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Abstract

In this research we used forward-backward sweep method(FBSM) in order to solve optimal control
problems. In this paper, one hybrid method based on ERK method of order 4 and 5 are proposed
for the numerical approximation of the OCP. The convergence of the new method has been proved.
This method indicate more accurate numerical results compared with those of ERK method of order
4 and 5 for solving OCP.
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1 Introduction

O
ptimal control is an effective tool for using
physical, economic, engineering, biological

and other science models [2, 3, 4, 5]. Analytical
solving optimal control problem(OC) is often dif-
ficult or not affordable. Hence a lot of numerical
methods have been introduced to solve optimal
control problems [6]. In general, the numerical
methods of solving optimal control problems are
divided into three categories [7]: Direct meth-
ods, Indirect methods and Dynamic program-
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ming(DP). T. R.Goodman and G. N. Lance in
1956 and D. D. Morrison and his colleagues pub-
lished the first articles in direct methods [8, 9].
One of the reasons for the popularity of numeri-
cal methods and their impressive expansion is the
availability of many robust and ready-to-use opti-
mization algorithms (NLPsolvers) [10]. Another
reason is the software can easily contain differ-
ent types of inequality constraints. And like in-
direct methods, there is no need to calculate the
co-state equations. Whenever in the optimal tra-
jectory, instead of the initial condition, the final
condition is given, direct methods are used. In di-
rect method, an optimal control problem is first
discretized. Then it becomes a nonlinear opti-
mization problem or the nonlinear programming
problem and then NLP, is solved well, with op-
timization methods [10]. The main disadvantage
of these methods is that they produce only the
suboptimal or approximate solutions. The direct
methods are divided into three categories: di-
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rect shooting, multiple shooting and collocation.
In a direct shooting method, a differential equa-
tion system with two-point boundary condition
becomes a nonlinear optimization problem. Mul-
tiple shooting methods do not require explicit in-
tegration and an analytical process. The colloca-
tion method does not have a sensitivity to the
initialy guess and among these three methods,
the collocation is the fastest.Newton first intro-
duced an indirect method in 1686. The necessary
conditions were formulated in 1747 by Euler and
Lagrange. The same conditions were introduced
in 1834 more clearly in the form of the Hamilto-
nian function. The maximum principle was intro-
duced in 1954 by a Russian mathematician ”Pon-
tryagin” [11]. Indirect methods are based on the
pontryagin maximum principle(PMP), in which
the optimal control problem turns into a two-
point boundary value problem. Indirect methods
are the most accurate numerical method for solv-
ing optimal control problems, flexible and con-
vergent faster [12]. Unlike other numerical meth-
ods, they can produce a closed form for the an-
alytical solution of the problem. In the indirect
method, analytical processes obtain initial con-
dition equations, and the solution of a differen-
tial equation with two-point boundary condition,
require more time.The sensitive to co-state vari-
ables and a good initial guess for them can not
be considered are another disadvantages of the
method [12]. Since there are many methods for
solving the differential equations, so there is a
possibility of further research on indirect meth-
ods [3, 13, 14]. Richad Bellman wrote a book,
called Dynamic Programming(DP) in 1957 and
for the first time introduced (DP). In this method
an Optimal Control Problem is solved by algo-
rithms that use Hamilton-Jacoby-Bellman equa-
tion. The idea behind these algorithms is Bell-
man’s principle of optimality, which states that
each sub-optimal trajectory is self optimal.The
searches for the entire state space is the advan-
tage of this method and provides a global opti-
mizer by using rescursive Optimal Controls but
the disadvantage is that the dimension of the par-
tial differential equation is larg.
The forward-backward sweep method(FBSM) is
indirect numerical method for solving Optimal
Control Problems(OP), The first time by Lenhart

in the ”Optimal Control Applied to Biological
Models” Book, was introduced [3]. Convergence
of this method was proved by M. Mcasey, L.
Moua and W. Han in 2012 [16]. The RungKutta
method is used from the 4th-order for numerical
solving differential equation. The reason for this
naming is that the state equation in this method
solved by forward sweep method and the co-state
equation solved by backward sweep method. In
the FBSM method in recent years, the few ar-
ticles are written [17, 18, 19]. Instead of using
runge-kutta in the FBSM method,in this work,
we illustrate one implicit hybrid methods of or-
der 6 and then convert it’s into explicit methods
using explicit Runge-Kutta of orders 4 and 5 as a
predictor of the scheme. the stability and order of
trunation error of the methods discussed showing
that new methods have wide stability regions by
which more accurate results can be obtain com-
pared to the FBSMbased explicit Runge-Kutta
methods of orders 4 and 5. we apply numeri-
cal methods with wide stability regions as well as
good accuracy in order to analyse stiff problems
of ODEs which may be appeared in OCP. The
hybrid method is suitable for this purpose.

2 Hybrid methods and order of
truncation errors
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Figure 1: Stability region of New method , Rk4 and
Rk5

For the numerical solution of initial value prob-
lems (IVP) of the form

x′ = f(t, x) , x ∈ Rn , x(t0) = x0 , t0 ≤ t ≤ t1,
(2.1)

where f : [t0, t1]× Rn → Rn, one can use an ex-
plicit or implicit method. Methods based of off-
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Table 1: Error of control values in Example 4.1 for FBSM Rk4 , New6 4.

h time FBSM Rk4 New6 4

1
20 0.00 8.6132e-2 1.3865e-3
1
20 0.25 2.5778e-2 9.4612e-4
1
20 0.50 1.8349e-3 5.6750e-4
1
20 0.75 3.6866e-3 2.5284e-4
1
20 0.90 2.2211e-3 9.3455e-5
1
20 1.00 0.0000000 0.0000000
1
50 0.00 3.5290e-2 4.4031e-4
1
50 0.25 1.0829e-2 3.1395e-4
1
50 0.50 4.2201e-4 1.9102e-4
1
50 0.75 1.6950e-3 9.2582e-5
1
50 0.90 9.8330e-4 3.4037e-5
1
50 1.00 0.0000000 0.0000000
1

