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Abstract

In this paper, first the Newton’s divided difference interpolation method based on the gH difference
on fuzzy data is introduced. Then the numerical methods entitled fuzzy Euler and modified fuzzy
Euler are used to solve fuzzy impulsive initial value problem. Moreover the algorithms for the fuzzy
impulsive initial value problem are explained and their local truncation errors are obtained in details.
Finally, for more illustration some numerical examples are solved.
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1 Introduction

T
he purpose of this paper is to introduce a nu-
merical algorithm for solving the great cat-

egories of impulsive fuzzy differential equations.
Analytical solving of these equations is complex
or impossible. Indeed, until now, was not in-
troduced any numerical method for solving this
equations. In recent years, with introducing gen-
erated Hukuhara difference, a useful way for solv-
ing fuzzy initial value problems by the fuzzy nu-
merical methods is created. In most recently, [2]
by using gH difference has obtained full fuzzy Eu-
ler’s method for solving fuzzy IVP. In this paper,
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first with the idea taken from that paper [2] and
using gH difference, we obtained fuzzy modified
Euler’s method. In the following, we presented
a numerical algorithm for solving impulsive fuzzy
initial value problems with obtaining full fuzzy
method. The algorithm is discussed in detail
and used for solving three numerical examples,
and the numerical results were shown in the local
truncation error tables and plotted graphs.
In this paper, we consider First-order impulsive
differential equation [4, 5, 7, 8, 11] by fuzzy initial
value [9], So we have First-order impulsive fuzzy
differential equation as the following

y′gH(t) = f(t, y(t)), t ∈ J = [0, T ],

t ̸= tk, k = 1, 2, . . . , N, (1.1)

△y|t=tk= Ik(y(tk)), (t = tk), (1.2)

y(t0) = y0. (1.3)
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Where y0 ∈ RF and RF is the set of fuzzy num-
bers, by considering J = [0, T ], f : J ×RF → RF

and Ik : RF → RF , k = 1, · · · , N are given func-
tions. We have 0 = t0 < t1 < · · · < tN < tN+1 =
T , and △y|t=tk= y(t+k ) ⊖gH y(t−k ), k = 1, · · · , N ,
y(t+k ) and y(t−k ) represent the right and left lim-
its of y(t) at t = tk, where ⊖gH is generated
Hukuhara difference.

2 Basic preliminaries

In this section, we recall the basic definitions and
theorems that we need in the paper. The follows
results are well known:

Definition 2.1. [3] The generalized Hukuhara
difference of two fuzzy numbers is defined by

u⊖gH v = w ⇔

{
(i)u = v ⊕ w;

or (ii)u = v ⊕ (−1)w.

The conditions for the existence of u⊖gH v ∈ RF

are given in [3].

Definition 2.2. [3] Let be two fuzzy numbers;
then

(i) If the gH-difference exists, it is unique;

(ii) u ⊖gH v = u ⊖H v or u ⊖gH v = −(v ⊖H u)
whenever the expression on the right exist; in
particular, u⊖gH u = u⊖H u = 0;

(iii) If u⊖gHv exists in the sense (i), then v⊖gHu
exist in the sense (ii) and vice versa;

(iv) (u+ v)⊖gH v = u;

(v) 0⊖gH (u⊖gH v) = v ⊖gH u;

(vi) u⊖gHv = v⊖gHu = w if and only if w = −w
furthermore w = 0 if and only if u = v.

Definition 2.3. [3] The Hausdorff distance be-
tween fuzzy numbers is given by d : RF × RF →
R+ × {0} as D(u, v) = supmaxα∈[0,1]{|u−(α) −
v−(α)|, |u+(α) − v+(α)|}. The metric space
(RF , d) is complete, separable and following prop-
erties of the metric are valid:

1. d(u⊕ w, v ⊕ w) = d(u, v), ∀u, v, w ∈ RF ,

2. d(u⊕ w,w ⊕ z) ≤ d(u, v) + d(w, z),

∀u, v, w, z ∈ RF ,

3. d(λu, λv) = |λ|d(u, v), ∀λ ∈ R, u, v ∈ RF .

Definition 2.4. [6] For any decision maker,
whether pessimistic (α = 0), optimistic (α = 1),
or neutral (α = 0.5), the ranking function of the
trapezoidal fuzzy number Ã = (a, b, c, d;w) which
maps the set of all fuzzy numbers to a set of real

numbers is defined as R(Ã) =

√
x20 + y20 which is

the Euclidean distance from the Circumcenter of
the Centroids and the original point. Using the
above definitions we define ranking between fuzzy
numbers as follows Let Ã and Ãj two fuzzy num-
bers, then

(i) If R(Ãi) > R(Ãj), then Ãj > Ãj;

(ii) If R(Ãi) < R(Ãj), then Ãj < Ãj;

(iii) If R(Ãi) = R(Ãj), then in this case the dis-
crimination of fuzzy numbers is not possible.
For a more detailed explanation, see [6].

Definition 2.5. [2] Consider f : [a, b] → RF is
gH-differentiable such that type of differentiability
f in [a, b] dont change. Then for a ≤ s ≤ b

(i) If is [i − gH]-differentiable then f ′
i,gH(t) is

(FR)-integrable over [a, b]

f(s) = f(a)⊕
∫ s

a
f ′
i,gH(t)dt.

(ii) If f(t) is [ii−gH]-differentiable then f ′
ii,gH(t)

is (FR)-integrable over [a, b]

f(a) = f(s)⊕ (−1)

∫ s

a
f ′
i,gH(t)dt.

The conditions for t0 ∈ Ck
gH([0, T ],RF ) is

given in [2].

Definition 2.6. [1] Let T = [a, b] and S =
[c, d] be two closed intervals of real numbers, then

[a, b]/[c, d] =
[
min(

a

c
,
a

d
,
b

c
,
b

d
),max(

a

c
,
a

d
,
b

c
,
b

d
)
]
,

provided 0 /∈ [a, b]. The extremes of the resultant
interval are given in the following table.

Definition 2.7. [3] Let f : [a, b] → RF and
x0 ∈ [a, b]. We say that f is strongly generalized
Hukuhara differentiable at x0 (gH-differentiable
for short) if there exists an element f ′

G ∈ RF ,
such that, for all h > 0 sufficiently small,
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Table 1: Table for computing the extremes of the division of two closed intervals.

