PSM-
RPI). The Sobolev equations which are arisen in the fluid flow penetrating rocks, soils, or different
viscous media do not have an exact solution except in some special cases. Approximation of high-
order derivatives through operational matrices is possible. It is proved that the method is convergent
and unconditionally stable. Also, the important results for the Sobolev equation are validated for the
purpose of showing the ability of this technique.
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1 Introduction

T
he methods of meshfree or meshless are in

competition with mesh-based methods [10,

34]. Three kind of these methods are exist:

• These methods as weak forms are con-

structed in [1, 12, 14, 16, 24, 40, 46, 50].

• Those Meshless techniques benefit from col-

location approach for instance, the Kansa’s

method via radial basis functions (RBFs)

[2, 3, 8, 32, 30, 31, 51].
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• Meshless approaches of weak forms and col-

location tool [9, 44, 4, 5, 18, 36, 33, 45, 47,

57, 48, 58, 60, 28, 29, 59].

The problem of (2D) Sobolev equations is in-

troduced by

∂

∂t
(∇2w − w) + a(∇2w − w)

= f(x), x ∈ Λ ⊆ R2, (1.1)

with conditions

w(x, 0) = w0(x), x ∈ ∂Λ, (1.2)

∂w(x)

∂n
= 0, x ∈ ∂Λ, (1.3)

where n is the outward unit normal vector on

the boundary and x = (x, y). The existence and

uniqueness of such equations have been studied
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in [17, 21]. For its applications, see [13, 42, 62]

and for discussion about the exact analytical so-

lution refer to[6]. Therefore, applying numerical

techniques are unavoidable, regarding this issue

some studies are well done [20, 7, 22, 65, 39, 27,

41, 11, 19, 26, 66, 15, 61, 25].

In Ref. [37], authors studied a kind of Crank-

Nicolson finite volume element extrapolating al-

gorithm (CNFVEEA) holding fully second-order

accuracy based on suitable orthogonal decom-

position in order to numerically solving two-

dimensional (2D) Sobolev equations in the case

of Dirichlet boundary conditions. Also, for this

kind of problem, another type of extrapolated fi-

nite difference method has been discussed in [38].

In this study, we develop PSMRPI method. We

conclude that it is accurate through some exam-

ples. Moreover, it is proved that the method is

convergence and unconditionally stable.

2 Brief review of pseudo-
spectral (PS) methods

In this method the unknown function is written

in terms of Aj , j = 1, ..., N , as [63]

ŵ(x) =
N∑
j=1

sjAj(x), x ∈ R. (2.4)

PS is based on so-called differentiation matri-

ces or operational matrices, and approximation

of first derivative is done through the matrix D

as

w′ = Dw, (2.5)

in where w = [ŵ(x1), ŵ(x2), ..., ŵ(xN )]T is the

vector of unknowns ŵ at the collocation nodal

points. Take into account the expansion (2.4)

and assume Aj , j = 1, ..., N, be a set of ar-

bitrary linearly independent functions. Setting

x = xi, i = 1, ..., N, in Eq. (2.4) we obtain

ŵ(xi) =

N∑
j=1

sjAj(xi), i = 1, ..., N, (2.6)

or equivalently in matrix-form

w = Hc, (2.7)

where c = [s1, ..., sN ] is the vector of coefficient,

the matrix H is defined by Hij = Aj(xi), and

w is as defined previously. Benefiting linearity of

(2.4), computing the derivative of ŵ via differen-

tiating the basis functions gives

d

dx
ŵ(x) =

N∑
j=1

sj
d

dx
Aj(x), i = 1, ..., N, (2.8)

in the points xi and by matrix format, we have

w′ = Hxc, (2.9)

where Hx are expressed by d
dx
Aj(xi). In order

to obtain D it is sufficient to be relaxed about

inversion of matrix H, if so, then

w′ = HxH
−1w, (2.10)

where the operational (differentiation) matrix D

corresponding to Eq. (2.5) is represented via

D = HxH
−1. (2.11)

3 PSMRPI method

The previously explained method so-called PSM-

RPI has proved itself as an efficient and more

reliable tool some senses [64, 43, 23, 49, 54, 55,

53, 52, 56, 35].