100 0.00 1.7776e-2 1.5905e-5
1

100 0.25 5.0705e-3 1.0676e-4
1

100 0.50 1.5505e-4 1.1237e-4
1

100 0.75 8.8258e-4 6.6257e-5
1

100 0.90 5.0837e-4 2.7671e-5
1

100 1.00 0.0000000 0.0000000
1

500 0.00 3.5759e-3 1.8647e-7
1

500 0.25 1.0096e-3 2.3060e-5
1

500 0.50 2.1522e-5 2.3291e-5
1

500 0.75 1.8287e-4 1.3492e-5
1

500 0.90 1.0446e-4 5.5839e-6
1

500 1.00 0.0000000 0.0000000
1

1000 0.00 1.7882e-3 6.1507e-8
1

1000 0.25 5.0494e-4 1.1518e-5
1

1000 0.50 1.0436e-5 1.1616e-5
1

1000 0.75 1.1702e-5 6.7209e-6
1

1000 0.90 5.2353e-5 2.7788e-6
1

1000 1.00 0.0000000 0.0000000
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Figure 2: Stability region of Rk4 and New6 4 meth-
ods

step points, such as hybrid BDF, (HBDF), new
class of HBDFs and class 2 + 1 hybrid BDF-like
methods have wide stability regions and higher
order compared to some Runge-Kutta method
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Figure 3: Stability region of Rk5 and New 6 5 meth-
ods

and implicit BDF methods [1, 20]. Let us con-
sider the IVP of the form (2.1). Linear k-step
methods of the

xn+1 = α1xn + α2xn−1 + ...+ αkxn−k+1
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Table 2: Error of control values in Example 4.1 for FBSM Rk5 , New6 5.

h time FBSM Rk5 New6 5

1
20 0.00 7.3983e-2 4.7207e-4
1
20 0.25 1.8308e-2 6.2152e-4
1
20 0.50 2.4131e-3 5.1416e-4
1
20 0.75 5.6224e-3 2.9090e-4
1
20 0.90 2.9802e-3 1.2380e-4
1
20 1.00 0.0000000 0.0000000
1
50 0.00 3.3399e-2 1.7468e-4
1
50 0.25 7.8199e-3 2.3938e-4
1
50 0.50 1.2241e-3 1.9668e-4
1
50 0.75 2.4652e-3 1.1241e-4
1
50 0.90 1.2704e-3 4.5014e-5
1
50 1.00 0.0000000 0.0000000
1

100 0.00 1.5297e-2 8.5557e-5
1

100 0.25 3.6056e-3 1.1775e-4
1

100 0.50 6.5866e-4 9.6313e-5
1

100 0.75 1.2455e-3 2.2522e-5
1

100 0.90 1.3425e-3 5.2522e-5
1

100 1.00 0.0000000 0.0000000
1

500 0.00 3.0797e-3 1.7427e-5
1

500 0.25 7.1793e-4 2.3640e-5
1

500 0.50 1.3968e-4 1.9177e-5
1

500 0.75 2.5444e-4 1.0348e-5
1

500 0.90 1.3213e-4 4.2175e-6
1

500 1.00 0.0000000 0.0000000
1

1000 0.00 1.5417e-3 8.1780e-6
1

1000 0.25 3.5917e-4 1.1407e-5
1

1000 0.50 7.0067e-5 9.3035e-6
1

1000 0.75 1.2627e-4 4.9284e-6
1

1000 0.90 6.6158e-5 2.0463e-6
1

1000 1.00 0.0000000 0.0000000

+ h{β0fn+1 + β1fn + ...+ βkfn−k+1} (2.2)

has 2k+1 arbitrary parameter and can be written
as

ρ(E)xn−k+1 − hσ(E)fn−k+1 = 0

where E is the shift operator as E(x(t)) = x(t+
h), with the step length h and ρ and σ are first
and second characteristic polynomials defined by

ρ(ξ) = ξk − α1ξ
k−1 − α2ξ

k−2 − ...− αk,

σ(ξ) = β0ξ
k + β1ξ

k−1 + ...+ βk ,

To increase the order of k-step methods of the
form (2.2), we use a linear combination of the
slopes at several points between tn and tn+1

where tn+1 = tn + h and h is the step length

on [t0, t1]. Then, the modified form of (2.2) with
m slops is given by

xn+1 =

k∑
j=1

αjxn−j+1 + h

k∑
j=0

βjfn−j+1

+ h
m∑
j=1

γjfn+θj (2.3)

where αj , βj , γj and θj are 2k+2m+1 arbitrary
parameters [20]. Methods of the form [5] with m
off-step points are called hybrid methods where
−1 < θj < 3, j = 1, 2, ...,m. In this work, we set
α1 = 1, k = 1 and m = 4. Hence, we write (2.3)
as

xn+1 = xn + h{β0fn + γ1fn+θ1 + γ2fn+θ2
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Table 3: Error of state values in Example 4.1 for FBSM Rk4 , New6 4.

h time FBSM Rk4 New6 4

1
20 0.00 0.0000000 0.0000000
1
20 0.25 1.4621e-2 1.2140e-4
1
20 0.50 2.1962e-2 1.7791e-4
1
20 0.75 2.7528e-2 1.9353e-4
1
20 0.90 3.1434e-2 1.8116e-4
1
20 1.00 3.4609e-2 1.5980e-4
1
50 0.00 0.0000000 0.0000000
1
50 0.25 5.8666e-3 4.0885e-5
1
50 0.50 9.0092e-3 6.4591e-5
1
50 0.75 1.1173e-2 2.2532e-4
1
50 0.90 1.2835e-2 8.4307e-5
1
50 1.00 1.4129e-2 8.6651e-5
1

100 0.00 0.0000000 0.0000000
1

100 0.25 3.0457e-3 8.7137e-5
1

100 0.50 4.5430e-3 1.3930e-4
1

100 0.75 5.6673e-3 1.8525e-4
1

100 0.90 6.4624e-3 2.1699e-4
1

100 1.00 7.1131e-3 2.4143e-4
1

500 0.00 0.0000000 0.0000000
1

500 0.25 6.1435e-4 1.7493e-5
1

500 0.50 9.1506e-4 2.7834e-5
1

500 0.75 1.1404e-3 3.6713e-5
1

500 0.90 1.3000e-3 4.2707e-5
1

500 1.00 1.4309e-3 4.7251e-5
1

1000 0.00 0.0000000 0.0000000
1

1000 0.25 3.0736e-4 8.7102e-6
1

1000 0.50 4.5766e-4 1.3834e-5
1

1000 0.75 5.7023e-4 1.8214e-5
1

1000 0.90 6.5001e-4 2.1165e-5
1

1000 1.00 7.1541e-4 2.3399e-5

+ γ3fn+θ3 + γ4fn+θ4 + β1fn+1}, (2.4)

where α1, β0, β1, γ1 and θ1 are arbitrary param-
eters and θ1 ̸= 0 or 1. Expanding terms yn+1,
fn+1, fn−θ1+1 in Taylor’s series about tn, we can
obtain a family of fifth order methods if the equa-
tions