T = [a, b] S = [c, d] T/S

0 ≤ a ≤ b 0 < c ≤ d
[a
d
,
b

c

]
c ≤ d < 0

[ b
d
,
a

c

]
a ≤ 0 ≤ b 0 < c ≤ d

[a
c
,
b

c

]
c ≤ d < 0

[ b
d
,
a

d

]
a ≤ b ≤ 0 0 < c ≤ d

[a
d
,
b

c

]
c ≤ d < 0

[a
c
,
b

d

]

(i) ∃f(x0 + h)⊖H f(x0), f(x0)⊖H f(x0 − h) and

lim
h→0

f(x0 + h)⊖H f(x0)

h

= lim
h→0

f(x0)⊖H f(x0 − h)

h

= f ′
G(x0).

Or

(ii) ∃f(x0)⊖H f(x0+h), f(x0−h)⊖H f(x0) and

lim
h→0

f(x0)⊖H f(x0 + h)

−h

= lim
h→0

f(x0 − h)⊖H f(x0)

−h

= f ′
G(x0).

Or

(iii) ∃f(x0+h)⊖H f(x0), f(x0−h)⊖H f(x0) and

lim
h→0

f(x0 + h)⊖H f(x0)

h

= lim
h→0

f(x0 − h)⊖H f(x0)

−h

= f ′
G(x0).

Or

(iv) ∃f(x0)⊖H f(x0+h), f(x0)⊖H f(x0−h) and

lim
h→0

f(x0)⊖H f(x0 + h)

(−h)

= lim
h→0

f(x0)⊖H f(x0 − h)

h

= f ′
G(x0).

Definition 2.8. [2] Let f : (a, b) → RF . We say
that f(t) is gH-differentiable of the nth-order at
whenever the function f(t) is gH-differentiable of
the order i, i = 1, · · · , n−1 at t0 with no switching

point on [a, b]. Then there exist f
(n)
gH (t0) ∈ RF

such that

f
(n)
gH (t0) = lim

h→0

f (n−1)(t0 + h)⊖gH f (n−1)(t0)

h

In section 3, we will obtain full fuzzy modified
Euler’s method based on generating Hukuhara
difference. In section 4, we use this method in the
numerical algorithm for solving impulsive fuzzy
initial value problem. In the following, in section
5, we present error and consistent theorem and
prove these theorems for introducing full fuzzy
modified Euler’s method. And finally, in section
6, we solve three numerical examples and show
results with local truncation error and plotted
graphs.

3 Fuzzy Modified Euler’s
method

In this section we introduce and prove necessary
fuzzy definitions and fuzzy theorems to achieve
formulation of full fuzzy modified Euler’s method.
In all of the theorems, we have assumed that the
generated Hukuhara difference is an existence and
we limit the discussion to the case that all of
the used fuzzy numbers are the trapezoidal fuzzy
numbers.
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3.1 Fuzzy Newton’s Divided Differ-
ence

Theorem 3.1. The fuzzy n-th Newton’s divided
difference between the crisp points t0, t1, . . . , tn as
follows form

f [(t0, y(t0)), (t1, y(t1)), . . . , (tn, y(tn))] =

f [(t0, y(t0)), (t1, y(t1)), . . . , (tn−1, y(tn−1))]

t0 − tn

⊖gH
f [(t1, y(t1)), (t2, y(t2)), . . . , (tn, y(tn))]

t0 − tn
.

(3.4)

Proof. Let n + 1 distinct fuzzy data(
ti, f(ti, y(ti))

)
; i = 0, 1, · · · , n; as interpo-

lation nodes. Let the following set as the crisp
polynomial basic functions

{1, (t− t0), (t− t0)(t− t1), · · · , (t− t0)(t− t1) · · · (t− tn)}.

Let p(t) was fuzzy interpolation polynomial of
fuzzy function f(t, y(t)) in points t0, t1, . . . , tn

p(t) = a0 ⊕ [a1 ⊙ (t− t0)]⊕ [a2 ⊙ (t− t0)(t− t1)]

⊕ · · · ⊕ [an ⊙ (t− t0)(t− t1) · · · (t− tn)].

According to interpolation condition p(ti) =
f(ti, y(ti)); i = 0, 1, · · · , n; we can obtain interpo-
lation coefficients ai; (i = 0, 1, · · · , n). By satisfy-
ing interpolation condition, for t = t0 and t = t1,
respectively we obtain

a0 = f(t0, y(t0)),

and

a1 =
f(t1, y(t1))⊖gH f(t0, y(t0))

t1 − t0
.

In this way, Fuzzy Newton’s Divided Difference
for another fuzzy data i = 2, · · · , n; is calculated.
And we get iterative formula for Fuzzy Newtons
Divided Difference. So f [(ti, y(ti)), (ti+1, y(ti+1))]
and f [(ti, y(ti)), (ti+1, y(ti+1)), (ti+2, y(ti+2))], re-
spectively obtained as following for

f [(ti, y(ti)), (ti+1, y(ti+1))]

=
f(ti, y(ti))⊖gH f(ti+1, y(ti+1))

ti − ti+1
,

f [(ti, y(ti)), (ti+1, y(ti+1)), (ti+2, y(ti+2))] =

f [(ti, y(ti)), (ti+1, y(ti+1))]

ti − ti+2
⊖gH

f [(ti, y(ti)), (ti+1, y(ti+1)), (ti+2, y(ti+2))]

ti − ti+2
.

By continuing this process fuzzy Newtons di-
vided difference for m + 2 fuzzy data denoted
by f [(t, y(t)), (t0, y(t0)), · · · , (tm, y(tm))] will ob-
tain as following form

f [(t, y(t)), (t0, y(t0)), · · · , (tm, y(tm))] =

f [(t, y(t)), (t0, y(t0)), · · · , (tm−1, y(tm−1))]

t− tm

⊖gH
f [(t0, y(t0)), · · · , (tm, y(tm))]

t− tm
. (3.5)

Remark 3.1. Now we can introduce
fuzzy Newton’s divided difference for
f [(tn, y(tn)), (tn+1, y(tn+1))], as following form

f [(tn, y(tn)), (tn+1, y(tn+1))]

=
f(tn+1, y(tn+1))⊖gH f(tn, y(tn))

tn+1 − tn
. (3.6)

3.2 Fuzzy Newton’s Divided Differ-
ence Interpolation

Theorem 3.2. Fuzzy Newton’s divided difference
interpolation polynomial on points t0, t1, . . . , tn
defines as following form

p(t) = f [((t0, y(t0))]⊕
(
(t− t0)⊙

f [(t0, y(t0)), (t1, y(t1))]
)

⊕ · · · ⊕
(
(t− t0) · · · (t− tn−1)⊙

f [(t0, y(t0)), · · · , (tn, y(tn))]
)
.