Theorem 3.1. (Micchelli) Taking into ac-

count ψ ∈ C[0,∞) ∩ C∞(0,∞), the expression

(−1)mψ(m) is completely monotone on (0,∞) if

and only if the function ν = ψ(∥.∥22) is strictly

conditionally positive definite of order m ∈ N0 on

Rd.

Theorem 3.1 is very helpful to find condi-

tionally positive definite functions like for ex-

ample thin-plate or surface splines ψ(r) =

(−1)k+1r2k log(r) of order m = k + 1 on Rd.

Let w(x) at a node of interest x be approxi-

mated by

w(x) =

n∑
i=1

Ri(x)ai +

np∑
j=1

Pj(x)bj =

Rtr(x)a+Ptr(x)b. (3.12)
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Since we ensure about invertibility of the matrix

system, to extract coefficients ai and bj in Eq.

(3.12), via the interpolation idea Eq. (3.12) turns

to the following form

w(x) = Υtr(x)Ws =
n∑

i=1

νi(x)wi, (3.13)

where νi(x) satisfies

νi(xj) =

{
1, i = j, j = 1, 2, ..., n,

0, i ̸= j, i, j = 1, 2, ..., n,
(3.14)

indeed. Moreover, the basis functions hold the

partitions of unity, i.e.

n∑
i=1

νi(x) = 1. (3.15)

In the next stage, we provide differentiation ma-

trices to make it more appropriate for high-order

PDEs. Suppose that the number of total nodes

covering the domain of the problem i.e. Λ̄ =

Λ
∪
∂Λ, is N . Here, n depends on the point of

interest x (call it nx ) in Eq. (3.13) which is the

number of nodes included in the support domain

Λx corresponding to the point of interest x (for

example Λx can be a disk centered at x with ra-

dius rs). We have nx ≤ N and then Eq. (3.13)

can be modified as

w(x) = Υtr(x)Ws =

N∑
j=1

νj(x)wj . (3.16)

The derivatives of w(x) are easily obtained as

∂w(x)

∂x
=

N∑
j=1

∂νj(x)

∂x
wj ,

∂w(x)

∂y
=

N∑
j=1

∂νj(x)

∂y
wj , (3.17)

∂w(x)

∂z
=

N∑
j=1

∂νj(x)

∂z
wj ,

and for higher order derivatives of w(x)

∂sw(x)

∂xs
=

N∑
j=1

∂sνj(x)

∂xs
wj ,

∂sw(x)

∂ys
=

N∑
j=1

∂sνj(x)

∂ys
wj , (3.18)

∂sw(x)

∂zs
=

N∑
j=1

∂sνj(x)

∂zs
wj .

Denoting w
(s)
x (.) =

∂s(.)

∂xs
, w

(s)
y (.) =

∂s(.)

∂ys
,

w
(s)
z (.) =

∂s(.)

∂zs
and setting x = xi in Eq. (3.18):

W (s)
x = D(s)

x W,W (s)
y = D(s)

y W,

W (s)
z = D(s)

z W, (3.19)

where

W (s)
x =

(
w(s)
x1
, ..., w(s)

xN

)tr
,

W (s)
y =

(
w(s)
y1 , ..., w

(s)
yN

)tr
, (3.20)

W (s)
z =

(
w(s)
z1 , ..., w

(s)
zN

)tr
,

and

D(s)
xij

=
∂sνj(xi)

∂xs
,

D(s)
yij =

∂sνj(xi)

∂ys
, (3.21)

D(s)
zij =

∂sνj(xi)

∂zs
,

and

W = (w1, w2, ..., wN )tr. (3.22)

4 Application to Sobolev equa-
tion

In this section, we apply the previously explained

method to (1.1)-(1.3). Let consider:

∂w
(
x, (k + 1

2)∆t
)

∂t
∼=

1

∆t

(
wk+1(x)− wk(x)

)
, (4.23)
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∇2w

(
x, (k +

1

2
)∆t

)
∼=

1

2

(
∇2wk+1(x) +∇2wk(x)

)
, (4.24)

∂∇2w
(
x, (k + 1

2)∆t
)

∂t
∼=

1

∆t

(
∇2wk+1(x)−∇2wk(x)