α1 = 1

β1 + β0 + γ1 + γ2 + γ3 + γ4 = 1

β0 + θ1γ1 + θ2γ2 + θ3γ3

+θ4γ4 =
1

2

1

2
β0 +

1

2
θ21γ1 +

1

2
θ22γ2

+
1

2
θ23γ3 +

1

2
θ24γ4 =

1

6

are satisfied where the principal term of the trun-
cation error is

1

4!
c4h

6x(6)(tn) + o(h7),

c4 = 1− 4β2 − 4γ1θ
3
1 − 4γ2θ

3
2

−4γ3θ
3
3 − 4γ4θ

3
4.

For more details, we refer the reader to [20]. Con-
sidering the following three cases:

β1 = 2.243954398806741e− 01, α1 = 1,

β0 = −3.801777517433751e+ 00,

γ1 = −1.831754202513441e+ 00,

γ2 = 4.102698254887516e+ 00,
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Table 4: Error of state values in Example 4.1 for FBSM Rk5 , New6 5.

h time FBSM Rk5 New6 5

1
20 0.00 0.0000000 0.0000000
1
20 0.25 1.4666e-2 2.5309e-4
1
20 0.50 2.2030e-2 4.2609e-4
1
20 0.75 2.7623e-2 6.1522e-4
1
20 0.90 3.1556e-2 7.6831e-4
1
20 1.00 3.4759e-2 8.9716e-4
1
50 0.00 0.0000000 0.0000000
1
50 0.25 5.8739e-3 9.9218e-5
1
50 0.50 9.0203e-3 1.6652e-4
1
50 0.75 1.1173e-2 2.2532e-4
1
50 0.90 1.2855e-2 2.7352e-4
1
50 1.00 1.4153e-2 3.5997e-4
1

100 0.00 0.0000000 0.0000000
1

100 0.25 3.0456e-3 5.0783e-5
1

100 0.50 4.5458e-3 8.1714e-5
1

100 0.75 5.6711e-3 1.0978e-4
1

100 0.90 6.4673e-3 1.2967e-4
1

100 1.00 7.1191e-3 1.4521e-4
1

500 0.00 0.0000000 0.0000000
1

500 0.25 6.1443e-4 1.0199e-5
1

500 0.50 9.1518e-4 1.6307e-5
1

500 0.75 1.1405e-3 2.1606e-5
1

500 0.90 1.3002e-3 2.5193e-5
1

500 1.00 1.4311e-3 2.7915e-5
1

1000 0.00 0.0000000 0.0000000
1

1000 0.25 3.0738e-4 4.9618e-6
1

1000 0.50 4.5768e-4 7.8709e-6
1

1000 0.75 5.7027e-4 1.0360e-5
1

1000 0.90 6.5006e-4 1.2045e-5
1

1000 1.00 7.1547e-4 1.3326e-5

γ3 = 2.307214186027961e+ 00,

γ4 = −7.761608489596578e− 04,

θ1 = − 75

288
,

θ2 = − 50

288
,

θ3 =
64

288
,

θ4 = 2.39,

c4 = − 5

18
.

gives us the following method of order 6 (say New
method in this work [20]:

xn+1 = xn + h{β0fn + γ1fn+θ1 + γ2fn+θ2

+ γ3fn+θ3 + γ4fn+θ4 + β1fn+1}, (2.5)

where fn+1 = f(tn, xn+1), fn+m = f(tn +
mh, xn+m) and fn = f(tn, xn) for m =
v1, v2, v3, v4. Note that, xn+1, xn+m and xn are
numerical approximations according to the ex-
act values of the solution x(t) at tn+1 = tn +
h, tn+m = tn +mh, tn = tn for m = v1, v2, v3, v4.
In order to convert method (2.5) into explicit
methods at each step, we predict the values of
xn+1 and xn+m used on the right hand side of the
new methods using fourth order explicit Runge-
Kutta method as follows :

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4), (2.6)

k1 = f(tn, xn),
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Table 5: Error of control values in Example 4.2 for FBSM Rk4 , New6 4.

h time FBSM Rk4 New6 4

1
20 0.00 3.4701e-3 1.2011e-4
1
20 0.25 4.3191e-3 1.4846e-4
1
20 0.50 4.7786e-3 1.6308e-4
1
20 0.75 3.9653e-3 1.3426e-4
1
20 0.90 2.1497e-3 7.2252e-5
1
20 1.00 0.0000000 0.0000000
1
50 0.00 1.3670e-3 1.8439e-5
1
50 0.25 1.6832e-3 2.2622e-5
1
50 0.50 1.8676e-3 2.4973e-5
1
50 0.75 1.5734e-3 2.0849e-5
1
50 0.90 8.3500e-4 1.0802e-5
1
50 1.00 0.0000000 0.0000000
1

100 0.00 6.8014e-4 4.5035e-6
1

100 0.25 8.4210e-4 5.5421e-6
1

100 0.50 9.2682e-4 6.0331e-6
1

100 0.75 7.6515e-4 4.8288e-6
1

100 0.90 4.1368e-4 2.3730e-6
1

100 1.00 0.0000000 0.0000000
1

500 0.00 1.3553e-4 1.1636e-7
1

500 0.25 1.6766e-4 1.1729e-7
1

500 0.50 1.8439e-4 7.0448e-8
1

500 0.75 1.5218e-4 8.6533e-8
1

500 0.90 8.2419e-5 2.8096e-7
1

500 1.00 0.0000000 0.0000000
1

1000 0.00 6.7765e-5 1.9364e-8
1

1000 0.25 8.3832e-5 5.0544e-8
1

1000 0.50 9.2214e-5 1.1402e-7
1

1000 0.75 7.6171e-5 2.3860e-7
1

1000 0.90 4.1365e-5 3.6307e-7
1

1000 1.00 0.0000000 0.0000000

k2 = f(tn +
1

2
h, xn +

1

2
k1h),

k3 = f(tn +
1

2
h, xn +

1

2
k2h),

k4 = f(tn + h, xn + k3h).