Proof. By considering expression (3.5), setting i+
1 instead of and simplify, we obtain

f [(t, y(t)), (t0, y(t0)), · · · , (t1, y(t1))] =

f [(t0, y(t0)), · · · , (ti+1, y(ti+1))]⊕
(
(t− ti+1)

⊙ f [(t, y(t)), (t0, y(t0)), · · · , (ti+1, y(ti+1))]
)
.

(3.7)

By setting 0, 1, · · · , n−1 instead of i respectively,
inequality (3.7), calculation and simplify we ob-
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tain

f(t, y(t)) = f [(t0, y(t0))]⊕
(
(x− x0)

⊙ f [(t0, y(t0)), · · · , (t1, y(t1))]
)
⊕ · · ·⊕(

(t− t0)(t− t1) · · · (t− tn−1)

⊙ f [(t0, y(t0)), · · · , (tn, y(tn))]
)

⊕
(
(t− t0)(t− t1) · · · (t− tn)

⊙ f [(t, y(t)), (t0, y(t0)), · · · , f(tn, y(tn))]
)
.

By considering

p(t) = f [(t0, y(t0))]⊕
(
(t− t0)⊙

f [(t0, y(t0)), (t1, y(t1))]
)
⊕ · · ·⊕

((t− t0)(t− t1) · · · (t− tn−1)

⊙ f [(t0, y(t0)), · · · , f(tn, y(tn))]), (3.8)

R(t) = ((t− t0)(t− t1) · · · (t− tn)⊙
f [(t, y(t)), (t0, y(t0)), · · · , f(tn, y(tn))]). (3.9)

We have

f(t, y(t)) = p(t)⊕R(t).

According to this point that the error of the in-
terpolation polynomial at the each point is zero,
we conclude that for

f(t, y(t)) = p(ti) (i = 0, 1, · · · , n).

According to that point, interpolation polynomial
is unique, so the expression (3.8) is Fuzzy New-
ton’s divided difference interpolation polynomial.
Expression (3.9) is called error of interpolation
polynomial.

Remark 3.2. So Newton’s divided Differ-
ence linear interpolation polynomial for fuzzy

data
(
tn, f(tn, y(tn))

)
,
(
tn+1, f(tn+1, y(tn+1))

)
,

obtains as following form

p1(t) = f
(
tn, y(tn)

)
⊕

(
(t− tn)

⊙ f [(tn, y(tn)), (tn+1, y(tn+1))]
)
. (3.10)

According to expression (3.6), Indeed

p1(t) = f
(
tn, y(tn)

)
⊕

(
(t− tn)

⊙
f(tn+1, y(tn+1))⊖gH f(tn, y(tn))

tn+1 − tn
.

(3.11)

3.3 Fuzzy Trapezoidal Numerical Inte-
gration Method

Theorem 3.3. By applying fuzzy Newton’s di-
vided Difference linear interpolation polynomial
(3.11), the Fuzzy Trapezoidal Numerical Integra-
tion Method is as following form∫ tn+1

tn

f(t, y(t))dt ∼=
h

2
⊙(

f(tn, y(tn))⊕ f(tn+1, y(tn+1))
)
. (3.12)

Proof. By applying an expression (3.11), and by
changing the variable t = tn + θh, h = tn+1 −
tn, dt = hdθ, by considering δf(tn, y(tn)) =
f(tn+1, y(tn+1))⊖gH f(tn, y(tn)), we obtain fuzzy
Newton’s forward divided Difference interpola-
tion polynomial formula as following form

p1(t) = f(tn, y(tn))⊕ (θ ⊙ δf(tn, y(tn))). (3.13)

We apply (FR)-integrable in definition 2.5 over
interval on expression (3.13)∫ tn+1

tn

p1(t)dt =

∫ 1

0
f(tn, y(tn))hdθ ⊕ (θ⊙∫ 1

0

(
f(tn+1, y(tn+1))⊖gH f(tn, y(tn))

)
hdθ)

=
[
h⊙ f(tn, y(tn))

∫ 1

0
dθ

]
⊕[

h⊙ f(tn+1, y(tn+1))

∫ 1

0
θdθ

]
⊖gH[

h⊙ f(tn, y(tn))

∫ 1

0
θdθ

]
.

Finally, we obtain

∫ tn+1

tn

p1(t)dt =
h

2
⊙

(
f(tn, y(tn))⊕ f(tn+1, y(tn+1))

)
∫ tn+1

tn

f(t, y(t))dt ∼=
h

2
⊙

(
f(tn, y(tn))⊕

f(tn+1, y(tn+1))
)
.

3.4 Error of linear interpolation poly-
nomial

Theorem 3.4. Consider fuzzy interpolation

nodes
(
ti, f(ti, y(ti))

)
, 0 ≤ i ≤ n = 1; for

fuzzy function f(t, y(t)), and p(t) is fuzzy linear



226 M. Dirbaz et al., /IJIM Vol. 13, No. 3 (2021) 221-237

interpolation polynomial, derivative of function
f(t, y(t)) exist until nth order; then for each t̃,
exists unique δ from interval I[t0, · · · , tn, t̃], such
that

f(t̃, y(t̃))⊖gH p(t̃) =
w(t̃)⊙ f

(n+1)
gH (δ)

(n+ 1)!
. (3.14)

Where w(t) = (t − t0)(t − t1), and f
(n+1)
gH is

(n + 1)th order of gH-differentiability of defini-
tion (2.7).

Proof. For 0 ≤ i ≤ n = 1 we have t̃ ̸= ti be-
cause p(ti) = f(ti, y(ti)), 0 ≤ i ≤ n = 1. We can
find the fuzzy constant k = [k, k], such that the
function F (t) will zero, in the point t̃ as follows
form.

F (t) = f(t, y(t))− p(t)− kw(t), (3.15)

F (t) = f(t, y(t))− p(t)− kw(t). (3.16)

On interval [tn, tn+1] we have t−tn+1 ≤ 0, t−tn ≥
0, Thus in generality w(t) = (t− tn)(t− tn+1) ≤ 0
i.e. w(t) on [tn, tn+1] does not change sign, Indeed
(3.15) and (3.16) obtained as following form

F (t) = f(t, y(t))− p(t)− kw(t),

F (t) = f(t, y(t))− p(t)− kw(t).