)
, (4.25)

where wk(x) = w(x, k∆t), and ∇2w = ∆w:

∇2w =
∂2w

∂x2
+
∂2w

∂y2
. (4.26)

4.1 Time Discretization

Using the formulations (4.23)-(4.25), we dis-

cretize Eq. (1.1) in the form of finite difference

formula at t = (k + 1
2)∆t as:

1

∆t

(
∇2wk+1(x)−∇2wk(x)

)
−

wk+1(x)− wk(x)

∆t
+

a

(
1

2

(
∇2wk+1(x) +∇2wk(x)

)
−w

k+1(x) + wk(x)

2

)
=
fk+1(x) + fk(x)

2
, (4.27)

where fk = f(x, k∆t), denoting ζ =
a∆t

2
and

F k+1(x) =
∆t(fk+1(x) + fk(x))

2
, we get

∇2wk+1(x)−∇2wk(x)−
(wk+1(x)− wk(x)) +

ζ(∇2wk+1(x) +∇2wk(x)−
(wk+1(x) + wk(x)))

= F k+1(x), (4.28)

or

(1 + ζ)∇2wk+1(x)− (1 + ζ)wk+1(x) =

(1− ζ)∇2wk(x)− (1− ζ)wk(x)

+F k+1(x). (4.29)

Finally Eq. (4.29) can be rewritten as

(1 + ζ)

(
∂2wk+1(x)

∂x2
+
∂2wk+1(x)

∂y2

)
−(1 + ζ)wk+1(x)(1− ζ)×(
∂2wk(x)

∂x2
+
∂2wk(x)

∂y2

)
−(1− ζ)wk(x) + F k+1(x). (4.30)

If we apply the approximations (3.16) and (3.18):

(1 + ζ)

 N∑
j=1

∂2νj(x)

∂x2
wk+1
j

+
N∑
j=1

∂2νj(x)

∂y2
wk+1
j

− (1 + ζ)×

N∑
j=1

νj(x)w
k+1
j = (1− ζ)× N∑

j=1

∂2νj(x)

∂x2
wk
j +

N∑
j=1

∂2νj(x)

∂y2
wk
j

−

(1− ζ)
N∑
j=1

νj(x)w
k
j + F k+1(x). (4.31)

Let us set x = xi, i = 1, 2, ..., N , then

(1 + ζ)

 N∑
j=1

∂2νj(xi)

∂x2
wk+1
j +

N∑
j=1

∂2νj(xi)

∂y2
wk+1
j

− (1 + ζ)wk+1
i =

(1− ζ)

 N∑
j=1

∂2νj(xi)

∂x2
wk
j+ (4.32)

N∑
j=1

∂2νj(xi)

∂y2
wk
j

− (1− ζ)wk
i + F k+1

i ,
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where F k+1
i = F k+1(xi), i = 1, 2, ..., N , after-

wards by notations (3.21)

(1 + ζ)

 N∑
j=1

D(2)xijw
k+1
j +

N∑
j=1

D(2)yijw
k+1
j

− (1 + ζ)wk+1
i =

(1− ζ)

 N∑
j=1

D(2)xijw
k
j+ (4.33)

N∑
j=1

D(2)yijw
k
j

− (1− ζ)wk
i + F k+1

i .

In the matrix form, we have

AW k+1 = BW k + Fk+1, (4.34)

where

W k+1 =
(
wk+1
1 , wk+1

2 , . . . , wk+1
N

)T
,

W k =
(
wk
1 , w

k
2 , . . . , w

k
N

)T
,

Fk+1 =
(
F k+1
1 , F k+1

2 , . . . , F k+1
N

)T
,

Aij = (1 + ζ)
(
D(2)xij +D(2)yij

)
−(1 + ζ)δij ,

Bij = (1− ζ)
(
D(2)xij +D(2)yij

)
−(1− ζ)δij .

4.2 Imposing the boundary conditions

Imposing boundary conditions (1.3), we have

n1(xi)
∂w(xi)

∂x
+ n2(xi)

∂w(xi)

∂y
= 0,

i = 1, 2, ..., N∂Λ, (4.35)

where n = n1(xi)i+n2(xi)j , is the outward unit

normal on the boundary ∂Λ at xi ∈ ∂Λ. Eq.