In general, we rewrite method (2.5) using RK4
method as a predictor as follows:

−
xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4), (2.7)

−
xn+θi = xn + θih

6 (k1i + 2k2i + 2k3i + k4i),

i = 1, 2, 3, 4. (2.8)

xn+1 = xn + h{β0
−
fn + γ1

−
fn+θ1 + γ2

−
fn+θ2

+γ3
−
fn+θ3 + γ4

−
fn+θ4 + β1fn+1}, (2.9)

where

k1i = f(tn, xn),
k2i = f(tn + θih, xn + θik1h),
k3i = f(tn + θih, xn + θik2h),
k4i = f(tn + θih, xn + θik3h),

and
−
fn+1 = f(tn,

−
xn+1),

−
fn+θi = f(tn +

θih, xn+θi), fn = f(tn, xn).
and say (2.9) is New 6− 4 method in this work.
Now, suppose that the order of stage equation
(2.6) is 4 . Thus, the difference between exact
and numerical solution at t = tn+m = tn +mh,
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Table 6: Error of control values in Example 4.2 for FBSM Rk4 , New6 4.

h time FBSM Rk4 New6 4

1
20 0.00 3.4701e-3 1.1952e-4
1
20 0.25 4.3191e-3 1.4774e-4
1
20 0.50 4.7786e-3 1.6229e-4
1
20 0.75 3.9653e-3 1.3361e-4
1
20 0.90 2.1497e-3 7.1900e-5
1
20 1.00 0.0000000 0.0000000
1
50 0.00 1.3670e-3 1.8404e-5
1
50 0.25 1.6832e-3 2.2579e-5
1
50 0.50 1.8676e-3 2.4925e-5
1
50 0.75 1.5734e-3 2.0809e-5
1
50 0.90 8.3500e-4 1.0781e-5
1
50 1.00 0.0000000 0.0000000
1

100 0.00 6.8014e-4 4.4992e-6
1

100 0.25 8.4210e-4 5.5368e-6
1

100 0.50 9.2682e-4 6.0272e-6
1

100 0.75 7.6515e-4 4.8240e-6
1

100 0.90 4.1368e-4 2.3704e-6
1

100 1.00 0.0000000 0.0000000
1

500 0.00 1.3553e-4 1.1633e-7
1

500 0.25 1.6766e-4 1.1724e-7
1

500 0.50 1.8439e-4 7.0402e-8
1

500 0.75 1.5218e-4 8.6571e-8
1

500 0.90 8.2419e-5 2.8098e-7
1

500 1.00 0.0000000 0.0000000
1

1000 0.00 6.7765e-5 1.1368e-8
1

1000 0.25 8.3832e-5 5.0549e-8
1

1000 0.50 9.2214e-5 1.1403e-7
1

1000 0.75 7.6171e-5 2.3861e-7
1

1000 0.90 4.1365e-5 3.6307e-7
1

1000 1.00 0.0000000 0.0000000

m = θ1, θ2, θ3, θ4 and 1 is

y(tn+m)− yn+m = Cmhpy(p)(tn) +O(hp+1)
(2.10)

where Cm is the error constant of the method
(2.7) with corresponding m which can take only
one of the values θ1, θ2, θ3, θ4, together with the
value 1 related to method (2.5) . The difference
operator associated to method (2.7), of order 4
can be written as

y(tn+1)− yn+1 = Chpy(p)(tn) +O(hp+1) (2.11)

where C is the error constant of the method (2.7).
Therefore, we have the following theorem:

Theorem 2.1 Given that formula (2.7) is of or-
der p then p is equal to 5.

Proof. Suppose that m can only take one of the
values θ1, θ2, θ3, θ4 and yn is exact. From (2.7)
and (2.9) one can write

y(tn+1)− yn+1 = hγ1[f(tn+θ1 , y(tn+θ1))

−f(tn+θ1 , yn+θ1)] (2.12)

+hγ2[f(tn+θ2 , y(tn+θ2))− f(tn+θ2 , yn+θ2)]

+hγ2[f(tn+θ2 , y(tn+θ2))− f(tn+θ2 , yn+θ2)]

+hγ3[f(tn+θ3 , y(tn+θ3))− f(tn+θ3 , yn+θ3)]

+hγ4[f(tn+θ4 , y(tn+θ4))− f(tn+θ4 , yn+θ4)]

+hβ1[f(tn+1, y(tn+1))− f(tn+1, yn+1)]

+Ch6y(6)(tn) +O(h7)

Considering properties of the IV Ps of the form
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Table 7: Error of state values in Example 4.2 for FBSM Rk4 , New6 4.

h time FBSM Rk4 New6 4

1
20 0.00 0.0000000 0.0000000
1
20 0.25 7.6093e-4 9.2272e-4
1
20 0.50 1.3473e-3 1.1392e-3
1
20 0.75 1.6619e-3 1.0879e-3
1
20 0.90 1.5965e-3 1.0283e-3
1
20 1.00 1.3722e-3 9.9712e-4
1
50 0.00 0.0000000 0.0000000
1
50 0.25 2.9166e-4 1.5290e-4
1
50 0.50 5.3599e-4 1.9288e-4
1
50 0.75 6.6223e-4 1.8488e-4
1
50 0.90 6.4345e-4 1.7403e-4
1
50 1.00 5.6052e-4 1.6858e-4
1