We suppose that F (t) = F (t). According to ex-
pressions (3.15) and (3.16) are crisp, as well as the
error of interpolation polynomial theorem proof

[11] we obtain, k =
f (n+1)(δ)

(n+ 1)!
and k =

f
(n+1)

(δ)

(n+ 1)!
.

By

f(t̃, y(t̃))− p(t̃) =
w(t̃)f (n+1)(δ)

(n+ 1)!
,

and

f(t̃, y(t̃))− p(t̃) =
w(t̃)f

(n+1)
(δ)

(n+ 1)!
,

we conclude that[
f(t̃, y(t̃))− p(t̃), f(t̃, y(t̃))− p(t̃)

]
[w(t̃)f (n+1)(δ)

(n+ 1)!
,
w(t̃)f

(n+1)
(δ)

(n+ 1)!

]
∈ RF .

Or [
f(t̃, y(t̃))− p(t̃), f(t̃, y(t̃))− p(t̃)

]
[w(t̃)f (n+1)

(δ)

(n+ 1)!
,
w(t̃)f (n+1)(δ)

(n+ 1)!

]
∈ RF .

It means that finally we obtain

f(t̃, y(t̃))⊖gH p(t̃) =
w(t̃)⊙ f (n+1)(δ)

(n+ 1)!
.

3.5 Error of Fuzzy Trapezoidal Nu-
merical Integration Method

Theorem 3.5. By considering, ηn between crisp
points tn and tn+1, and fgH

′′ (t, y(t)) is continu-
ous. The error of Fuzzy Trapezoidal Numerical
Integration Method is as following form∫ tn+1

tn

f(t, y(t))dt⊖gH

[h
2

(
f(tn, y(tn))⊕

f(tn+1, y(tn+1))
)]

= −h3

12
f ′′
ii,gH

(
ηn, y(ηn)

)
.

Proof. By considering fuzzy linear interpolation
polynomial error of fuzzy function f(t, y(t))
(3.14), we have

f(t, y(t))dt⊖gH p1(t) =

(t− tn)(t− tn+1)

2!
⊙ f ′′

ii,gH(ηn, y(ηn)),

ηn ∈ [tn, tn+1]. (3.17)

On interval [tn, tn+1] we have t−tn+1 ≤ 0, t−tn ≥
0. Thus, in generality g(t) = (t−tn)(t−tn+1) ≤ 0
i.e. g(t) on [tn, tn+1] does not change sign, So
f ′′
ii,gH(ηn, y(ηn)) is (ii)-gH differentiable without
any switching point on the interval [tn, tn+1]. By
applying (FR)-integral in definition 2.5 over in-
terval [tn, tn+1] from (3.17), we obtain∫ tn+1

tn

f(t, y(t))dt⊖gH

∫ tn+1

tn

p1(t)dt =∫ tn+1

tn

(t− tn)(t− tn+1)

2!
⊙ f ′′

ii,gH(ηn, y(ηn))dt,∫ tn+1

tn

f(t, y(t))dt⊖gH

∫ tn+1

tn

p1(t)dt =

f ′′
ii,gH(ηn, y(ηn))

2
⊙

∫ tn+1

tn

(t− tn)(t− tn+1)dt.

(3.18)
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Where ηn is a number tn < ηn < tn+1. The right
hand side of integral by change of the variable
t = tn + θh, h = tn+1 − tn, dt = hdθ became as
following form∫ tn+1

tn

(t− tn)(t− tn+1)dt

=

∫ 1

0
hθ × h(θ − 1)× hdθ

= h3
∫ 1

0
(θ2 − θ)dθ = −h3

6
.

With an expression (3.16) we conclude∫ tn+1

tn

f(t, y(t))dt⊖gH

∫ tn+1

tn

p1(t)dt

= −h3

12
f ′′
ii,gH(ηn, y(ηn)).

Indeed, for expression (3.12) we obtain∫ tn+1

tn

f(t, y(t))dt⊖gH

[h
2
⊙

(
f(tn, y(tn))⊕ f(tn+1, y(tn+1))

)]
= −h3

12
f ′′
ii,gH

(
ηn, y(ηn)

)
.

3.6 Modified Euler’s Method

Consider the following fuzzy initial value problem

y′gH(t) = f(t, y(t)), t ∈ [0, T ], (3.19)

y(t0) = y0 ∈ RF .

Where y(t) is an unknown fuzzy function of crisp
variable t and f : [0, T ]×RF → RF is continuous,
also y′gH(t) is the generalized Hukuhara derivative
of y(t) such that the set of switching point is fi-
nite. Now we introduce Modified Eulers Method
for solving fuzzy initial value problem.
To derive Modified Euler’s Method, let partition
IN = {0 = t0 < t1 < · · · < tN = T} of the
interval [0, T ]. Where tk = kh, k = 0, 1, · · · , N .

Case 1.

Let us suppose that the unique solution of the
problem y(t) is [(i) − gH]-differentiable and be-
longs t0 ∈ C3

gH([0, T ],RF ) such that the type of

differentiability dose not change in [0, T ].
We apply (FR)-integrable on the fuzzy differen-
tial equation (3.19) over interval [tn, tn+1] as fol-
lows form∫ tn+1

tn

y′i,gH(s)ds =

∫ tn+1

tn

f(s, y(s))ds. (3.20)

According to (FR)-integrable in definition 2.5 and
fuzzy Trapezoidal numerical integration method
in theorem 3.3 on the left and right side of fuzzy
differential equation (3.18) over interval [tn, tn+1]
respectively we obtain∫ tn+1

tn

y′i,gH(s)ds = y(tn+1)⊖H y(tn), (3.21)

∫ tn+1

tn

f(s, y(s))ds ∼=
h

2
⊙

(
f(tn, y(tn))

⊕ f(tn+1, y(tn+1))
)
. (3.22)

Finally, we have modified Euler’s method for
Case1 as following form

y(tn+1)⊖H y(tn) ∼=
h

2
⊙

(
f(tn, y(tn))

⊕ f(tn+1, y(tn+1))
)
.

By setting k instead n and simplify

yk+1
∼= yk ⊕

[h
2
⊙

(
f(tk, y(tk))

⊕ f(tk+1, y(tk+1))
)]

.