(4.35) can be rewritten as

n1(xi)

N∑
j=1

∂νj(xi)

∂x
wj + n2(xi)×

N∑
j=1

∂νj(xi)

∂y
wj = 0,

i = 1, 2, ..., N∂Λ. (4.36)

Eq. (4.36) can be given as

n1(xi)

N∑
j=1

Dxijwj + n2(xi)

N∑
j=1

Dyijwj

= 0, i = 1, 2, ..., N∂Λ, (4.37)

or

N∑
j=1

(
n1(xi)Dxij + n2(xi)Dyij

)
wj = 0,

i = 1, 2, ...N∂Λ. (4.38)

Now, we consider the block matrices in Eq. (4.34)

based on all collocation points and therefore

A′W k+1 = B′W k + F′k+1. (4.39)

5 Stability of time discretiza-
tion scheme

Theorem 5.1. Suppose wk ∈ H2(Λ), k =

0, 1, . . . ,K with K∆t = T , is the solution of Eq.

(4.29) satisfying the boundary condition (1.3), if

the function wk and its derivatives with respect to

x and y be bounded on Λ then

∥wk+1∥2≤
(
1− ζ

1 + ζ

)k+1

∥w0∥2+

1

2ζ

{
1−

(
1− ζ

1 + ζ

)k+1
}

×(
(1− ζ)M +max0≤l≤K∥F l∥2

)
.

Proof. Multiplying Eq. (4.29) by wk+1 and inte-

grating on Λ we obtain

(1 + ζ)(∇2wk+1, wk+1)

−(1 + ζ)(wk+1, wk+1) =

(1− ζ)(∇2wk, wk+1)− (1− ζ)×
(wk, wk+1) + (F k+1, wk+1). (5.40)

By using the following Green’s formula:∫
Λ
∇v · ∇wdx =

∫
∂Λ
v
∂w

∂n
ds−

∫
Λ
v∆wdx,

where
∂w

∂n
=
∂w

∂x
n1 +

∂w

∂y
n2
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is the normal derivative, we have

−(1 + ζ)(∇wk+1,∇wk+1)−
(1 + ζ)∥wk+1∥22= −(1− ζ)(wk, wk+1)−
(1− ζ)(∇wk+1,∇wk) + (F k+1, wk+1),

or equivalently

(1 + ζ)(∇wk+1,∇wk+1) +

(1 + ζ)∥wk+1∥22= (1− ζ)(wk, wk+1) +

(1− ζ)(∇wk+1,∇wk)− (F k+1, wk+1).

Obviously the value ζ goes to zero as the time

stepping ∆t tends to zero. Therefore, having ∆t

small enough, both 1+ζ and 1−ζ will be positive.
Now, we have

(1 + ζ)∥wk+1∥22≤ (1− ζ)∥wk∥2∥wk+1∥2
+(1− ζ)M∥wk+1∥2+∥F k+1∥2∥wk+1∥2,

whereM is big enough positive constant. By sim-

plifying the above inequality, it turns to

(1 + ζ)∥wk+1∥2≤ (1− ζ)∥wk∥2+
(1− ζ)M + ∥F k+1∥2, (5.41)

or equivalently

∥wk+1∥2≤
1− ζ

1 + ζ
∥wk∥2+

1− ζ

1 + ζ
M +

1

1 + ζ
max0≤l≤K∥F l∥2. (5.42)

Applying once again the above equation to the

first term of the right hand, we have

∥wk+1∥2≤
(
1− ζ

1 + ζ

)2

∥wk−1∥2+(
1− ζ

1 + ζ

)2

M +
1− ζ

1 + ζ

1

1 + ζ
×

max0≤l≤K∥F l∥2+
1− ζ

1 + ζ
M +

1

1 + ζ
max0≤l≤K∥F l∥2. (5.43)

If we continue this strategy, then we get

∥wk+1∥2≤
(
1− ζ

1 + ζ

)k+1

∥w0∥2+

M

{(
1− ζ

1 + ζ

)k+1

+ · · ·+
(
1− ζ

1 + ζ

)}
+

1

1 + ζ
max0≤l≤K∥F l∥2×{(

1− ζ

1 + ζ

)k

+ · · ·+
(
1− ζ

1 + ζ

)
+ 1

}
,

(5.44)

finally

∥wk+1∥2≤
(
1− ζ

1 + ζ

)k+1

∥w0∥2+

1

2ζ

{
1−

(
1− ζ

1 + ζ

)k+1
}

×(
(1− ζ)M +max0≤l≤K∥F l∥2

)
,

and the proof is complete.