100 0.00 0.0000000 0.0000000
1

100 0.25 1.5096e-4 4.5027e-5
1

100 0.50 2.6759e-4 5.5677e-5
1

100 0.75 3.3208e-4 5.3225e-5
1

100 0.90 3.2262e-4 5.0264e-5
1

100 1.00 2.8225e-4 4.8636e-5
1

500 0.00 0.0000000 0.0000000
1

500 0.25 3.0175e-5 3.9036e-6
1

500 0.50 3.3511e-5 4.8713e-6
1

500 0.75 6.6518e-5 4.7175e-6
1

500 0.90 6.4805e-5 4.4925e-6
1

500 1.00 5.6936e-5 4.3669e-6
1

1000 0.00 0.0000000 0.0000000
1

1000 0.25 1.5101e-5 1.6531e-6
1

1000 0.50 2.6789e-5 2.0845e-6
1

1000 0.75 3.3327e-5 2.0560e-6
1

1000 0.90 3.2505e-5 1.9897e-6
1

1000 1.00 2.8603e-5 1.9591e-6

(2.1), for some values such as ηm and η1 belong
to intervals (yn+m, y(tn+m)) and (yn+1, y(tn+1))
respectively, we can write

f(tn+θ1 , y(tn+θ1))− f(tn+θ1 , yn+θ1)

= ∂f
∂y (tn+θ1 , ηn+θ1)(y(tn+θ1 − yn+θ1),

f(tn+θ2 , y(tn+θ2))− f(tn+θ2 , yn+θ2)

= ∂f
∂y (tn+θ2 , ηn+θ2)(y(tn+θ2 − yn+θ2),

f(tn+θ3 , y(tn+θ3))− f(tn+θ3 , yn+θ3)

= ∂f
∂y (tn+θ3 , ηn+θ3)(y(tn+θ3−yn+θ3

),

f(tn+θ4 , y(tn+θ4))− f(tn+θ4 , yn+θ4)

= ∂f
∂y (tn+θ4 , ηn+θ4)(y(tn+θ4 − yn+θ4),

f(tn+1, y(tn+1))− f(tn+1, yn+1)

= ∂f
∂y (tn+1, ηn+1)(y(tn+1)− yn+1).

Therefore, by using (2.11), we have

y(tn+1)− yn+1

= hγ1

[
∂f
∂y (tn+θ1 , ηn+θ1)(y(tn+θ1)− yn+θ1)

]
+hγ2

[
∂f
∂y (tn+θ2 , ηn+θ2)(y(tn+θ2)− yn+θ2)

]
+hγ3

[
∂f
∂y (tn+v3 , ηn+θ3)(y(tn+θ3)− yn+θ3)

]
+hγ4

[
∂f
∂y (tn+θ4 , ηn+θ4)(y(tn+θ4)− yn+θ4)

]
+hβ1

[
∂f
∂y (tn+1, ηn+1)(y(tn+1)− yn+1)

]
+Ch6y(6)(tn) +O(h7).
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Table 8: Error of state values in Example 4.2 for FBSM Rk5 New6 5.

h time FBSM Rk5 New6 5

1
20 0.00 0.0000000 0.0000000
1
20 0.25 6.1668e-4 2.3405e-5
1
20 0.50 1.0191e-3 3.7002e-5
1
20 0.75 1.0609e-3 4.3374e-5
1
20 0.90 7.6032e-4 4.4561e-5
1
20 1.00 3.3646e-4 4.4467e-5
1
50 0.00 0.0000000 0.0000000
1
50 0.25 2.2361e-4 4.0296e-5
1
50 0.50 3.9866e-4 4.1735e-5
1
50 0.75 4.1786e-4 2.5403e-5
1
50 0.90 2.9720e-4 1.0122e-5
1
50 1.00 1.3288e-4 3.9547e-7
1

100 0.00 0.0000000 0.0000000
1

100 0.25 1.2012e-4 7.7332e-6
1

100 0.50 1.9791e-4 5.0291e-6
1

100 0.75 2.0556e-4 3.4083e-6
1

100 0.90 1.4756e-4 1.0529e-5
1

100 1.00 6.6259e-5 1.6129e-5
1

500 0.00 0.0000000 0.0000000
1

500 0.25 2.3926e-5 3.9745e-7
1

500 0.50 3.9414e-5 1.3850e-6
1

500 0.75 4.0965e-5 3.0023e-6
1

500 0.90 2.9488e-5 4.3775e-6
1

500 1.00 1.3391e-5 5.5201e-6
1

1000 0.00 0.0000000 0.0000000
1

1000 0.25 1.1972e-5 3.0292e-7
1

1000 0.50 1.9730e-5 8.0510e-7
1

1000 0.75 2.05335e-5 1.5816e-6
1

1000 0.90 1.4827e-5 2.2426e-6
1

1000 1.00 6.8099e-6 2.7954e-6

Applying equation (2.7) to this gives us

y(tn+1)− yn+1 =

hγ1

[
∂f
∂y (tn+θ1 , ηn+θ1)C1h

py(p)(tn)
]

+hγ1
[
O(hp+1)

]
+hγ2

[
∂f
∂y (tn+θ2 , ηn+θ2)C2h

py(p)(tn)
]

+hγ2
[
+O(hp+1)

]
+hγ3

[
∂f
∂y (tn+θ3 , ηn+θ3)C3h

py(p)(tn)
]

+hγ3
[
O(hp+1)

]
+hγ4

[
∂f
∂y (tn+θ4 , ηn+θ4)C4h

py(p)(tn)
]

+hγ4
[
O(hp+1)

]

+hβ1

[
∂f
∂y (tn+1, ηn+1)C5h

py(p)(tn)
]

+hβ1
[
O(hp+1)

]
+Ch6y(6)(tn) +O(h7)

= h4
[
∂f
∂y (tn+θ1 , ηn+θ1)c1γ1h

p−4+1y(p)(tn)
]

+h4
[
∂f
∂y (tn+θ2 , ηn+θ2)c2γ2h

p−4+1y(p)(tn)
]

h4
[
∂f
∂y (tn+θ3 , ηn+θ3)c3γ3h

p−4+1y(p)(tn)
]

+h4
[
∂f
∂y (tn+θ4 , ηn+θ4)c4γ4h

p−4+1y(p)(tn)
]

+h4
[
∂f
∂y (tn+1, ηn+1)c5h

p−4+1y(p)(tn)
]
.