According to the Error of Fuzzy Trapezoidal Nu-
merical Integration Method (3.17), we have

yk+1 = yk ⊕
[h
2
⊙

(
f(tk, y(tk))

⊕ f(tk+1, y(tk+1))
)]

− h3

12
f ′′
ii,gH

(
ηn, y(ηn)

)
.

We introduce numerical fuzzy modified Euler’s
method as

yk+1 = yk ⊕
[h
2
⊙

(
f(tk, y(tk))

⊕ f(tk+1, y(tk+1))
)]

. (3.23)
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Case 2.

Now, consider y(t) is [(ii)−gH]-differentable and
belongs to t0 ∈ C3

gH([0, T ],RF ) such that the type

of differentiability dose not change in [0, T ].
We apply (FR)-integrable over [0, T ] and fuzzy
integration, the differential equation (3.19) over
[tn, tn+1] to obtain∫ tn+1

tn

y′
ii,gH(s)ds =

∫ tn+1

tn

f(s, y(s))ds. (3.24)

By (FR)-integrable in definition 2.5 and fuzzy
Trapezoidal numerical integration method in the-
orem 3.3 on the fuzzy differential equation (3.24)
over interval [tn, tn+1] we obtain respectively∫ tn+1

tn

y′
ii,gH(s)ds = −(y(tn)⊖H y(tn+1)), (3.25)

∫ tn+1

tn

f(t, y(t))dt ∼=
h

2
⊙

(
f(tn, y(tn))

⊕ f(tn+1, y(tn+1))
)
. (3.26)

Finally, we have modified Euler’s method for
Case2 as following form

Case 3.

y(tn+1) ∼= y(tn)⊖gH

[
− h

2
⊙

(
f(tn, y(tn))

⊕ f(tn+1, y(tn+1))
)]

.

By setting k instead n, and by according to the
Error of Fuzzy Trapezoidal Numerical Integration
Method (3.12), we have

yk+1
∼= yk ⊖gH

[
− h

2
⊙

(
f(tk, y(tk))

⊕ f(tk+1, y(tk+1))
)]

⊕−h3

12
f ′′
ii,gH

(
ηn, y(ηn)

)
.

We introduce numerical fuzzy modified Euler’s
method as

yk+1 = yk ⊖gH

[
− h

2
⊙

(
f(tk, y(tk))

⊕ f(tk+1, y(tk+1))
)]

. (3.27)

4 Numerical Algorithm for
Solving IFIVP

We introduce a numerical algorithm for solving
first order impulsive fuzzy differential equation

with initial value, (Algorithm for Solving Impul-
sive Fuzzy Differential Equations). We consider
impulsive fuzzy differential equations (1.1), (1.2),
(1.3) it is possible to obtain approximation so-
lution for fixed value tz of parameter t by Al-
gorithm for Solving Impulsive Fuzzy Differential
Equations. Where tz > t0, at the moment t = tz.
The key idea of our numerical algorithm based on
full fuzzy method is taken from that paper [10].

4.1 Numerical Algorithm By Fuzzy
Euler’s Method

Step One:

Using fuzzy Euler’s method FEM. We solve the
function of argument t, by taking it from half-
segment (tk, tk+1], i.e. y

[j+1] = FEM(y[j]).

Case 1.

Let us suppose that the unique solution of the
problem y(t) is [(i) − gH]-differentiable and be-
longs to t0 ∈ C2

gH([0, T ],RF ) such that the type

of differentiability dose not change on [0, T ]:{
y0 = y(t0),

yk+1 = yk ⊕ [h⊙ f(tk, yk)], k = 0, 1, · · · , N − 1.

(4.28)

Case 2.

Now, consider y(t) is (ii)− gH-differentiable and
belongs to t0 ∈ C2

gH([0, T ],RF ) such that the type

of differentiability dose not change on [0, T ]:{
y0 = y(t0),

yk+1 = yk ⊖ [(−1)h⊙ f(tk, yk)], k = 0, 1, · · · , N − 1.

(4.29)

Remark 4.1. In the half-segment (t0, t1] we con-
sider y0 = y(t0), that this value is given by
problem initial condition, But in the other half-
segment (tk, tk+1] we take y(t+k ) for y0, i.e. y0 =
y(t+k ).

Step Two:

At the moment t = tk acts impulsive fuzzy oper-
ator Ik and brings rapidly changes of fuzzy func-
tions y that amounts

J(tk) = Ik

(
y(tk)⊕

⋆∑
p

J(tN )
)
, (4.30)
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∆y|t=tk= y(t+k )⊖gH y(t−k ) = Ik

(
y(t−k )

)
,

y(t+k )⊖gH y(t−k ) = Ik

(
y(t−k )

)

↔


(i) y(t+k ) = y(t−k ) + Ik

(
y(t−k )

)
,

or

(ii) y(t−k ) = y(t+k )− Ik

(
y(t−k )

)
,

where p = {ti | i < k},
∑⋆

p denotes the fuzzy sum-
mation.

Step Three:

The steps one and two are repeated while tk+1 ≤
tz.

Step Four:

We add a sum of all jumps to the function y

Y = y ⊕
⋆∑
q

J(ti). (4.31)

Where p = {ti | 0 < i < z},
∑⋆

q denotes the fuzzy
summation.

4.2 Numerical Algorithm By Fuzzy
Modified Euler’s Method

Step One:

Using fuzzy Modified Euler’s method (FEM),
we solve the functions of argument t by tak-
ing it from half-segment (tk, tk+1], i.e. y[j+1] =
FEM(y[j]).

Case 1.

Let us suppose that the unique solution of the
problem y(t) is [(i) − gH]-differentiable, and be-
longs to t0 ∈ C2

gH([0, T ],RF ) such that the type

of differentiability dose not change in [0, T ]:y0 = y(t0),

yk+1 = yk ⊕
[h
2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
.

(4.32)

Case 2.

Now, consider y(t) is [(ii) − gH]-differentiable,
and belongs to t0 ∈ C2

gH([0, T ],RF ) such that the

type of differentiability dose not change in [0, T ]:y0 = y(t0),

yk+1 = yk ⊖gH

[−h

2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
.

(4.33)

Remark 4.2. In the half-segment (t0, t1] we con-
sider y0 = y(t0), that is given by problem initial
condition, But in the other half-segment (tk, tk+1]
we take y(t+k ) for y0, i.e. y0 = y(t+k ).