Now, the following stability result holds.

Theorem 5.2. If the solution of the problem

(1.1)-(1.3) with a > 0 and its derivatives with

respect to x and y be bounded on Λ then the nu-

merical method defined by Eq. (4.29) is stable

with L2 − norm in the sense that

∥σk∥2≤ ∥σ0∥2+Const.

Proof. Denote the error

σ(x) = wk(x)−W k(x),

where wk and W k are the exact and approximate

solutions to Eq. (4.29). Therefore, it satisfies

(1 + ζ)∇2σk+1(x)− (1 + ζ)σk+1(x) =

(1− ζ)∇2σk(x)− (1− ζ)σk(x), (5.45)

with

∂σk(x)

∂n
|∂Λ= 0.
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Now from Theorem 5.1 and having a > 0, we

obtain

∥σk+1∥2≤
(
1− ζ

1 + ζ

)k+1

∥σ0∥2+

(1− ζ)M

2ζ

{
1−

(
1− ζ

1 + ζ

)k+1
}

≤ ∥σ0∥2+
(1− ζ)M

2ζ
. (5.46)

6 Numerical Results

For implementation, the radius of support do-

main (that is a circle), is considered rs = 3.2h,

where h is the nodal distance in both directions.

This size is significant enough to have sufficient

number of nodes (nx) and gives appropriate ba-

sis functions. In Eq. (3.12), we set np = 21, and

define

AbsoluteError(x) = |wexact(x)− wapprox(x)| ,
(6.47)

and relative error as

RelativeError(x) =
AbsoluteError(x)

∥wexact(x)∥∞
. (6.48)

Example 6.1. Consider the problem (1.1)-(1.3)

with the exact solution

w(x) = sin(t) sinh(x) sinh(y),

Λ = [0, 1]2 and w0(x) = 0. Fig. 1 shows the nu-

merical PSMRPI solutions with ∆t = 0.01 and

Fig. 2 reveals the AbsoluteError. Fig. 3 is for

∆t = 0.1. The results show the convergence and

stability. Stability of the mentioned approach for

this example is inspected separately in Fig. 4

when ∆t = 0.01.

Example 6.2. Like pervious example, consider

w(x) = exp(t)
(
1− x2 − y2

)
with w0(x) = 1 − x2 − y2. The domain of the

problem as shown in Fig. 5 is defined by Λ =

{(x, y) : x2+y2 ≤ 1}. Fig. 6 shows the numerical

solutions for ∆t = 0.001 and Fig. 7 reveals the

RelativeError. Fig. 8 is for ∆t = 0.01. Figures

show the convergence and stability. The Fig. 9 is

plotted when ∆t = 0.001.
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Figure 1: The solution output of PSMRPI for Ex-
ample 1 with N = 441.
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Figure 2: The AbsoluteError in Example 1 with N =
441 and ∆t = 0.01.
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Figure 3: The AbsoluteError in Example 1 with N =
441 and ∆t = 0.1.
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Figure 4: The AbsoluteError during the time in the
range [0, 100] for Example 1 with N = 441.
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Figure 6: The solution output of PSMRPI for Ex-
ample 2 with N = 347.
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Figure 7: The RelativeError in Example 2 with N =
347 and ∆t = 0.001.
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Figure 8: The RelativeError in Example 2 with N =
347 and ∆t = 0.01.
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Figure 9: The RelativeError during the time in the
range [0, 100] for Example 2 with N = 347.

7 Conclusions

In this manuscript, quasi-spectral mesh radial

point interpolation (PSMRPI) is improved to the

Sobolev equations. This is a two-dimensional

time-dependent diffusion equation, and depen-

dents on Neumann’s type of boundary conditions.

Because the method is a truly mesh-free tech-

nique, the complexity of the domain is removed

by scattered nodal points. It has also been shown

that the unconditional method is somehow stable

with respect to time.
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