+Cy(p)(tn)}+O(hp+1)
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Table 9: Error of control values in Example 4.3 for FBSM Rk4 , New6 4.

h time FBSM Rk4 New6 4

1
20 0.00 1.5934e-2 2.6650e-4
1
20 0.25 1.3300e-2 2.2249e-4
1
20 0.50 9.9187e-3 1.6594e-4
1
20 0.75 5.5760e-3 9.3306e-5
1
20 0.90 2.3988e-3 4.0145e-5
1
20 1.00 0.0000000 0.0000000
1
50 0.00 6.3424e-3 4.2176e-5
1
50 0.25 5.5251e-3 3.6776e-5
1
50 0.50 3.9478e-3 2.6311e-5
1
50 0.75 2.2971e-3 1.5324e-5
1
50 0.90 9.5479e-4 6.3736e-6
1
50 1.00 0.0000000 0.0000000
1

100 0.00 3.1660e-3 1.0386e-5
1

100 0.25 2.6426e-3 8.7098e-6
1

100 0.50 1.9706e-3 6.5234e-6
1

100 0.75 1.2980e-3 4.3110e-6
1

100 0.90 4.7660e-4 1.5877e-6
1

100 1.00 0.0000000 0.0000000
1

500 0.00 6.3250e-4 2.4620e-7
1

500 0.25 5.2791e-4 2.4589e-7
1

500 0.50 3.9365e-4 2.1164e-7
1

500 0.75 2.2128e-4 1.3380e-7
1

500 0.90 9.5196e-5 6.1166e-7
1

500 1.00 0.0000000 0.0000000
1

1000 0.00 3.1628e-4 7.0038e-8
1

1000 0.25 2.6396e-4 1.8071e-8
1

1000 0.50 1.9681e-4 1.4796e-8
1

1000 0.75 1.1063e-4 2.3142e-8
1

1000 0.90 4.7591e-5 1.3557e-
1

1000 1.00 0.0000000 0.0000000

Thus, it can be concluded that the method (2.6)
is of order p and so the proof is completed.

By following the same way as presented above, it
can be proved that the methods (2.5) using RK5
method as a predictor (Runge-kutta of order 5)
of the form

−
xn+1 = xn + h

90(7k1 + 32k3 + 12k4 + 32k5 + 7k6),
(2.13)

−
xn+θi = xn+

θih
90 (7k1i+32k3i+12k4i+32k5i+7k6i)

(2.14)
, i = 1, 2, 3, 4.

xn+1 = xn + h{β0
−
fn + γ1

−
fn+θ1 + γ2

−
fn+θ2

+ γ3
−
fn+θ3 + γ4

−
fn+θ4 + β1fn+1}, (2.15)

where

k1i = f(tn, xn),k2i = f(tn + θih/2, xn + θik1h/2),

k3i = f(tn + θih/4, xn + θi/16(3ki1 + k2i),

k4i = f(tn + θih/2, xn + θik3ih/2),

k5i = f(tn + 3θih/4, xn + θi/16(−3k2i

+6k3i + 9k4i)),

k6i = f(tn + θih, xn + θi/7(k1i + 4k2i + 6k3i

−12k4i + 8k5i)),

and
−
fn+1 = f(tn,

−
xn+1),

−
fn+θi = f(tn +

θih, xn+θi), fn = f(tn, xn).
and say (2.15) is New 6− 5 method in this work.
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Table 10: Error of control values in Example 4.3 for FBSM Rk5 New6 5.

h time FBSM Rk5 New6 5

1
20 0.00 4.1885e-3 7.0173e-3
1
20 0.25 3.4961e-3 5.8614e-5
1
20 0.50 2.6071e-3 4.3738e-5
1
20 0.75 1.4656e-3 2.4603e-5
1
20 0.90 6.3053e-4 1.0588e-5
1
20 1.00 0.0000000 0.0000000
1
50 0.00 1.6816e-3 1.1069e-5
1
50 0.25 1.4649e-3 9.6769e-6
1
50 0.50 1.0467e-3 6.9486e-6
1
50 0.75 6.0902e-4 4.0579e-6
1
50 0.90 2.5313e-4 1.6905e-6
1
50 1.00 0.0000000 0.0000000
1

100 0.00 8.4195e-4 2.6348e-6
1

100 0.25 7.0247e-4 2.2397e-6
1

100 0.50 5.2402e-4 1.6985e-6
1

100 0.75 2.9457e-4 9.6968e-7
1

100 0.90 1.2672e-4 4.2077e-7
1

100 1.00 0.0000000 0.0000000
1

500 0.00 1.6869e-4 6.3034e-8
1

500 0.25 1.4077e-4 1.2225e-8
1

500 0.50 1.0494e-4 1.9156e-8
1

500 0.75 5.8985e-5 2.5593e-8
1

500 0.90 2.5372e-5 1.4612e-8
1

500 1.00 0.0000000 0.0000000
1

1000 0.00 8.4447e-5 1.4732e-7
1

1000 0.25 7.0448e-5 8.2581e-8
1

1000 0.50 5.2506e-5 3.3309e-8
1

1000 0.75 2.9503e-5 3.9019e-9
1

1000 0.90 1.2689e-5 1.9229e-9
1

1000 1.00 0.0000000 0.0000000

Table 11: The optimal states of methods in Example 4.4 (x1, x2).

method x1 x2

Rk4 5.7229e-2 1.7403e-4
New6 4 5.7229e-2 1.7390e-4
Rk5 5.7373e-2 1.8272e-4
New6 5 5.7227e-2 1.7446e-4

Table 12: The optimal states of methods in Example 4.4 (x3, x4).

method x3 x4

Rk4 2.0982e-4 0
New6 4 2.0973e-4 0
Rk5 2.1996e-4 0
New6 5 2.1026e-4 0
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Figure 4: (a) The optimal state and control of Example
4.1, where h = 1

20
(FBSM rk4). (b) The optimal state

and control of Example 4.1 (new6 4 method), where h =
1
20
.

3 Stability analysis of the new
methods

Now we want to examine the stability analysis of
new method. We consider Dahlquist test prob-
lem x′ = λx to investigate the stability region of
the method presented in this study. Using the
Dahlquist test problem to the methods (2.5) in-
serting p = 4, the following equations can be ob-
tained:

−
xn+1 =

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!
+

(h̄)4

4!

)
xn,

(3.16)
−
xn+m =

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!

)
xn

+

(
(mh̄)4

4!

)
xn,m = θ1, θ2, θ3, θ4), (3.17)

xn+1 = xn + h{β0fn + γ1fn+θ1 + γ2fn+θ2
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Figure 5: (a) The optimal state and control of Example
4.1, where h = 1

20
(FBSM rk5). (b) The optimal state

and control of Example 4.1 (new6 5 method), where h =
1
20
.