Step Two:

At the moment t = tk acts impulsive fuzzy oper-
ator Ik, and brings rapidly changes of fuzzy func-
tions that amounts

J(tk) = Ik

(
y(tk)⊕

⋆∑
p

J(tN )
)
, (4.34)

∆y|t=tk= y(t+k )⊖gH y(t−k ) = Ik

(
y(t−k )

)
,

y(t+k )⊖gH y(t−k ) = Ik

(
y(t−k )

)

↔


(i) y(t+k ) = y(t−k ) + Ik

(
y(t−k )

)
,

or

(ii) y(t−k ) = y(t+k )− Ik

(
y(t−k )

)
,

where p = {ti | i < k},
∑⋆

p denotes the fuzzy sum-
mation.

Step Three:

The steps one and two are repeated while tk+1 ≤
tz.

Step Four:

We add a sum of all jumps to the function y

Y = y ⊕
⋆∑
q

J(ti). (4.35)

Where p = {ti | 0 < i < z},
∑⋆

q denotes the fuzzy
summation.
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5 Error Analysis

5.1 Local Truncation Error of fuzzy
Modified Euler’s Method

For numerical method written as following form,
we define the residual as Rk, given by

Case 1.

yk+1 = yk ⊕
[h
2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
,

Rk = yk+1 ⊖gH

[
yk ⊕

h

2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
.

Case 2.

yk+1 = yk ⊖gH

[
− h

2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
,

Rk = yk+1 ⊖gH

[
yk ⊖gH −

h

2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
.

Hence, the coefficient of fuzzy function is nega-
tive, is [(ii)-gH]-differentiable, so we have

Rk = −h3

12
⊙ f ′′

ii,gH

(
ηn, y(ηn)

)
,

τk = −h2

12
⊙ f ′′

ii,gH

(
ηn, y(ηn)

)
.

5.2 Consistent of Modified Euler’s
Method

Definition 5.1. [2] The fuzzy Euler’s method is
said to be consistent if

lim
h→0

max
tk≤b

D(τk, 0) = 0.

So consistency of fuzzy modified Euler’s method
analysis as following

Consider D
(
f ′′
ii,gH

(
ηn, y(ηn)

)
, 0
)
≤ M , we con-

clude

lim
h→0

max
tk≤b

D(τk, 0)

= lim
h→0

max
tk≤b

D
(
− h2

12
⊙ f ′′

ii,gH(ηn, y(ηn)), 0
)

= lim
h→0

−h2

12
max
tk≤b

D
(
f ′′
ii,gH(ηn, y(ηn)), 0

)
≤ lim

h→0
−h2

12
M = 0.

It means the fuzzy modified Euler’s method is con-
sistent.

5.3 Global Truncation Error of Modi-
fied Euler’s Method

Definition 5.2. [2] The numerical method is
convergent if the global truncation error goes to
zero as the step size goes to zero; in other words,
the numerical solution converges to the exact so-
lution:

lim
h→0

max
k

D(ek+1, 0) = 0

⇒ lim
h→0

max
k

D(y(tk+1), yk+1) = 0.

Definition 5.3. The global truncation error is
the agglomeration of the local truncation error
over all the iterations, assuming perfect knowl-
edge of the true solution at the initial time step.
For fuzzy modified Euler’s method case 1 (3.23)
and case 2 (3.27), the global truncation error,
ek+1, at tk+1 is respectively defined by

ek+1 = D(y(tk+1), yk+1) = D
(
y(tk+1),[

y0 ⊕ [
h

2
⊙ f(t0, y(t0))]⊕

[
h⊙ (f(t1, y1)⊕

f(t2, y2)⊕ · · · ⊕ f(tk, yk))
]
⊕

[
h

2
⊙ f(tk+1, yk+1)]

])
.

And

ek+1 = D(y(tk+1), yk+1) = D
(
y(tk+1),

[
y0⊖gH

[−h

2
⊙ f(t0, y0)]⊖gH [−h⊙ f(t1, y1)⊖gH

[−h⊙ f(t2, y2)]⊖gH · · · ⊖gH [−h⊙ f(tk, yk)]

⊖gH [−h

2
⊙ f(tk+1, yk+1)]

])
.

Theorem 5.1. Suppose that y′′gH(t) exists
and f(t, y(t)) is continuous and satisfies in
Lipschitz condition on the {t, y(t)| [0, p], y ∈
B(y0, q), p, q > 0}. Then Modified Euler’s
method converges to the solution of fuzzy the ini-
tial value problem.

Proof. Consider y(t) is (i)-gH differentiable, by

assumption dk = −h3

12
⊙ f ′′

ii,gH

(
ηn, y(ηn)

)
and

(3.23), the exact solution of the initial value prob-
lem satisfies

yk+1 = yk ⊕
[h
2
⊙

(
f(tk, yk)⊕ f(tk+1, yk+1))

]
+ dk.



M. Dirbaz et al., /IJIM Vol. 13, No. 3 (2021) 221-237 231

By use the distance it is concluded:

D(y(tk+1), yk+1) = D(y(tk), yk)⊕
h

2

[
D
(
f(tk, y(tk)), f(tk, yk)

)
+D

(
f(tk+1, y(tk+1)), f(tk+1, yk+1)

)]
+D(dk, 0).

Since f(t, y(t)) satisfies in Lipschitz condition

D
(
f(tk, y(tk)), f(tk, yk)

)
≤ LkD(y(tk), yk),

we have

D
(
y(tk+1), yk+1) ≤(

Lk +
1

2
L2
kh

)
D(y(tk), yk) +D(dk, 0).

Suppose that L = max0≤k≤N Lk and d =
max0≤k≤N D(dk, 0), We obtain

D(y(tk+1), yk+1) ≤(
L+

1

2
L2h

)
D(y(tk), yk) + d.

Therefore, the fuzzy function satis-
fies a Lipschitz condition. According
to that point f(t, y(t)) is continuous,
moreover d = max0≤k≤N−1D(dk, 0) =

−h2

12
max0≤t≤T D

(
f ′′
ii,gH(ηk, y(ηk)), 0

)
. And

D
(
f ′′
ii,gH(ηk, y(ηk)), 0

)
= 0. So the fuzzy

modified Euler’s method is Stable. Since the
method is consistent, we conclude the method in
convergent. Thus, limh→0D(y(tk+1), yk+1) → 0,
and (3.23) is converges.

5.4 Error of Fuzzy Numerical Algo-
rithm

By considering First-order impulsive fuzzy differ-
ential equations (1.1), (1.2), (1.3)

y′gH(t) = f(t, y(t)),

t ∈ J = [0, T ], t ̸= tk, k = 1, · · · , N,

∆y|t=tk= Ik(y(tk)) (t = tk),

y(t0) = y0.