+ γ3fn+θ3 + γ4fn+θ4 + β1fn+1}. (3.18)

where h̄ = hλ. By substituting (3.16) and (3.17)
into (3.18), the following equation is obtained:

xn+1 = xn + h̄

{
β0xn + β1xn

(
1 + h̄+

(h̄)2

2!

)}

+h̄β1xn

(
(h̄)3

3!
+

(h̄)4

4!

)

+h̄

{
xn

4∑
i=1

γi

(
1 + (θih̄) +

(θih̄)
2

2!
+

(θih̄)
3

3!

)}

+ h̄

{
xn

4∑
i=1

γi

(
(θih̄)

4

4!

)}
. (3.19)

By inserting xn = rn into (3.19) and dividing by
rn we can obtain:

rn+1 = rn
{
1 + a1h̄+ a2h̄

2 + a3h̄
3
}
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Figure 6: (a) The optimal state and control of Example
4.2, where h = 1

20
(FBSM rk4). (b) The optimal state

and control of Example 4.2 (New6 4method), where h =
1
20
.

+rn
{
+a4h̄

4 + a5h̄
5
}

⇒ r = 1 + a1h̄+ a2h̄
2 + a3h̄

3 + a4h̄
4 + a5h̄

5

a1 = β0 + β1 +

4∑
i=1

γi

a2 = β1 +
4∑

i=1

(θiγi)

a3 =
1

2
(β1 +

4∑
i=1

(θ2i γi)

a4 =
1

6
(β1 +

4∑
i=1

(θ3i γi)

a4 =
1

24
(β1 +

4∑
i=1

(θ4i γi).
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Figure 7: (a) The optimal state and control of Example
4.2, where h = 1

20
(FBSM rk5). (b) The optimal state

and control of Example 4.2 (New6 5 method), where h =
1
20
.

which is the stability polynomial of the method
(2.9).
By following the same way for p = 5 we can be
obtained:

−
xn+1 =

(
1 + h̄+

(h̄)2

2!
+

(h̄)3

3!
+

(h̄)4

4!
+

(h̄)5

5!

)
xn,

(3.20)

−
xn+m =

(
1 +

mh̄

1!
+

(mh̄)2

2!
+

(mh̄)3

3!

)
xn

+

(
(mh̄)4

4!
+

(mh̄)5

5!

)
xn,m = θ1, θ2, θ3, θ4,

(3.21)

xn+1 = xn + h{β0fn + γ1fn+θ1 + γ2fn+θ2

+γ3fn+θ3 + γ4fn+θ4 + β1fn+1}. (3.22)
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Figure 9: The optimal curves of the problem in Ex-
ample 4.3 (New6 4 method, h = 1

20 )

where h̄ = hλ. By substituting (3.20) and (3.21)
into (3.22), the following equation is obtained:

xn+1 = xn + h̄

{
β0xn + β1xn

(
1 + h̄+

(h̄)2

2!

)}

+h̄β1xn

{(
(h̄)3

3!
+

(h̄)4

4!
+

(h̄)5

5!

)}

+h̄

{
xn

4∑
i=1

γi

(
1 + (θih̄) +

(θih̄)
2

2!
+

(θih̄)
3

3!

)}

+h̄

{
xn

4∑
i=1

γi

(
(θih̄)

4

4!
+

(θih̄)
5

5!

)}
.

By inserting xn = rn into (3.19) and dividing by
rn we can obtain:

rn+1 = rn
{
1 + a1h̄+ a2h̄

2 + a3h̄
3
}

+rn
{
+a4h̄

4 + a5h̄
5 + a6h̄

6
}

⇒ r = 1+a1h̄+a2h̄
2+a3h̄

3+a4h̄
4+a5h̄

5+a6h̄
6

a1 = β0 + β1 +
4∑

i=1

γi
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Figure 10: The optimal curves of the problem in
Example 4.3 ((FBSM rk5), h = 1

20 )
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Figure 11: The optimal curves of the problem in
Example 4.3 (New6 5 method, h = 1

20 )

a2 = β1 +

4∑
i=1

(θiγi)

a3 =
1

2
(β1 +

4∑
i=1

(θ2i γi)

a4 =
1

6
(β1 +

4∑
i=1

(θ3i γi)

a5 =
1

24
(β1 +

4∑
i=1

(θ4i γi)

a6 =
1

120
(β1 +

4∑
i=1

(θ5i γi).

which is the stability polynomial of the method.
(2.15)
We show the stability of the New methods,in Fig-
ures 1-3 and compared ERK method of order 4
and 5. It can be seen that the stability region
of the new methods is larger, and this proves the
efficiency of the new method.
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Figure 12: The optimal curves of the problem in
Example 4.4 (FBSM Rk4)
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Figure 13: The optimal curves of the problem in
Example 4.4 (new6 4)

4 Numerical results using
FBSM and new methods

Example 4.1 Consider the following optimal
control problem:

minu
∫ 1
0 3x(t)2 + u(t)2dt

st. x′(t) = x(t) + u(t), x(0) = 1.

Analytical solutions which are as follows[8]:

u∗(t) = 3e−4

3e−4+1
e2t − 3

3e−4+1
e−2t, x∗(t) =

3e−4

3e−4+1
e2t + 1

3e−4+1
e−2t. The state variable at the

end point is x = 0.51314537669. And variable
control endpoint is equal to zero. Matlab imple-
mentation of the three methods of Example 4.1
was determined as follows. The results are shown
in Figures 4, 5 and in Tables 1-4. These results
show that the new methods are more accurate
than the Runge-Kutta of rank 4.
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Figure 14: The optimal curves of the problem in
Example 4.4 (FBSM Rk5)
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Figure 15: The optimal curves of the problem in
Example 4.4 (new6 5)

Figure 4 shows that the New6 4 method is
more accurate than the FBSM mothod based
on Runge-Kutta of rank 4. (FBSM Rk4)
Because of the large stability area of the
New6 4 shows better performance than the
(FBSM Rk4) method for small h. Figure 5
shows that the New6 5 method is more accurate
than the FBSM mothod based on Runge-Kutta
of rank 5. (FBSM Rk5) Because of the large
stability area of the New6 5 shows better perfor-
mance than the (FBSM Rk5) method for small
h.
Tables 1, 2 results shows all over time of t in
[0, 1], the new methods the better approximation
for the control variable values. it also shows that
the new methods for each h has better perfor-
mance and this is due to the high stability of the
new methods.
The results of Tabels 3, 4 shows that the new
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methods for different h is more accurate than the
FBSM Rk4 and FBSM Rk5 methods for state
variable values.