We get the analysis error of numerical algorithm
in section 4 based on fuzzy modified Euler’s

method. We import small perturbations δ3 on
the right hand side of expression (1.3), then it
creates perturbation δ1, δ2 on the right hand side
of expressions (1.1) and (1.2), and we will have
the solution as following form

Y = y ⊕ δ ⊙ y. (5.36)

We got analysis with this perturbation, whether
we will have a stable numerical algorithm, and we
will have converged? By perturbation, we achieve
to first order perturbation impulsive fuzzy differ-
ential equation as following form

Y ′
gH(t) = f(t, y(t))⊕ [δ1 ⊙ f(t, y(t))],

t ∈ J = [0, T ], t ̸= tk, k = 1, · · · , N, (5.37)

Figure 1: Fuzzy Euler’s Method for exam-
ple (6.1)

Figure 2: Fuzzy Modified Euler’s Method
for example (6.1)

∆Y |t=tk= Y (t+k )⊖gH Y (t−k )

= Ik(y(t
−
k ))⊕ [δ2 ⊙ Ik(y(t

−
k )], (t = tk), (5.38)
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Table 2: The local truncation error for first interval of example (6.1).

Time F Euler F M Euler

0.1 1.33× 10−3 5× 10−5

0.2 2.93× 10−3 2.4× 10−4

0.3 4.85× 10−3 5.9× 10−4

0.4 7.14× 10−3 1.15× 10−3

0.5 9.84× 10−3 1.94× 10−3

0.6 1.304× 10−2 3.03× 10−3

0.7 1.677× 10−2 4.45× 10−3

0.8 2.114× 10−2 6.25× 10−3

0.9 2.624× 10−2 8.53× 10−3

Table 3: The local truncation error for second interval of example (6.1)

Time F Euler F M Euler

1.1 1.6979× 10−3 1.5033× 10−3

1.2 2.9094× 10−3 1.6632× 10−3

1.3 2.1465× 10−3 1.8435× 10−3

1.4 2.4123× 10−3 2.0463× 10−3

1.5 2.7099× 10−3 2.2748× 10−3

1.6 3.0434× 10−3 2.5319× 10−3

1.7 3.4168× 10−3 2.8212× 10−3

1.8 3.8349× 10−3 3.1464× 10−3

1.9 4.3028× 10−3 3.512× 10−3

Table 4: The local truncation error for last interval of example (6.1)

Time F Euler F M Euler

2.1 1.00423× 10−4 9.01× 10−5

2.2 1.1205× 10−4 9.963× 10−5

2.3 1.25× 10−4 1.1028× 10−4

2.4 1.3944× 10−4 1.2217× 10−4

2.5 1.5553× 10−4 1.3546× 10−4

2.6 1.7344× 10−4 1.5029× 10−4

2.7 1.934× 10−4 1.6684× 10−4

2.8 2.1564× 10−4 1.8531× 10−4

2.9 2.404× 10−4 2.0594× 10−4

3 2.6799× 10−4 2.2896× 10−4

Y (t0) = δ3y(t0). (5.39)

By considering expression (5.38) and using ex-
pression (5.36) we conclude

Y (t+k )⊖gH Y (t−k ) =

[y(t+k )⊖gH y(t−k )]⊕ δ2 ⊙ Ik(y(t
−
k )),

(
[y(t+k )⊕ δ ⊙ (y(t+k )]⊖gH [y(t−k )⊕ δ⊙

(y(t−k )]
)
⊖gH [y(t+k )⊖gH (y(t−k )]

= δ2 ⊙ Ik(y(tk)),

[δ ⊙ (y(t+k )]⊖gH [δ ⊙ (y(t−k )] = δ2 ⊙ Ik(y(tk)),

δ ⊙ [y(t+k )⊖gH y(t−k )] = δ2 ⊙ Ik(y(tk)).
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Table 5: The local truncation error for first interval of example (6.2)

Time F Euler F M Euler

0.1 1.203× 10−3 4.7× 10−5

0.2 2.172× 10−3 2.09× 10−4

1.3 2.942× 10−3 4.63× 10−4

0.489 3.544× 10−3 7.9× 10−4

0.5 4.00× 10−3 1.175× 10−3

0.6 4.335× 10−3 1.602× 10−3

0.7 4.567× 10−3 2.063× 10−3

0.8 4.714× 10−3 2.545× 10−3

0.9 4.79× 10−3 3.041× 10−3

Table 6: The local truncation error for first interval of example (6.2)

Time F M Euler

1.1 3.252× 10−5

1.2 3.561× 10−5

1.3 3.848× 10−5

1.4 4.135× 10−5

1.5 4.314× 10−5

1.6 4.473× 10−5

1.7 4.565× 10−5

1.8 4.575× 10−5

1.9 6.67978× 10−4

Table 7: The local truncation error for last interval of example (6.2)

Time F M Euler

2.1 1.3976× 10−6

2.2 1.5398× 10−6

2.3 1.689× 10−6

2.4 1.8449× 10−6

2.5 2.0074× 10−6

2.6 2.2958× 10−6

2.7 2.35× 10−6

2.8 2.531× 10−6

2.9 2.714× 10−6

3 2.901× 10−6

By using the ranking of fuzzy numbers, in defini-
tion 2.3

δ ⊙ [y(t+k )⊖gH y(t−k )] ≤ δ2 ⊙ Ik(y(tk)).

Finally by considering definition 2.6 we have

δ ≤ Ik(y(tk))

[y(t+k )⊖gH y(t−k )]
⊙ δ2. (5.40)

Without reduce of generality, since for expression
(4.33) is the same, we only consider fuzzy mod-
ified Euler’s method 3.23, for expressions (5.36)
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Table 8: The local truncation error for first interval of example (6.3)

Time F Euler F M Euler

3.1 6.46597× 10−3 3.63614× 10−4

3.2 2.28493× 10−2 2.85363× 10−3

3.3 4.14864× 10−2 8.13481× 10−3

3.4 5.888584× 10−2 1.59316× 10−2

3.5 7.33986× 10−2 2.56672× 10−2

Table 9: The local truncation error for second interval of example (6.3)

Time F Euler F M Euler

4.1 4.32516× 10−3 1.17608× 10−5

4.2 4.39935× 10−3 1.26349× 10−4

4.3 1.39573× 10−2 2.13926× 10−4

4.4 3.13065× 10−2 3.21227× 10−4

4.5 5.38253× 10−2 3.7512× 10−4

Table 10: The local truncation error for last interval of example (6.3)

Time F Euler F M Euler

5.1 4.99669× 10−5 7.58055× 10−6

5.2 4.9965× 10−4 7.58172× 10−6

5.3 4.9932× 10−3 7.67938× 10−5

5.4 4.99614× 10−3 7.5764× 10−4

5.5 4.99596× 10−2 7.57674× 10−4

and (5.38), we obtain
y0 = δ3y(t0),

yk+1 = yk ⊕
[h
2
⊙ δ1(f(tk, yk)

⊕f(tk+1, yk+1))
]
.

(5.41)

By setting k = 1, in (5.41), we obtain

Y1 = δ3y0 ⊕
[h
2
⊙ δ1(f(t0, y0)⊕ f(t1, y1))

]
.

According to the expression (5.36), we obtain

y1 ⊕ δ ⊙ y1 = δ3y0 ⊕
[h
2
⊙ δ1(f(t0, y0)⊕ .f(t1, y1))

]
.

By using the ranking of fuzzy numbers, in defi-
nition (2.3)

δ ≤
δ3y0 ⊕

h

2
⊙ δ1(f(t0, y0)⊕ f(t1, y1))

y1
. (5.42)

By δ3 → 0 we obtain δ1 → 0 and δ → 0, it means
the numerical algorithm is stable and converge to
the exact solution.
Without reduce of generality, since for k =
3, · · · , z is the same as for k = 2, we only con-
sider for k = 2 and according to the expression
(5.36), we obtain

y2 ⊕ δ ⊙ y2 = (y1(t
+
k )⊕ δ ⊙ y1(t

+
k )

⊕
[h
2
⊙ (δ1(f(t1, y1)⊕ f(t2, y2)))

]
.

By using the ranking of fuzzy numbers, in defini-
tion (2.3)

y2 ⊕ δ ⊙ y2 ≤ (y1(t
+
k )⊕ δ ⊙ y1(t

+
k )

⊕
[h
2
⊙ (δ1(f(t1, y1)⊕ f(t2, y2)))

]
.
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Figure 3: Fuzzy Euler’s Method for exam-
ple (6.2)

Finally, we obtain

δ ≤
(y1(t

+
k )⊕ δ ⊙ y1(t

+
k ))

y2
⊕[h

2
⊙ (δ1(f(t1, y1)⊕ f(t2, y2)))

]
y2

.

According to the expression (4.34) we obtain

δ ≤
δ3y0 ⊕ [

h

2
⊙ (δ1(f(t0, y0)⊕ f(t1, y1)))

y1

⊙ Ik(y(tk))⊙ δ2

[y(t+k )⊖gH y(t−k )]
. (5.43)

Upper bound obtained (5.43). Shows us for hav-
ing the stable numerical algorithm and converges
to exact solution, except need to δ3 → 0, more-
over, we need imported perturbation in right and
side of the expression (5.38) near to zero too, it
means δ2 → 0.
Under this condition we can say for k = 2, · · · , z,
the numerical algorithm introduced is stable and
converges to the exact solution

Figure 4: Fuzzy Modified Euler’s Method
for example (6.2)

Figure 5: Fuzzy Modified Euler’s Method
for example (6.3)

6 Numerical Result

Example 6.1. Consider the first order impulsive
fuzzy initial value problem

y′(t) = y(t), t ∈ [0, 3], (6.44)

y(t+k ) = 0.01y(t−k ), (6.45)

y(0) = (0.75 + 0.25r, 1.125− 0.125r). (6.46)

Where 0 ≤ r ≤ 1.
And by considering tz = 3.
The solution is calculated by using a numeri-
cal algorithm in section 4, and by considering
r = 0.9, h = 0.05, h = 0.025.
The global truncation error calculated by the
Hausdorff distance between fuzzy numbers is
given in definition 2.3.
The local truncation error, for example (6.1).
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Figure 6: Fuzzy Modified Euler’s Method
for example (6.3)

Example 6.2. Consider the first order impulsive
fuzzy initial value problem

y′(t) = −y(t), (6.47)

y(t+k ) = 0.01y(t−k ), (6.48)

y(0) = (0.75 + 0.25r, 1.125− 0.75r). (6.49)

Where 0 ≤ r ≤ 1.
And by considering tz = 3.
The solution is calculated by using a numeri-
cal algorithm in section 4, and by considering
r = 0.9, h = 0.05, h = 0.025.
The global truncation error calculated by the
Hausdorff distance between fuzzy numbers is
given in definition 2.3.

Tables (6), (7), (8) show us at all intervals
among pulse of the domain, the error of fuzzy
modified Euler’s method and error of Euler’s
method are stable. It shows the numerical al-
gorithm for solving linear impulsive differential
equation with the fuzzy initial equation by us-
ing fuzzy modified Euler’s method, and Euler’s
method is stable.

Example 6.3. Consider the first order impulsive
fuzzy initial value problem

y′(t) = −y2(t), (6.50)

y(t+k ) = 0.01y(t−k ), (6.51)

y(0) = (2.75 + 0.25r, 3.125− 0.125r). (6.52)

Where 0 ≤ r ≤ 1.
And by considering tz = 5.5.

The solution is calculated by using a numeri-
cal algorithm in section 4, and by considering
r = 0.9, h = 0.05, h = 0.025.
The global truncation error calculated by the
Hausdorff distance between fuzzy numbers is
given in definition 2.3.

Tables (8), (9), (10) show us at all intervals
among pulse of domain, the error of fuzzy modi-
fied Euler’s method is less than the error of Eu-
ler’s method. In the final point the error of fuzzy
modified Euler’s method is little, and it shows
the numerical algorithm for solving non-linear im-
pulsive differential equation with the fuzzy initial
equation by using fuzzy modified Euler’s method,
not only is acceptable but also is very satisfied.
The algorithm is converging to the exact solution
of the problem.

7 Conclusion

The plotted graphs and obtained global trunca-
tion error tables show the presented numerical al-
gorithm for solving impulsive fuzzy initial value
problem by using fuzzy modified Euler’s method
and fuzzy Euler’s method is stable, and presen-
tations are acceptable solution for this problem.
This algorithm can run with each fuzzy repeti-
tious method. As we now, solving this equation
is complex or impossible, but our paper can give
good ideas for solving impulsive fuzzy equations.
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