Example 4.2 Consider the following optimal
control problem with a payoff term:

min
u

x(T ) +

∫ T

0
u(t)2dt

st x′(t) = αx(t)− u(t), x(0) = x0 > 0

The analytical solution of this problem is as fol-
lows [8]:

H = u2 + λ(αx− u) ,
∂H

∂u
= 2u− λ = 0

at u∗ ⇒ u∗ = λ
2 ,

λ′ = −∂H

∂x
= −∂λ ⇒ λ = ce−αt,λ(T ) = 1

⇒ λ(t) = eα(T−t) ⇒ u∗(t) =
eα(T−t)

2
,

x′ = αx− u = αx− u = αx− eα(T−t)

2
,

x(0) = x0. ⇒ x∗(t) = x0e
αt + eαT

e−αt − eαt

4α
.

The numerical solution of this problem related
to x (t) , and u(t) are obtained and their results
have been plotted in the following figures with
α = −2.
Figure 6 shows that the New6 4 method is
more accurate than the FBSM mothod based on
Runge-Kutta of rank 4 .(FBSM Rk4) Because of
the large stability area of the New6 4 shows bet-
ter performance than the (FBSM Rk4) method
for small h. Figure 7 shows that the New6 5
method is more accurate than the FBSM mothod
based on Runge-Kutta of rank 5 .(FBSM Rk5)
Because of the large stability area of the
New6 5 shows better performance than the
(FBSM Rk5) method for small h.
Tables 5, 6 results shows all over time of t in
[0, 1], the new methods the better approximation
for the control variable values. it also shows that
the new methods for each h has better perfor-
mance and this is due to the high stability of the
new methods.
The results of Tabels 7, 8 shows that the new

methods for different h is more accurate than the
FBSM Rk4 and FBSM Rk5 methods for state
variable values.

Example 4.3 Consider the following optimal
control problem for a fixed T :

minu
∫ T
0 (

∫ t
0 x(η)dη + u(t)2)dt

st. x′(t) = −x(t) + u(t), x(0) = a.

solution which is as follows (see [19]):
To convert the problem into standard form, we
add another state to make the system two di-
mensional x1(t) := x(t) and x2(t) := (

∫ t
0 x(η)dη),

and redefine x(t) := [x1(t), x2(t)]
T . Thus our new

problem is

min
u

∫ T

0
(x2(t) + u(t)2)dt

st, x′1(t) = −x(t) + u(t),

x′2(t) = x1(t),

x(0) = [a, 0]T

Analytical solution is as follows:

H = (x2 + u2) + λ1(−x1 + u) + λ2x1

∂H

∂u
= 2u+ λ1 = 0

at u∗

⇒ u∗ = −1

2
λ1,

λ1(T ) = λ2(T ) = 0 ⇒λ1
′ = −∂H

∂x1

= λ1 − λ2, λ
′
2 = −∂H

∂x2
= −1

⇒ λ1(t) = −(t − T ) − 1 + e(t − T ) , u∗(t) =
−1

2λ1(t) =
1
2(1 + t− T − e(t− T )),

Matlab implementation of the three methods of
Example 4.2 was determined as follows. The re-
sults are shown in Figures 4, 5 and in Tables 5.
Figure 8, 9 shows that the New6 4 method is
more accurate than the FBSM mothod based on
Runge-Kutta of rank 4 .(FBSM Rk4) Because of
the large stability area of the New6 4 shows bet-
ter performance than the (FBSM Rk4) method
for small h. Figure 10, 11 shows that the
New6 5 method is more accurate than the
FBSM mothod based on Runge-Kutta of rank 5
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.(FBSM Rk5) Because of the large stability area
of theNew6 5 shows better performance than the
(FBSM Rk5) method for small h. Numerical re-
sults of table 5 show that the h increases both new
method and FBSM-Rk4 more accurate, but the
precision of the new method is three more dijits
than the FBSM-Rk4 method.
Tables 9, 10 results shows all over time of t in
[0, 1], the new methods the better approximation
for the control variable values. it also shows that
the new methods for each h has better perfor-
mance and this is due to the high stability of the
new methods.

Example 4.4 Consider the following optimal
control problem [5, 21],

minu
∫ 3
0 (Ax3 + u2)2dt

st.

x1
′
= b− b(px2 + qx2)− bx1 − βx1x3 − ux1,,

x2
′
= bpx2 + βx1x3 − (e+ b)x2,

x3
′
= ex2 − (g + b)x3,

x4
′
= b− bx4.

With initial conditions x1(1) = 0.0555 , x2(1) =
0.0003 , x3(1) = 0.00041 , x4(1) = 1 and the
parameters b = 0.012, p = 0.65, q = 0.65, β =
527.59, e = 36.5, g = 30.417 and A = 100.

It is not easy to solve this, analytically and it
is necessary to use numerical method.
The results obtained in the Table 11 and figures
11-14 shows that the new methods compete with
Runge-Kutta methods in stiff and several variable
problems.

5 Conclusion

In this work, one hybrid methods of orders 6 was
presented and then, Runge - Kutta methods of
order 4 and 5 were used as predictor scheme to
gain whole method of the same orders. In sec-
tion 2, order of truncation error was investigated
for the explicit hybrid based on Rune - Kutta
method. Then, stability analysis of the method
was discussed which shows that the stability re-
gion of the new method is wider compared to ex-
plicit Runge - Kutta method of order 4 and 5.
Finally, four examples of optimal control prob-
lems are solved using Matlab, FBSM scheme and
presented method. Numerical results to solve the
examples presented by Tables 1- 12 and there-
fore one can conclude that hybrid methods, have

a good performance in getting small end errors
in solving optimal control problems numerically.
Example 4 also shows that this method has good
implementation to solve OCP stiff problems.
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